Regionalized Terrestrial Ecotoxicity Assessment of Copper-Based Fungicides Applied in Viticulture
Abstract
:1. Introduction
2. Methods
2.1. Characterization Factors for Copper Terrestrial Ecotoxicity
2.1.1. Fate Factors
2.1.2. Accessibility Factor
2.1.3. Bioavailability Factor
2.1.4. Effect Factor
2.2. Spatial Differentiation of Characterization Factors
2.3. Case Study
3. Results and Discussion
3.1. Characterization Factors for Copper Terrestrial Ecotoxicity
3.2. Characterization Factors at Different Spatial Resolutions
3.3. Terrestrial Ecotoxicity Impact Score
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges. J. Clean. Prod. 2016, 140, 399–409. [Google Scholar] [CrossRef]
- Sala, S.; Anton, A.; McLaren, S.J.; Notarnicola, B.; Saouter, E.; Sonesson, U. In quest of reducing the environmental impacts of food production and consumption. J. Clean. Prod. 2016, 140, 387–398. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Villanueva-Rey, P.; Moreira, M.T.; Feijoo, G. Environmental analysis of Ribeiro wine from a timeline perspective: Harvest year matters when reporting environmental impacts. J. Environ. Manag. 2012, 98, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Falcone, G.; De Luca, A.; Stillitano, T.; Strano, A.; Romeo, G.; Gulisano, G. Assessment of environmental and economic impacts of vine-growing combining life cycle assessment, life cycle costing and multicriterial analysis. Sustainability 2016, 8, 793. [Google Scholar] [CrossRef]
- Komárek, M.; Čadková, E.; Chrastný, V.; Bordas, F.; Bollinger, J.-C. Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environ. Int. 2010, 36, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Ruyters, S.; Salaets, P.; Oorts, K.; Smolders, E. Copper toxicity in soils under established vineyards in europe: A survey. Sci. Total Environ. 2013, 443, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Bart, S.; Laurent, C.; Péry, A.R.R.; Mougin, C.; Pelosi, C. Differences in sensitivity between earthworms and enchytraeids exposed to two commercial fungicides. Ecotoxicol. Environ. Saf. 2017, 140, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Fernández, D.; Voss, K.; Bundschuh, M.; Zubrod, J.P.; Schäfer, R.B. Effects of fungicides on decomposer communities and litter decomposition in vineyard streams. Sci. Total Environ. 2015, 533, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Frankart, C.; Eullaffroy, P.; Vernet, G. Photosynthetic responses of lemna minor exposed to xenobiotics, copper, and their combinations. Ecotoxicol. Environ. Saf. 2002, 53, 439–445. [Google Scholar] [CrossRef]
- Villanueva-Rey, P.; Vázquez-Rowe, I.; Moreira, M.T.; Feijoo, G. Comparative life cycle assessment in the wine sector: Biodynamic vs. Conventional viticulture activities in nw spain. J. Clean. Prod. 2014, 65, 330–341. [Google Scholar] [CrossRef]
- Plouffe, G.; Bulle, C.; Deschênes, L. Case study: Taking zinc speciation into account in terrestrial ecotoxicity considerably impacts life cycle assessment results. J. Clean. Prod. 2015, 108, 1002–1008. [Google Scholar] [CrossRef]
- Potting, J.; Hauschild, M. Spatial differentiation in life cycle impact assessment: A decade of method development to increase the environmental realism of LCIA. Int. J. Life Cycle Assess. 2006, 11, 11–13. [Google Scholar]
- Patouillard, L.; Bulle, C.; Margni, M. Ready-to-use and advanced methodologies to prioritise the regionalisation effort in LCA. Matériaux Tech. 2016, 104, 105. [Google Scholar] [CrossRef] [Green Version]
- Mutel, C.L.; Hellweg, S. Regionalized life cycle assessment: Computational methodology and application to inventory databases. Environ. Sci. Technol. 2009, 43, 5797–5803. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.-O.; Azevedo, L.B.; Margni, M.; van Zelm, R.; Deschênes, L.; Huijbregts, M.A.J. Characterization factors for terrestrial acidification at the global scale: A systematic analysis of spatial variability and uncertainty. Sci. Total Environ. 2014, 500–501, 270–276. [Google Scholar] [CrossRef] [PubMed]
- USEtox. Unep/Setac Scientific Consensus Model for Characterizing Human Toxicological and Ecotoxicological Impacts of Chemical Emissions in Life Cycle Assessment. Available online: http://www.usetox.org/model/documentation (accessed on 11 December 2017).
- Dong, Y.; Gandhi, N.; Hauschild, M.Z. Development of comparative toxicity potentials of 14 cationic metals in freshwater. Chemosphere 2014, 112, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, N.; Diamond, M.L.; van de Meent, D.; Huijbregts, M.A.J.; Peijnenburg, W.J.G.M.; Guinée, J. New method for calculating comparative toxicity potential of cationic metals in freshwater: Application to Copper, Nickel, and Zinc. Environ. Sci. Technol. 2010, 44, 5195–5201. [Google Scholar] [CrossRef] [PubMed]
- Owsianiak, M.; Rosenbaum, R.K.; Huijbregts, M.A.J.; Hauschild, M.Z. Addressing geographic variability in the comparative toxicity potential of Copper and Nickel in soils. Environ. Sci. Technol. 2013, 47, 3241–3250. [Google Scholar] [CrossRef] [PubMed]
- Plouffe, G.; Bulle, C.; Deschênes, L. Assessing the variability of the bioavailable fraction of zinc at the global scale using geochemical modeling and soil archetypes. Int. J. Life Cycle Assess. 2015, 20, 527–540. [Google Scholar] [CrossRef]
- Plouffe, G.; Bulle, C.; Deschênes, L. Characterization factors for zinc terrestrial ecotoxicity including speciation. Int. J. Life Cycle Assess. 2016, 21, 523–535. [Google Scholar] [CrossRef]
- Cabral Pinto, M.M.S.; Dinis, P.A.; Silva, M.M.V.G.; Ferreira da Silva, E.A. Sediment generation on a volcanic island with arid tropical climate: A perspective based on geochemical maps of topsoils and stream sediments from Santiago Island, cape verde. Appl. Geochem. 2016, 75, 114–124. [Google Scholar] [CrossRef]
- Cabral Pinto, M.M.S.; Silva, M.M.V.G.; Ferreira da Silva, E.A.; Dinis, P.A.; Rocha, F. Transfer processes of potentially toxic elements (pte) from rocks to soils and the origin of pte in soils: A case study on the island of santiago (cape verde). J. Geochem. Explor. 2017, 183, 140–151. [Google Scholar] [CrossRef]
- Aziz, L.; Deschênes, L.; Karim, R.-A.; Patouillard, L.; Bulle, C. Including metal atmospheric fate and speciation in soils for terrestrial ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 2018. [Google Scholar] [CrossRef]
- Peña, N.; Antón, A.; Kamilaris, A.; Fantke, P. Modeling ecotoxicity impacts in vineyard production: Addressing spatial differentiation for copper fungicides. Sci. Total Environ. 2017, 616, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.; Gandhi, N.; Adams, W.; Atherton, J.; Bhavsar, S.; Bulle, C.; Campbell, P.C.; Dubreuil, A.; Fairbrother, A.; Farley, K.; et al. The clearwater consensus: The estimation of metal hazard in fresh water. Int. J. Life Cycle Assess. 2010, 15, 143–147. [Google Scholar] [CrossRef]
- Groenenberg, J.E.; Römkens, P.F.A.M.; Comans, R.N.J.; Luster, J.; Pampura, T.; Shotbolt, L.; Tipping, E.; De Vries, W. Transfer functions for solid-solution partitioning of Cadmium, Copper, Nickel, Lead and Zinc in soils: Derivation of relationships for free metal ion activities and validation with independent data. Eur. J. Soil Sci. 2010, 61, 58–73. [Google Scholar] [CrossRef]
- FAO/IIASA/ISRIC/ISS-CAS/JRC. Harmonized World Soil Database (Version 1.2); FAO/IIASA, Ed.; FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2012. [Google Scholar]
- Henderson, A.D.; Hauschild, M.Z.; Meent, D.; Huijbregts, M.A.J.; Larsen, H.F.; Margni, M.; McKone, T.E.; Payet, J.; Rosenbaum, R.K.; Jolliet, O. USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: Sensitivity to key chemical properties. Int. J. Life Cycle Assess. 2011, 16, 701–709. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer Science & Business Media: Berlin, Germany, 2007. [Google Scholar]
- Römkens, P.F.A.M.; Groenenberg, J.E.; Bonten, L.T.C.; Vries, W.D.; Bril, J. Derivation of Partition Relationships to Calculate Cd, Cu, Ni, Pb, Zn Solubility and Activity in Soil Solutions; Alterra: Wageningen, The Netherlands, 2004; p. 75. [Google Scholar]
- Rosenbaum, R.; Bachmann, T.; Gold, L.; Huijbregts, M.J.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.; MacLeod, M.; Margni, M.; et al. USEtox—The UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 2008, 13, 532–546. [Google Scholar] [CrossRef]
- Tromson, C.; Bulle, C.; Deschênes, L. Including the spatial variability of metal speciation in the effect factor in life cycle impact assessment: Limits of the equilibrium partitioning method. Sci. Total Environ. 2017, 581–582, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Thakali, S.; Allen, H.E.; Di Toro, D.M.; Ponizovsky, A.A.; Rooney, C.P.; Zhao, F.-J.; McGrath, S.P.; Criel, P.; Van Eeckhout, H.; Janssen, C.R.; et al. Terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil. Environ. Sci. Technol. 2006, 40, 7094–7100. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency (EEA). Corine Land Cover 2000 (clc200)-221 Vineyards; Agency, E.E., Ed.; EEA: Copenhagen, Denmark, 2017. [Google Scholar]
- Neto, B.; Dias, A.; Machado, M. Life cycle assessment of the supply chain of a portuguese wine: From viticulture to distribution. Int. J. Life Cycle Assess. 2013, 18, 590–602. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Rugani, B.; Benetto, E. Tapping carbon footprint variations in the european wine sector. J. Clean. Prod. 2013, 43, 146–155. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Peters, G.M.; Clermidy, S.; Frizarin, G.; Sinfort, C.; Ojeda, H.; Roux, P.; Short, M.D. Streamlining life cycle inventory data generation in agriculture using traceability data and information and communication technologies-part ii: Application to viticulture. J. Clean. Prod. 2015, 87, 119–129. [Google Scholar] [CrossRef]
- SAQ. Annual Report 2015-Discovery Destination. Available online: http://s7d9.scene7.com/is/content/SAQ/rapport-annuel-2015-en (accessed on 5 June 2017).
- Eurostat. Area of Vineyards by Size Class of the Wine-Grower Holding, 2015. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Area_of_vineyards_by_size_class_of_the_wine-grower_holding,_2015.png (accessed on 29 June 2018).
- Rosenbaum, R.; Anton, A.; Bengoa, X.; Bjørn, A.; Brain, R.; Bulle, C.; Cosme, N.; Dijkman, T.; Fantke, P.; Felix, M.; et al. The glasgow consensus on the delineation between pesticide emission inventory and impact assessment for LCA. Int. J. Life Cycle Assess. 2015, 20, 765–776. [Google Scholar] [CrossRef] [Green Version]
- Renaud-Gentié, C.; Dijkman, T.; Bjørn, A.; Birkved, M. Pesticide emission modelling and freshwater ecotoxicity assessment for grapevine LCA: Adaptation of pestlci 2.0 to viticulture. Int. J. Life Cycle Assess. 2015. [Google Scholar] [CrossRef]
- Nemecek, T.; Kägi, T.; Blaser, S. Life cycle inventories of agricultural production systems. Final Rep. Ecoinvent 2007, 2, 15. [Google Scholar]
- Hellweg, S.; Hofstetter, T.B.; Hungerbuhler, K. Discounting and the environment should current impacts be weighted differently than impacts harming future generations? Int. J. Life Cycle Assess. 2003, 8, 8–18. [Google Scholar]
- Ivezić, V.; Almås, Å.R.; Singh, B.R. Predicting the solubility of Cd, Cu, Pb and Zn in uncontaminated croatian soils under different land uses by applying established regression models. Geoderma 2012, 170, 89–95. [Google Scholar] [CrossRef]
- Rodríguez, C.; Ciroth, A.; Srocka, M. The importance of regionalized LCIA in agricultural LCA—New software implementation and case study. In Proceedings of the 9th International Conference Life Cycle Assess Agri-Food Sector, San Francisco, CA, USA, 8–10 October 2014; pp. 1120–1128. [Google Scholar]
- Nitschelm, L.; Aubin, J.; Corson, M.S.; Viaud, V.; Walter, C. Spatial differentiation in life cycle assessment LCA applied to an agricultural territory: Current practices and method development. J. Clean. Prod. 2016, 112, 2472–2484. [Google Scholar] [CrossRef]
- Moriondo, M.; Jones, G.V.; Bois, B.; Dibari, C.; Ferrise, R.; Trombi, G.; Bindi, M. Projected shifts of wine regions in response to climate change. Clim. Chang. 2013, 119, 825–839. [Google Scholar] [CrossRef]
- Loiseau, E.; Aissani, L.; Le Féon, S.; Laurent, F.; Cerceau, J.; Sala, S.; Roux, P. Territorial life cycle assessment (LCA): What exactly is it about? A proposal towards using a common terminology and a research agenda. J. Clean. Prod. 2018, 176, 474–485. [Google Scholar] [CrossRef]
- Mazzi, A.; Toniolo, S.; Catto, S.; De Lorenzi, V.; Scipioni, A. The combination of an environmental management system and life cycle assessment at the territorial level. Environ. Impact Assess. Rev. 2017, 63, 59–71. [Google Scholar] [CrossRef]
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. Impact 2002+: A new life cycle impact assessment methodology. Int. J. Life Cycle Assess. 2003, 8, 324–330. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viveros Santos, I.; Bulle, C.; Levasseur, A.; Deschênes, L. Regionalized Terrestrial Ecotoxicity Assessment of Copper-Based Fungicides Applied in Viticulture. Sustainability 2018, 10, 2522. https://doi.org/10.3390/su10072522
Viveros Santos I, Bulle C, Levasseur A, Deschênes L. Regionalized Terrestrial Ecotoxicity Assessment of Copper-Based Fungicides Applied in Viticulture. Sustainability. 2018; 10(7):2522. https://doi.org/10.3390/su10072522
Chicago/Turabian StyleViveros Santos, Ivan, Cécile Bulle, Annie Levasseur, and Louise Deschênes. 2018. "Regionalized Terrestrial Ecotoxicity Assessment of Copper-Based Fungicides Applied in Viticulture" Sustainability 10, no. 7: 2522. https://doi.org/10.3390/su10072522
APA StyleViveros Santos, I., Bulle, C., Levasseur, A., & Deschênes, L. (2018). Regionalized Terrestrial Ecotoxicity Assessment of Copper-Based Fungicides Applied in Viticulture. Sustainability, 10(7), 2522. https://doi.org/10.3390/su10072522