Evaluation of Silage Corn Yield Gap: An Approach for Sustainable Production in the Semi-Arid Region of USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Modeling Component
2.3. Statistical Analysis
3. Results and Discussion
3.1. Observed Data
3.2. Model Calibration
3.3. Long-Term Simulation of Silage Maize Growth and Development
3.4. Potential Yield, Yield Gap, and Opportunities for Increasing Silage Corn Yield
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karamouz, M.; Ahmadi, B.; Zahmatkesh, Z. Developing an agricultural planning model in a watershed considering climate change impacts. J. Water Resour. Plan. Manag. 2013, 10, 349–363. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Lett. Res. Nat. 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Howell, T.A. Irrigation scheduling research and its impact on water use. In Evapotranspiration and Irrigation Scheduling, Proceedings of the International Conference, San Antonio, TX, USA, 3–6 November 1996; Camp, C.R., Sadler, E.J., Yoder, R.E., Eds.; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1996; pp. 21–33. [Google Scholar]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Al-Karaki, G.N.; Al-Hashimi, M. Green fodder production and water use efficiency of some forage crops under hydroponic conditions. Int. Sch. Res. Not. Agron. 2012, 2012, 924672. [Google Scholar] [CrossRef]
- Pandy, R.K.; Maranville, J.W.; Admou, A. Deficit irrigation and nitrogen effects on maize in a Sahelian environment. I. Grain yield and yield components. Agric. Water Manag. 2000, 46, 1–13. [Google Scholar] [CrossRef]
- Koenig, R.; Nelson, M.; Barnhill, J.; Miner, D. Fertilizer Management for Grass and Grass-Legume Mixtures; AG-FG-03; Utah State University Cooperative Extension: Logan, UT, USA, 2002. [Google Scholar]
- Tucker, M.R. Essential Plant Nutrients: Their Presence in North Carolina Soils and Role in Plant Nutrition; Department of Agriculture and Consumer Services: Agronomic Division, NC, USA, 1999; p. 9. [Google Scholar]
- Rana, G.; Katerji, N. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: A review. Eur. J. Agron. 2000, 13, 125–153. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. DSSAT Cropping System Model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- López-Cedrón, F.X.; Boote, K.J.; Pineirob, C.J.; Sau, F. Improving the CERES Maize model ability to simulate water deficit impact on maize production and yield components. Agron. J. 2008, 100, 296–307. [Google Scholar] [CrossRef]
- Staggenborg, S.A.; Vanderlip, R.L. Crop Simulation Models can be used as dry-land cropping systems research tools. Agron. J. 2005, 97, 378–384. [Google Scholar] [CrossRef]
- Kaur, G.; Garcia y Garcia, A.; Norton, U.; Persson, T.; Kelleners, T. Effects of cropping practices on water-use and water productivity of dryland winter wheat in the high plains ecoregion of Wyoming. J. Crop Improv. 2015, 29, 491–517. [Google Scholar] [CrossRef]
- Monteith, J.L. The quest for balance in crop modelling. Agron. J. 1996, 88, 695–697. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Jones, J.W.; Wilkens, P.W.; Porter, C.H.; Boote, K.J.; Hunt, L.A.; Singh, U.; Lizaso, J.I.; White, J.W.; Uryasev, O.; et al. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.6 (www.DSSAT.net); DSSAT Foundation: Prosser, Washington, DC, USA, 2015. [Google Scholar]
- Chun, L.W.; Anlauf, R.; Ma, Y. Application of the DSSAT model to simulate wheat growth in Eastern China. J. Agric. Sci. 2013, 5, 198–208. [Google Scholar]
- Iglesias, A. Use of DSSAT models for climate change impact assessment, calibration and validation of CERES-Wheat and CERES-Maize in Spain. In Proceedings of the CGE Hands-on Training Workshop on V&A Assessment of the Asia and the Pacific Region, Jakarta, Indonesia, 20–24 March 2006. [Google Scholar]
- Ritchie, J.T. Soil water balance and plant water stress. In Understanding Options for Agricultural Production; Tsugi, G.Y., Hoogenboom, G., Thornton, P.K., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp. 41–54. [Google Scholar]
- Uehara, G.; Tsuji, G.Y. Overview of IBSNAT. In Understanding Options for Agricultural Production; Tsuji, G.Y., Hoogenboom, G., Thornton, P.K., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp. 1–7. [Google Scholar]
- Doorenbos, J.; Pruitt, W. Guidelines for Predicting Crop Water Requirements, Irrigation and Drainage Paper 24; FAO: Rome, Italy, 1977. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements, Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Walter, I.; Allen, R.; Elliott, R.; Jensen, M.; Itenfisu, D.; Mecham, B.; Howell, T.; Snyder, R.; Brown, P.; Echings, S.; et al. ASCE’s Standardized Reference Evapotranspiration Equation (ASCE). In Proceedings of the Watershed Management and Operations Management Conferences 2000, Fort Collins, CO, USA, 20–24 June 2000; pp. 1–11. [Google Scholar]
- Ritchie, S.W.; Hanway, J.J.; Benson, G.O. How a Corn Plant Develops; Iowa State University of Science and Technology, Cooperative Extension Service: Ames, IA, USA, 1993. [Google Scholar]
- Pickering, N.B.; Hansen, J.W.; Jones, J.W.; Wells, C.M.; Chan, V.K.; Godwin, D.C. WeatherMan: A utility for managing and generating daily weather data. Agron. J. 1994, 86, 332–337. [Google Scholar] [CrossRef]
- USDA-NRCS. Irrigation Water Management. Program Act No. 449 (2012). Available online: http://www.nrcs.usda.gov (accessed on 14 October 2016).
- Hunt, L.A.; Pararajasingham, S.; Jones, J.W.; Hoogenboom, G.; Imamura, D.T.; Ogoshi, R.M. GENCALC: Software to facilitate the use of crop models for analyzing field experiments. Agron. J. 1993, 85, 1090–1094. [Google Scholar] [CrossRef]
- Liu, H.L.; Yang, J.Y.; Drury, C.F.; Reynolds, W.D.; Tan, C.S.; Bai, Y.L.; He, P.; Jin, J.; Hoogenboom, G. Using the DSSAT-CERES-Maize model to simulate crop yield and nitrogen cycling in fields under long-term continuous maize production. Nutr. Cycl. Agroecosyst. 2011, 89, 313–328. [Google Scholar] [CrossRef]
- Abritta, M.; Garcia y Garcia, A. Subsurface and Sprinkler Irrigated Corn; University of Wyoming, Agricultural Experiment Station, Field Days Bull: Laramie, WY, USA, 2012; pp. 129–130. [Google Scholar]
- NOAA-NCDC-National Climatic Data Center. 2016. Available online: http://www.ncdc.noaa.gov (accessed on 14 October 2016).
- Evans, L.T.; Fischer, R.A. Yield potential: Its definition, measurement and significance. Crop Sci. 1999, 39, 1544–1551. [Google Scholar] [CrossRef]
- Lobell, D.B.; Cassman, K.G.; Field, C.B. Crop yield gaps: Their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 2009, 34, 179–204. [Google Scholar] [CrossRef]
- Willmott, C.J.; Akleson, G.S.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; Odonnell, J.; Rowe, C.M. Statistics for the evaluation and comparison of models. J. Geophys. Res. 1985, 90, 8995–9005. [Google Scholar] [CrossRef]
- Loague, K.; Green, R.E. Statistical and graphical methods for evaluating solute transport models: Overview and application. J. Contam. Hydrol. 1991, 7, 51–73. [Google Scholar] [CrossRef]
- SAS Institute. SAS Proprietary Software Version 9.4; SAS Institute Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Bartlett, M.S. Properties of sufficiency and statistical tests. Proc. R. Soc. Lond. Ser. A 1937, 160, 268–282. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Ma, B.L.; Morrison, M.G.; Dwyer, L.D. Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of maize. Agron. J. 1996, 88, 915–920. [Google Scholar] [CrossRef]
- Valero, J.A.; Juan, M.; Maturano, A.A.; Ramírez, J.M.T.; Benito, M.; Alvarez, J.F.O. Growth and nitrogen use efficiency of irrigated maize in a semiarid region as affected by nitrogen fertilization. Span. J. Agric. Res. 2005, 3, 134–144. [Google Scholar] [CrossRef]
- Kaiser, W.M. Effect of water deficit on photosynthetic capacity. Physiol. Plant. 1987, 71, 142–149. [Google Scholar] [CrossRef]
- Hugh, J.E.; Richard, F.D. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron. J. 2003, 95, 688–696. [Google Scholar]
- Lindquist, J.L.; Arkebauer, T.J.; Walters, D.T.; Gassman, K.G.; Dobermann, A. Maize radiation use efficiency under optimal growth conditions. Agron. J. 2005, 97, 72–78. [Google Scholar] [CrossRef]
- Hammad, H.M.; Ahmad, A.; Azhar, F.; Khaliq, T.; Wajid, A.; Nasim, W.; Farhad, W. Optimizing water and nitrogen requirement in maize (Zea Mays L.) under semi-arid conditions of Pakistan. Pak. J. Bot. 2011, 43, 2919–2923. [Google Scholar]
- Yang, J.C.; Zhang, J.H. Grain filling of cereals under soil drying. New Phytol. 2006, 169, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Muchow, R.C.; Davis, R. Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment: II. Radiation interception and biomass accumulation. Field Crops Res. 1988, 18, 17–30. [Google Scholar] [CrossRef]
- He, J.; Dukes, M.D.; Hochmuth, G.J.; Jones, J.W.; Graham, W.D. Identifying irrigation and nitrogen best management practices for sweet corn production on sandy soils using CERES-Maize model. Agric. Water Manag. 2012, 109, 61–70. [Google Scholar] [CrossRef]
Depth (cm) | Master Horizon | Lower Limit (cm3 cm−3) | Upper Limit, Drained (cm3 cm−3) | Upper Limit, Saturated (cm3 cm−3) | Sat. Hydraulic Conductivity (cm h−1) | Bulk Density (g cm−3) | Organic Carbon (%) | Clay (%) | Silt (%) | Coarse Fraction (%) | pH in Water | CEC § (cmol kg−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | A1 | 0.208 | 0.390 | 0.410 | 1.32 | 0.82 | 8.34 | 15.4 | 37.0 | 37.0 | 4.9 | 28.4 |
13 | A2 | 0.153 | 0.303 | 0.353 | 1.32 | 0.98 | 5.37 | 14.9 | 35.1 | 38.0 | 4.8 | 23.6 |
25 | A3 | 0.078 | 0.171 | 0.293 | 1.32 | 1.23 | 1.84 | 11.3 | 36.9 | 41.0 | 5.0 | 16.0 |
46 | Bs1 | 0.051 | 0.123 | 0.258 | 2.59 | 1.35 | 0.61 | 9.60 | 38.1 | 44.0 | 4.9 | 14.5 |
66 | Bs2 | 0.050 | 0.114 | 0.241 | 2.59 | 1.42 | 0.38 | 10.9 | 34.2 | 45.0 | 4.8 | 14.9 |
107 | Bt | 0.051 | 0.116 | 0.240 | 1.32 | 1.43 | 0.22 | 12.2 | 36.4 | 45.0 | 5.2 | 16.3 |
178 | 2C | 0.041 | 0.092 | 0.323 | 6.11 | 1.55 | 0.05 | 4.50 | 13.2 | 18.0 | 6.8 | 13.2 |
Code | Definition | Default | Calibrated |
---|---|---|---|
P1 | Thermal time from seedling emergence to the end of juvenile period (>8 °C degree days) | 200 | 153.6 |
P2 | Extent to which development is delayed for each hour when the photoperiod is greater than 12.5 h | 0.7 | 0.51 |
P5 | Thermal time from silking to physiological maturity (degree days) | 800 | 950 |
G2 | Maximum possible number of kernels per plant | 715 | 810 |
G3 | Kernel optimum filling rate during the linear grain filling stage (mg d−1) | 8.5 | 8.6 |
PHINT | Phylochron interval between successive leaf tip appearances (degree days) | 38.9 | 46.17 |
Year | Treatment | LAI (m2 m−2) | Aboveground biomass (kg DM ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Observed | Simulated | R2 | RMSE | d-Stat | Observed | Simulated | R2 | RMSE | d-Stat | ||
2014 | 100ETc 0 N | 1.99 | 2.26 | 0.92 | 0.58 | 0.94 | 6433 | 6404 | 0.74 | 3197 | 0.92 |
100ETc 90 N | 2.05 | 2.28 | 0.93 | 0.60 | 0.93 | 6118 | 6384 | 0.84 | 2374 | 0.96 | |
100ETc 180 N | 2.31 | 2.27 | 0.92 | 0.66 | 0.93 | 7092 | 6395 | 0.90 | 2332 | 0.97 | |
100ETc 270 N | 2.40 | 2.82 | 0.99 | 0.45 | 0.98 | 7503 | 7170 | 0.91 | 2199 | 0.98 | |
100ETc 360 N | 2.19 | 2.3 | 0.93 | 0.66 | 0.93 | 7350 | 6397 | 0.92 | 2534 | 0.96 | |
2015 | 100ETc 0 N | 1.63 | 1.70 | 0.92 | 0.28 | 0.97 | 7246 | 5508 | 0.98 | 2117 | 0.96 |
100ETc 90 N | 1.91 | 2.59 | 0.67 | 0.99 | 0.85 | 8610 | 6788 | 0.95 | 2355 | 0.97 | |
100ETc 180 N | 1.85 | 2.00 | 0.59 | 0.72 | 0.88 | 8959 | 6788 | 0.95 | 2599 | 0.96 | |
100ETc 270 N | 1.99 | 2.60 | 0.70 | 0.92 | 0.86 | 8050 | 5354 | 0.98 | 3172 | 0.94 | |
100ETc 360 N | 1.88 | 2.00 | 0.69 | 0.62 | 0.91 | 8142 | 5354 | 0.98 | 3239 | 0.94 |
DOY | Measured | Simulated | |||
---|---|---|---|---|---|
Powell | Sheridan | Lingle | Pooled Average | ||
170 | 6 | 0 | 3 | 0 | 1 |
173 | 7 | 2 | 1 | 2 | 2 |
175 | 4 | 2 | 1 | 4 | 2 |
180 | 10 | 10 | 6 | 18 | 11 |
186 | 17 | 16 | 14 | 18 | 16 |
191 | 18 | 14 | 16 | 22 | 17 |
199 | 25 | 31 | 30 | 31 | 31 |
203 | 10 | 14 | 19 | 17 | 17 |
206 | 28 | 13 | 12 | 19 | 15 |
213 | 28 | 30 | 32 | 27 | 30 |
220 | 23 | 27 | 26 | 29 | 27 |
227 | 28 | 28 | 28 | 26 | 27 |
240 | 25 | 29 | 38 | 35 | 34 |
250 | 28 | 32 | 36 | 34 | 34 |
Total | 257 | 249 | 262 | 280 | 263 |
Treatment | Powell | Sheridan | Lingle | Pooled Average |
---|---|---|---|---|
IN 0 N | 173 | 271 | 139 | 194 |
IN 30 N | 90 | 117 | 68 | 92 |
IN 60 N | 49 | 53 | 33 | 45 |
IN 90 N | 27 | 23 | 14 | 22 |
IN 120 N | 13 | 9 | 6 | 10 |
IN 150 N | 5 | 4 | 3 | 4 |
IN 180 N | 1 | 2 | 1 | 2 |
IN 210 N | 0 | 1 | 1 | 1 |
IN 240 N | 0 | 1 | 0 | 1 |
IN 270 N | 0 | 1 | 0 | 0 |
IN 300 N | 0 | 1 | 0 | 0 |
IN 330 N | 0 | 1 | 0 | 0 |
IN 360 N | 0 | 1 | 0 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nilahyane, A.; Islam, M.A.; O. Mesbah, A.; Garcia y Garcia, A. Evaluation of Silage Corn Yield Gap: An Approach for Sustainable Production in the Semi-Arid Region of USA. Sustainability 2018, 10, 2523. https://doi.org/10.3390/su10072523
Nilahyane A, Islam MA, O. Mesbah A, Garcia y Garcia A. Evaluation of Silage Corn Yield Gap: An Approach for Sustainable Production in the Semi-Arid Region of USA. Sustainability. 2018; 10(7):2523. https://doi.org/10.3390/su10072523
Chicago/Turabian StyleNilahyane, Abdelaziz, M. Anowarul Islam, Abdel O. Mesbah, and Axel Garcia y Garcia. 2018. "Evaluation of Silage Corn Yield Gap: An Approach for Sustainable Production in the Semi-Arid Region of USA" Sustainability 10, no. 7: 2523. https://doi.org/10.3390/su10072523
APA StyleNilahyane, A., Islam, M. A., O. Mesbah, A., & Garcia y Garcia, A. (2018). Evaluation of Silage Corn Yield Gap: An Approach for Sustainable Production in the Semi-Arid Region of USA. Sustainability, 10(7), 2523. https://doi.org/10.3390/su10072523