Does Use Matter? Comparison of Environmental Impacts of Clothing Based on Fiber Type
Abstract
:1. Introduction
2. Background
Ranking Tools
3. Materials and Methods
4. Results: Fibers Are Different in Use
4.1. Fiber Properties
- Physical properties (length, fineness, moisture regain, etc.)
- Chemical properties (chemical composition, effects of acids, alkalis etc.)
- Mechanical properties (stiffness, tenacity, tensile strength, elasticity, etc.)
- Electrical properties (electrical conductivity and resistance)
- Thermal properties (thermal conductivity, flammability, melting point)
- Structural properties (micro structure, X-sectional, and longitudinal view)
- Biological properties (toxicity, bio-compatibility, microbial, and fungal resistance)
- Optical properties (reflectivity, transmittance, color)
- Acoustic properties (sonic velocity, sound absorption)
- Radiological properties (ability to protect from atomic/nuclear radiations)
- Environmental properties (UV stability, weathering, oxidation)
- Torsional property (torsional rigidity, breaking twist, shear modulus)
4.2. Maintenance
4.2.1. Inherent Fiber Soiling Properties
4.2.2. Cleaning Methods
4.2.3. Dry-Cleaning
4.2.4. Washing Temperature and Program
4.2.5. Microplastics
4.2.6. Drying
4.3. Number of Days in Use before Laundering
4.4. Clothing Lifespans
5. Discussion: Comparing Apples and Oranges
6. Conclusions: Use Phase Does Matter
Future Studies
- What does the tool lead to, how is it used, and is the ranking in line with the perceptions of materials found in industry and among consumers?
- Which life cycle stages could be incorporated the tool, and where knowledge gaps still remain?
- Will it affect the credibility of work not to include microplastic or other obvious major environmental challenges such as biodegradability?
- What is the best process for obtaining information on the number of times and/or hours that each garment is used during its lifespan (service life) in order to calculate the environmental impacts for functional units related to wear instead of per garment or kg textiles?
- Can a method be developed for measuring effective lifetime, where the unit is adapted to the clothes’ function?
- Are there other parameters besides fiber content that can be used to effectively differentiate between textiles with different environmental impact, such as dyeing/finishing methods, price, or technical quality?
- How can best practice scenarios used in other contexts and material groups be adapted to give a good method for quantifying the use phase for clothes in LCA?
- How can systematization of clothing categories be used so that it becomes easier to compare between studies? Currently the divisions are based partly on garment types and partly on fiber content and this makes comparisons different. Categories should be made larger, but at the same time more precise, for example durables and consumables in different fibers.
- If fiber continues to be the basis for comparisons, how can we investigate whether environmental impacts of different types of finishing common to various types of fiber and fabric could be included, and how specific fiber type and properties—such as regular vs. longer cotton fibers (Pima, Egyptian etc.), or coarse vs fine wool—could be included.
- The need for further research on the relationship between fibers, especially recycled fibers, and microplastic shedding properties.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Impact Category Parameters | Description | Units of Measure | Weight |
---|---|---|---|
Greenhouse gases (GHG) | Carbon dioxide equivalents (incl. fossil emissions without subtracting embedded carbon in product sequestration) | Kg CO2 eq/kg fiber | 20% |
Human toxicity |
| LD/LC for oral, dermal, inhalation and skin irritation level Chronic toxicity score and skin sensitization level. The State of California Proposition 65 list for developmental hazard IARC Group | 20% |
Eco-toxicity |
| LC50 96 h Based on Material Safety Data Sheet (MSDS) information | 20% |
Energy input | Total energy use including feedstock | MJ/kg fiber | 13.33% |
Water input | Water input | Kg water/kg fiber | 13.33% |
Land use | Yield | Kg fiber/ha | 13.33% |
Tool Group | Tool Name and Measured Impacts |
---|---|
Facility tools | The Higg Facility Social & Labor Module (Higg FSLM) Facility workforce standards and those of value chain partners, external engagement on social-labor issues with other facilities or organizations, community engagement |
The Higg Facility Environmental Module (Higg FEM) measures:
| |
Brand tools | Higg Brand & Retail Module (Higg BRM) measures the following environmental impacts:
Social impacts:
|
Product tools | Higg Materials Sustainability Index (MSI) includes five impact categories:
|
The Higg MSI Contributor | |
Higg Design & Development Module (DDM) | |
Higg Product Module (PM) |
References
- The Fiber Year Consulting. The Fiber Year 2017. World Survey on Textiles & Nonwovens. May 2017. Available online: https://www.thefiberyear.com/fileadmin/pdf/TFY2017_TOC.pdf (accessed on 17 May 2017).
- Carbon Trust. International Carbon Flows—Clothing (ctc793); CTC793; Carbon Trust: London, UK, 2011; p. 17. Available online: http://www.carbontrust.com/media/38358/ctc793-international-carbon-flows-clothing.pdf (accessed on 4 June 2018).
- Quantis. Measuring Fashion. Environmental Impact of the Global Apparel and Footwear Industries Study; ClimateWorks Foundation: San Francisco, CA, USA, 2018; Available online: https://quantis-intl.com/wp-content/uploads/2018/03/measuringfashion_globalimpactstudy_full-report_quantis_cwf_2018a.pdf (accessed on 28 May 2018).
- Gardetti, M.Á. Sustainability in the textile and fashion industries: Animal ethics and welfare. In Textiles and Clothing Sustainability; Muthu, S.S., Ed.; Springer: Singapore, 2017; pp. 47–73. ISBN 978-981-10-2182-4. [Google Scholar]
- Chapagain, A.K.; Hoekstra, A.Y.; Savenije, H.H.G.; Gautam, R. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecol. Econ. 2006, 60, 186–203. [Google Scholar] [CrossRef]
- Pfister, S.; Bayer, P.; Koehler, A.; Hellweg, S. Environmental impacts of water use in global crop production: Hotspots and trade-offs with land use. Environ. Sci. Technol. 2011, 45, 5761–5768. [Google Scholar] [CrossRef] [PubMed]
- ICAC. 100% of 100 Facts about cotton. Available online: https://www.icac.org/tech/Overview/100-facts-about-cotton (accessed on 6 March 2018).
- Aiama, D.; Carbone, G.; Cator, D.; Challender, D. Biodiversity Risks and Opportunities in the Apparel Sector; International Union for Conservation of Nature (IUCN): Gland, Switzerland, 2016; Available online: https://portals.iucn.org/library/sites/library/files/documents/Rep-2016-001.pdf (accessed on 12 December 2017).
- Lerche, J.; Mezzadri, A.; Chang, D.-O.; Ngai, P.; Huilin, L.; Aiyu, L.; Srivastava, R. The Triple Absence of Labor Rights: Triangular Labor Relations and Informalisation in the Construction and Garment Sectors in Delhi and Shanghai; Centre for Development Policy and Research, SOAS, University of London: London, UK, 2017; p. 30. Available online: https://www.soas.ac.uk/cdpr/publications/workingpoor/file118684.pdf (accessed on 14 May 2018).
- Greenpeace. Dirty Laundry: Reloaded; Greenpeace: Amsterdam, The Netherland, 2012; p. 48. Available online: https://storage.googleapis.com/p4-production-content/international/wp-content/uploads/2012/03/0e8a0ec9-dirtylaundryreloaded.pdf (accessed on 4 June 2018).
- Boucher, J.; Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources; International Union for Conservation of Nature and Natural Resources: Gland, Switzerland, 2017; p. 43. Available online: https://portals.iucn.org/library/sites/library/files/documents/2017-002.pdf (accessed on 5 March 2018).
- Eunomia. Plastics in the Marine Environment; Eunomia Research & Consulting Ltd.: Bristol, UK, 2016; Available online: www.eunomia.co.uk/reports-tools/plastics-in-the-marine-environment/ (accessed on 4 June 2018).
- Henry, B.; Laitala, K.; Klepp, I.G. Microplastic Pollution from Textiles: A Literature Review. Project Report No. 1-2018; Consumption Research Norway—SIFO: Oslo, Norway, 2018; p. 49. Available online: http://www.hioa.no/eng/content/download/144803/4071096/file/OR1%20-%20Microplastic%20pollution%20from%20textiles%20-%20A%20literature%20review.pdf (accessed on 14 May 2018).
- European Parliament and the Council. Regulation (ec) No 1907/2006 Registration, Evaluation, Authorisation and Restriction of Chemicals (Reach), Establishing a European Chemicals Agency. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32006R1907:EN:NOT (accessed on 2 January 2013).
- European Commission. Eu Ecolabel. Available online: http://ec.europa.eu/environment/ecolabel/index_en.htm (accessed on 11 June 2018).
- Miljømerking. The Swan is the Official Nordic Ecolabel, Introduced by the Nordic Council of Ministers. Available online: http://www.svanemerket.no/english/ (accessed on 2 January 2017).
- GOTS. Global Organic Textile Standard (Gots), version 5.0; Global Organic Textile Standard International Working Group: Copenhagen, Denmark, 2017; Available online: http://www.global-standard.org/the-standard.html (accessed on 15 March 2018).
- Fairtrade International. The Fairtrade Marks. Available online: https://www.fairtrade.net/about-fairtrade/the-fairtrade-marks.html (accessed on 15 April 2018).
- Klepp, I.G.; Laitala, K.; Schragger, M.; Follér, A.; Paulander, E.; Tobiasson, T.S.; Eder-Hansen, J.; Palm, D.; Elander, M.; Rydberg, T.; et al. Mapping Sustainable Textile Initiatives and a Potential Roadmap for a Nordic Actionplan; Nordic Council of Ministers: Copenhagen, Denmark, 2015; p. 231. [Google Scholar]
- Kerr, J.; Landry, J. Pulse of the Fashion Industry; Global Fashion Agenda: Copenhagen, Denmark; The Boston Consulting Group: Boston, MA, USA, 2017; Available online: http://globalfashionagenda.com/wp-content/uploads/2017/05/Pulse-of-the-Fashion-Industry_2017.pdf (accessed on 28 January 2018).
- Lehmann, M.; Tärneberg, S.; Tochtermann, T.; Chalmer, C.; Eder-Hansen, J.; Seara, J.F.; Boger, S.; Hase, C.; Berlepsch, V.V.; Deichmann, S. Pulse of the Fashion Industry; Global Fashion Agenda: Copenhagen, Denmark; The Boston Consulting Group: Boston, MA, USA, 2018; Available online: http://www.globalfashionagenda.com/download/3700/ (accessed on 23 May 2018).
- Lee, K.E. Environmental sustainability in the textile industry. In Sustainability in the Textile Industry; Muthu, S.S., Ed.; Springer: Singapore, 2017; pp. 17–55. ISBN 978-981-10-2639-3. [Google Scholar]
- Nordic Council of Ministers. Well Dressed in a Clean Environment: Nordic Action Plan for Sustainable Fashion and Textiles; Nordic Council of Ministers, Nordic Council of Ministers Secretariat, Nordisk Affaldsgruppe (NAG): Copenhagen, Denmark, 2015; p. 38. Available online: http://norden.diva-portal.org/smash/get/diva2:819423/FULLTEXT01.pdf (accessed on 13 February 2018).
- WRAP. Scap 2020 Commitment. Available online: http://www.wrap.org.uk/content/scap-2020-commitment (accessed on 30 January 2017).
- Sustainable Apparel Coalition. The Higg Index 2.0. Available online: http://www.apparelcoalition.org/higgindex/ (accessed on 15 June 2017).
- Made-By. Environmental Benchmark for Fibers (Condensed Version); MADE-BY: Santa Barbara, CA, USA, 2013; p. 7. Available online: http://www.made-by.org/wp-content/uploads/2014/03/Benchmark_environmental_condensed_240118.pdf (accessed on 12 January 2018).
- ISO 14040. Environmental Management—Life Cycle Assessment—Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- The European Commission. Commission recommendation on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations. In 2013/179/EU; European Union: Brussels, Belgium, 2013; p. 210. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013H0179&from=EN (accessed on 11 December 2017).
- ISO14044:2006/Amd 1:2017. Environmental Management—Life Cycle Assessment—Requirements and Guidelines. Amendment 1; International Organization for Standardization: Geneva, Switzerland, 2017; Available online: https://www.iso.org/standard/72357.html (accessed on 12 January 2018).
- Rønning, A.; Lyng, K.-A.; Vold, M. Kunnskapsplattform for Beregning av Klimabelastning fra Bygg og Byggematerialer—Litteraturstudie; Østfoldforskning: Kråkerøy, Norway, 2011; Available online: https://www.regjeringen.no/contentassets/f4ae160c965744efa45151b240ffe38b/kunnskapsplattform_beregning_klimabelastning_fra_bygg_byggematerialer.pdf (accessed on 9 May 2018).
- Beton, A.; Dias, D.; Farrant, L.; Gibon, T.; Guern, Y.L.; Desaxce, M.; Perwueltz, A.; Boufateh, I. Environmental Improvement Potential of Textiles (Impro-Textiles); European Commission JRC—IPTS, Bio Intelligence Service, and ENSAIT, Ecole Nationale Supérieure des Arts et Industries Textiles: Sevilla, Spain, 2014; p. 194. Available online: http://ftp.jrc.es/EURdoc/JRC85895.pdf (accessed on 24 February 2018).
- Allwood, J.M.; Laursen, S.E.; Malvido de Rodríquez, C.; Bocken, N.M.P. Well Dressed? The Present and Future Sustainability of Clothing and Textiles in the United Kingdom; Institute for Manufacturing, University of Cambridge: Cambridge, UK, 2006; Available online: http://www.ifm.eng.cam.ac.uk/uploads/Resources/Other_Reports/UK_textiles.pdf (accessed on 23 November 2017).
- Made-By. Made-By Wet Processing Benchmark. 2015. Available online: http://www.made-by.org/wp-content/uploads/2014/03/WPBM-Report-External-29.09.2015.pdf (accessed on 23 March 2018).
- Sustainable Apparel Coalition. Higg Design & Development Module (DDM). Available online: https://apparelcoalition.org/higg-design-development-module-ddm/ (accessed on 11 April 2018).
- Sustainable Apparel Coalition. Higg Materials Sustainability Index. Available online: http://msi.higg.org/page/msi-home (accessed on 11 April 2018).
- Radhakrishnan, S. The sustainable apparel coalition and the higg index. In Roadmap to Sustainable Textiles and Clothing; Muthu, S., Ed.; Springer: Singapore, 2014; pp. 23–57. ISBN 978-981-287-163-3. [Google Scholar]
- Textile Exchange. Preferred Fiber and Materials (PFM) Benchmark Program. Available online: https://textileexchange.org/pfm-benchmark/ (accessed on 13 April 2018).
- Laitala, K.; Klepp, I.G.; Henry, B. Use phase of wool apparel: A literature review for improving lca. In Proceedings of the Product Lifetimes And The Environment—PLATE 2017, Delft, The Netherland, 9 November 2017; Bakker, C., Mugge, R., Eds.; Delft University of Technology and IOS Press: Delft, The Netherland, 2017; pp. 202–207. Available online: http://ebooks.iospress.nl/volumearticle/47870 (accessed on 23 February 2018).
- The Nielsen Company. Global Wardrobe Audit—All Countries; Prepared for Australian Wool Innovation; The Nielsen Company: Root, Switzerland, 2012. [Google Scholar]
- Laitala, K. Clothing Consumption—An Interdisciplinary Approach to Design for Environmental Improvement; Norwegian University of Science and Technology: Trondheim, Norway, 2014. [Google Scholar]
- Fashion2Apparel. Textile Fibers and Their Properties; Fashion2apparel: Dhaka, Bangladesh, 2017; Volume 2018, Available online: http://fashion2apparel.blogspot.com/2017/06/textile-fibers-their-properties.html (accessed on 12 March 2018).
- Bunsell, A.R. Handbook of Properties of Textile and Technical Fibers, 2nd ed.; Woodhead Publishing: Oxford, UK, 2018; ISBN 978-0-08-101272-7. [Google Scholar]
- ASTM. D 1909–04 Standard Table of Commercial Moisture Regains for Textile Fibers; ASTM International: West Conshohocken, PA, USA, 2004. [Google Scholar]
- Sundquist, J. Tekstiiliraaka-Aineet 2. Tekokuitujen Valmistus; Tampere Technical University: Tampere, Finnland, 1988. [Google Scholar]
- Kozlowski, R.M.; Muzyczek, M. Improving the flame retardancy of natural fibers. In Handbook of Natural Fibers—Volume 2: Processing and Applications; Kozlowski, R.M., Ed.; Woodhead Publishing: Cambridge, UK, 2012; Volume 2, pp. 30–62. ISBN 978-1-84569-698-6. [Google Scholar]
- Gohl, E.P.G.; Vilensky, L.D. Textile Science, 2nd ed.; Longman Cheshire: Melbourne, Australia, 1983; p. 218. ISBN 0582685958. [Google Scholar]
- Obendorf, S.K.; Namasté, Y.M.N.; Durnam, D.J. A microscopical study of residual oily soil distribution on fabrics of varying fiber content. Text. Res. J. 1983, 53, 375–383. [Google Scholar] [CrossRef]
- Pastore, C.M.; Kiekens, P. Surface Characteristics of Fibers and Textiles; Taylor & Francis Group: Boca Raton, FL, USA, 2000; Volume 94, p. 312. ISBN 0-585-42950-2. [Google Scholar]
- Kjeldsberg, M.; Eilertsen, K.; Laitala, K. Shrinkage, Pilling, Stain Removal and Soil Repellence on Wool and Other Fabrics; Test Report 12-2011; National Institute for Consumer Research: Oslo, Norway, 2011; Available online: http://www.sifo.no/files/file77541_testreport_no_12-2011.pdf (accessed on 9 November 2016).
- Benisek, L.; Crawshaw, G.H. Soiling properties of wool fabrics:Part i: Effect of physical factors. Text. Res. J. 1971, 41, 415–424. [Google Scholar] [CrossRef]
- Kissa, E. Adsorption of particulate solids on textiles1. Text. Res. J. 1973, 43, 86–95. [Google Scholar] [CrossRef]
- Weatherburn, A.S.; Bayley, C.H. The soiling characteristics of textile fibers:Part ii: The influence of fiber geometry on soil retention1. Text. Res. J. 1957, 27, 199–208. [Google Scholar] [CrossRef]
- McQueen, R.; Laing, R.M.; Brooks, H.J.L.; Niven, B.E. Odor intensity in apparel fabrics and the link with bacterial populations. Text. Res. J. 2007, 77, 449–456. [Google Scholar] [CrossRef]
- McQueen, R.; Laing, R.M.; Delahunty, C.M.; Brooks, H.J.L.; Niven, B.E. Retention of axillary odour on apparel fabrics. J. Text. Inst. 2008, 99, 515–523. [Google Scholar] [CrossRef]
- Klepp, I.G.; Buck, M.; Laitala, K.; Kjeldsberg, M. What’s the problem? Odor-control and the smell of sweat in sportswear. Fash. Pract. J. Des. Creat. Process Fash. Ind. 2016, 8, 296–317. [Google Scholar] [CrossRef]
- Munk, S.; Johansen, C.; Stahnke, L.; Adler-Nissen, J. Microbial survival and odor in laundry. J. Surfactants Deterg. 2001, 4, 385–394. [Google Scholar] [CrossRef]
- The Nielsen Company. The Dirt on Cleaning. Home Cleaning/Laundry Attitudes and Trends Around the World. April 2016. Available online: http://www.nielsen.com/content/dam/nielsenglobal/eu/docs/pdf/Nielsen%20Global%20Home%20Care%20Report.pdf (accessed on 12 February 2018).
- Aalto, K. Kuka Pesee Suomen Pyykit? Tekstiilienhoito Kotitalouksissa ja Tekstiilienhoitopalvelut [Who Washes the Laundry in Finland? Textile Care in Households and Use of Textile Care Services]; National Consumer Research Centre: Helsinki, Finland, 2003. [Google Scholar]
- Gwozdz, W.; Netter, S.; Bjartmarz, T.; Reisch, L.A. Survey Results on Fashion Consumption and Sustainability among Young Swedes; Mistra Future Fashion: Frederiksberg, Denmark, 2013; Available online: http://openarchive.cbs.dk/handle/10398/9022 (accessed on 4 June2018).
- Ruder, A.M.; Ward, E.M.; Brown, D.P. Mortality in dry-cleaning workers: An update. Am. J. Ind. Med. 2001, 39, 121–132. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Tetrachloroethylene (perc) (Draft for Public Comment); Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2014. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp18.pdf (accessed on 8 February 2018).
- Troynikov, O.; Watson, C.; Jadhav, A.; Nawaz, N.; Kettlewell, R. Towards sustainable and safe apparel cleaning methods: A review. J. Environ. Manag. 2016, 182, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Laitala, K.; Klepp, I.G. Wool wash: Technical performance and consumer habits. Tenside Surfactants Deterg. 2016, 53, 458–469. [Google Scholar] [CrossRef]
- AISE. Pan-European Consumer Survey on Sustainability and Washing Habits (Summary of Findings, 2014); International Association for Soaps, Detergents and Maintenance Products: Brussels, Belgium, 2014; Available online: https://www.aise.eu/cust/documentrequest.aspx?DocID=3245 (accessed on 4 June 2018).
- Vandecasteele, B.; Peeters, V.; Porina, A. Washing Habits 2014. U&A Tracking; InSites Consulting for International Association for Soaps, Detergents and Maintenance Products; International Association for Soaps, Detergents and Maintenance Products: Brussels, Belgium, 2014; p. 89. [Google Scholar]
- Golden, J.S.; Subramanian, V.; Irizarri, G.M.A.U.; White, P.; Meier, F. Energy and carbon impact from residential laundry in the united states. J. Integr. Environ. Sci. 2010, 7, 53–73. [Google Scholar] [CrossRef]
- Nakamura, K. Defining the future of highly eco-friendly washing through innovation. In Proceedings of the 7th World Conference on Detergents, Montreux, Switzerland, 4–7 October 2010; Available online: http://jsda.org/w/e_engls/jsda_e/revised_101006WCD_nakamura_JSDA.pdf (accessed on 2 February 2017).
- Berkholz, P.; Brückner, A.; Kruschwitz, A.; Stamminger, R. Verbraucherverhalten und Verhaltensabhängige Einsparpotentiale Beim Betrieb von Waschmaschinen Leicht Geänderte Fassung einer Studie Durchgeführt im Auftrag des Bundesministerium für Wirtschaft und Technologie (Bmwi—Projektnummer: 86/05 az: I a 2—00 09 80); Shaker-Verlag: Aachen, Germany, 2007. [Google Scholar]
- Kruschwitz, A.; Karle, A.; Schmitz, A.; Stamminger, R. Consumer laundry practices in germany. Int. J. Consum. Stud. 2014, 38, 265–277. [Google Scholar] [CrossRef]
- Gooijer, H.; Stamminger, R. Water and energy consumption in domestic laundering worldwide—A review. Tenside Surfactants Deterg. 2016, 53, 402–409. [Google Scholar] [CrossRef]
- Tomlinson, J.J.; Rizy, D.T. Bern Clothes Washer Study Final Report; Energy Division of the Oak Ridge National Laboratory: Springfield, VA, USA, 1998. Available online: http://www.energystar.gov/ia/partners/manuf_res/bernstudy.pdf (accessed on 4 June 2018).
- Stamminger, R.; Schmitz, A. Washing machines in europe—Detailed assessment of consumption and performance. Tenside Surfactants Deterg. 2016, 53, 70–86. [Google Scholar] [CrossRef]
- Alborzi, F.; Schmitz, A.; Stamminger, R. Long wash cycle duration as a potential for saving energy in laundry washing. Energy Effic. 2016, 1–16. [Google Scholar] [CrossRef]
- Lasic, E.; Stamminger, R. Larger washing machines and smaller household size—How can they fit together? Simulation of a sustainable use of washing machines. Tenside Surfactants Deterg. 2015, 52, 201–205. [Google Scholar] [CrossRef]
- Le Guern, C. When the Mermaids Cry: The Great Plastic Tide. Available online: http://plastic-pollution.org/ (accessed on 8 May 2018).
- Andrady, A.L. Assessment of environmental biodegradation of synthetic polymers. J. Macromol. Sci. Part C 1994, 34, 25–76. [Google Scholar] [CrossRef]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef] [PubMed]
- Hartline, N.L.; Bruce, N.J.; Karba, S.N.; Ruff, E.O.; Sonar, S.U.; Holden, P.A. Microfiber masses recovered from conventional machine washing of new or aged garments. Environ. Sci. Technol. 2016, 50, 11532–11538. [Google Scholar] [CrossRef] [PubMed]
- Napper, I.E.; Thompson, R.C. Release of synthetic microplastic plastic fibers from domestic washing machines: Effects of fabric type and washing conditions. Mar. Pollut. Bull. 2016, 112, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Pirc, U.; Vidmar, M.; Mozer, A.; Kržan, A. Emissions of microplastic fibers from microfiber fleece during domestic washing. Environ. Sci. Pollut. Res. 2016, 23, 22206–22211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodall, L.C.; Sanchez-Vidal, A.; Canals, M.; Paterson, G.L.J.; Coppock, R.; Sleight, V.; Calafat, A.; Rogers, A.D.; Narayanaswamy, B.E.; Thompson, R.C. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 2014, 1. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhu, L.; Li, D. Microscopic anthropogenic litter in terrestrial birds from shanghai, china: Not only plastics but also natural fibers. Sci. Total Environ. 2016, 550, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Remy, F.; Collard, F.; Gilbert, B.; Compère, P.; Eppe, G.; Lepoint, G. When microplastic is not plastic: The ingestion of artificial cellulose fibers by macrofauna living in seagrass macrophytodetritus. Environ. Sci. Technol. 2015, 49, 11158–11166. [Google Scholar] [CrossRef] [PubMed]
- McNeil, S.J.; Sunderland, M.R.; Zaitseva, L.I. Closed-loop wool carpet recycling. Resour. Conserv. Recycl. 2007, 51, 220–224. [Google Scholar] [CrossRef]
- Schmitz, A.; Stamminger, R. Usage behavior and related energy consumption of european consumers for washing and drying. Energy Effic. 2014, 7, 937–954. [Google Scholar] [CrossRef]
- Gwozdz, W.; Steensen Nielsen, K.; Müller, T. An environmental perspective on clothing consumption: Consumer segments and their behavioral patterns. Sustainability 2017, 9, 762. [Google Scholar] [CrossRef]
- Siebens, J. Extended Measures of Well-Being: Living Conditions in the United States: 2011; U.S. Census Bureau: Washington, DC, USA, 2013; pp. P70–P136. Available online: http://www.census.gov/prod/2013pubs/p70-136.pdf (accessed on 2 February 2017).
- Gracey, F.; Moon, D. Valuing Our Clothes: The Evidence Base; WRAP: Banbury, UK, 2012; p. 69. Available online: http://www.wrap.org.uk/sites/files/wrap/10.7.12%20VOC-%20FINAL.pdf (accessed on 4 June 2018).
- Arild, A.-H.; Brusdal, R.; Halvorsen-Gunnarsen, J.-T.; Terpstra, P.M.J.; Van Kessel, I.A.C. An Investigation of Domestic Laundry in Europe-Habits, Hygiene and Technical Performance; SIFO: Oslo, Norway, 2003; Available online: http://sifo.no/files/file48506_fagrapport2003-1.pdf (accessed on 12 March 2017).
- Uitdenbogerd, D.E.; Brouwer, N.M.; Groot-Marcus, J.P. Domestic Energy Saving Potentials for Food and Textiles: An Empirical Study; Wageningen Agricultural University, Household and Consumer Studies: Wageningen, The Netherland, 1998. [Google Scholar]
- Slocinski, C.; Fisher, B. Use Phase of Wool Apparel—Supplement to the Lca Report; Thinkstep: Stuttgart, Germany, 2016. [Google Scholar]
- McQueen, R.; Batcheller, J.C.; Moran, L.J.; Zhang, H.; Hooper, P.M. Reducing laundering frequency to prolong the life of denim jeans. Int. J. Consum. Stud. 2017, 41, 36–45. [Google Scholar] [CrossRef]
- Jack, T. Laundry routine and resource consumption in Australia. Int. J. Consum. Stud. 2013, 37, 666–674. [Google Scholar] [CrossRef]
- Granello, S.; Jönbrink, A.; Roos, S.; Johansson, T.; Granberg, H. Consumer Behavior on Washing. 2015. Available online: http://mistrafuturefashion.com/wp-content/uploads/2015/12/D4.5-MiFuFa-Report-P4-Consumer-behaviour-on-washing.pdf (accessed on 4 June 2018).
- Klepp, I.G.; Laitala, K. Klesforbruk i Norge; SIFO: Oslo, Norway, 2016; p. 120. Available online: http://www.sifo.no/files/file80519_fagrapport_nr._2-2016_rapport_klesforbruk.pdf (accessed on 10 February 2018).
- Langley, E.; Durkacz, S.; Tanase, S. Clothing Longevity and Measuring Active Use; Wrap: Banbury, UK, 2013; Available online: http://www.wrap.org.uk/system/files/priv_download/Clothing%20longevity%20SUMMARY%20REPORT.pdf (accessed on 4 June 2018).
- Cooper, T.; Claxton, S.; Hill, H.; Holbrook, K.; Hughes, M.; Knox, A.; Oxborrow, L. Clothing Longevity Protocol; Project Code: REC100-008; Nottingham Trent University: Banbury, UK, 2014; p. 11. Available online: http://www.wrap.org.uk/sites/files/wrap/Clothing%20Longevity%20Protocol_0.pdf (accessed on 4 June 2018).
- Uitdenbogerd, D.E. Energy and Households—The Acceptance of Energy Reduction Options in Relation to the Performance and Organisation of Household Activities. Ph.D. Thesis, Wageningen University, Wageningen, The Netherland, 2007. [Google Scholar]
- Aalto, K. Kuluttajien Halukkuus ja Toimintatavat Tekstiilien Kierrätyksessä; Kuluttajatutkimuskeskus: Helsinki, Finnland, 2014; p. 46. Available online: http://hdl.handle.net/10138/153031 (accessed on 12 March 2017).
- Klepp, I.G.; Laitala, K. “Ullne” fakta om strikking og klær. Hjemmeproduksjon og gamle klær i velstands-norge. In Forbrukstrender 2016. Sifo-Survey: Bruk av Ullklær, Miljøholdninger, Miljøatferd, Digital Betaling, Håndverkertjenester, Søndagshandel, Med Barn i Butikken, Innholdsmarkedsføring; Lavik, R., Borgeraas, E., Eds.; SIFO: Oslo, Norway, 2016; pp. 11–16. [Google Scholar]
- Fletcher, K. Craft of Use: Post-Growth Fashion; Routledge: Abingdon, UK, 2016; ISBN 9781138021006. [Google Scholar]
- Laitala, K. Consumers’ clothing disposal behavior—A synthesis of research results. Int. J. Consum. Stud. 2014, 38, 444–457. [Google Scholar] [CrossRef]
- Collett, M.; Cluver, B.; Chen, H.-L. Consumer perceptions the limited lifespan of fast fashion apparel. Res. J. Text. Appar. 2013, 17, 61–68. [Google Scholar] [CrossRef]
- Laitala, K.; Boks, C. Sustainable clothing design: Use matters. J. Des. Res. 2012, 10, 121–139. [Google Scholar] [CrossRef]
- Ungerth, L.; Carlsson, A. Vad Händer Sen Med Våra Kläder? Enkätundersökning; Konsumentföreningen: Stockholm, Sweden, 2011; Available online: http://www.konsumentforeningenstockholm.se/Global/Konsument%20och%20Milj%c3%b6/Rapporter/KfS%20rapport_april11_Vad%20h%c3%a4nder%20sen%20med%20v%c3%a5ra%20kl%c3%a4der.pdf (accessed on 3 March 2016).
- Klepp, I.G. Hvorfor Går Klær ut av Bruk? Avhending Sett i Forhold til Kvinners Klesvaner [Why Are Clothes no Longer Used? Clothes Disposal in Relationship to Women’s Clothing Habits]; SIFO: Oslo, Norway, 2001; Available online: http://www.sifo.no/files/file48469_rapport2001-03web.pdf (accessed on 8 December 2017).
- Chun, H.-K. Differences between Fashion Innovators and Non-Fashion Innovators in Their Clothing Disposal Practices; Oregon State University: Corvallis, OR, USA, 1987. [Google Scholar]
- Norum, P.S. Trash, charity, and secondhand stores: An empirical analysis of clothing disposition. Fam. Consum. Sci. Res. J. 2015, 44, 21–36. [Google Scholar] [CrossRef]
- Greenpeace International. New Report Breaks the Myth of Fast Fashion’s So-Called ‘Circular Economy’—Greenpeace. Milan, Italy, 2017. Available online: https://www.greenpeace.org/international/press/7517/new-report-breaks-the-myth-of-fast-fashions-so-called-circular-economy-greenpeace/ (accessed on 17 March 2018).
- Weil, E.D.; Levchik, S.V. Flame retardants in commercial use or development for textiles. J. Fire Sci. 2008, 26, 243–281. [Google Scholar] [CrossRef]
- Paul, R. Functional Finishes for Textiles: Improving Comfort, Performance and Protection; Woodhead Publishing: Cambridge, UK, 2014; p. 678. ISBN 9780857098399. [Google Scholar]
- New, C. Wool&prince’s 100-day shirt goes viral, because some guys do not like doing laundry. Huffington Post. 2 May 2013. Available online: https://www.huffingtonpost.com/2013/05/02/100-day-shirt-woolprince_n_3202547.html (accessed on 8 November 017).
- Wool&Prince. About Wool & Prince: Better, Longer-Lasting Apparel. Available online: https://woolandprince.com/pages/about (accessed on 6 April 2018).
- Mowbray, J. Pilot takes consumer-facing higg a step closer. Ecotextile News. 12 April 2017. Available online: https://www.ecotextile.com/2017041222695/materials-production-news/pilot-takes-consumer-facing-higg-a-step-closer.html (accessed on 14 May 2018).
- Fletcher, K. Sustainable Fashion & Textiles: Design Journeys; Earthscan: London, UK, 2008; ISBN 1844074633. [Google Scholar]
- Cobbing, M.; Vicaire, Y. Timeout for Fast Fashion; Greenpeace: Hamburg, Germany, 2016; Available online: http://www.greenpeace.org/international/Global/international/briefings/toxics/2016/Fact-Sheet-Timeout-for-fast-fashion.pdf (accessed on 4 June 2018).
Fiber | Fiber Length [42] | Diameter (µm) [42] | Moisture Regain at 65% RH (%) [42,43] | Elongation Strain to Failure (%) [42] | Dry Tenacity (N/tex) [44] | Flammability (Limiting Oxygen Index) [44,45] | Chemical Content/Structure [46] |
---|---|---|---|---|---|---|---|
Cotton | 10–50 mm | 10–27 | 8.5 | 7 | 0.3–0.5 | 17–19 | Cellulose |
Jute | 2 m | 69 | 12–13.75 | 2.5 | Cellulose | ||
Flax (linen) | 25 mm | 15–20 | 8.75–12.0 | 1–3 | 0.4–0.6 | 17.4 | Cellulose |
Hemp | 2.5 m | 45 | 10–14 | 1–2 | Cellulose | ||
Silk | >10 m | 12 | 11.0 | 25 | 0.2–0.5 | 23 | Fibroin |
Wool | 25–355 mm | 15–40 | 13.6 | 35 | 0.1–0.2 | 25–27 | Keratin |
Viscose (rayon) | filament | 4–60 | 11.0 | ~25 | 0.1–0.3 | 16–18.7 | Regenerated cellulose |
Acetate | filament | 6.5 | 20–45 | 0.1–0.2 | 18.5 | Secondary cellulose acetate | |
Polyester | filament | 15 | 0.4 | 15 | 0.3–0.9 | 22 | Polyethylene gly-col terepthtalate |
Polyamide (nylon) | filament | 20 | 3.5–4.5 | 20 | 0.3–0.9 | 20 | Polyhexa-methylene diamino-adipate |
Acrylic | filament | 1.5–2.5 | 25–45 | 0.2–0.5 | 17 | Min. 85% polyacrylo-nitrile | |
Modacrylic | filament | 0.4–3.5 | 25–45 | 0.1–0.3 | 26 | 35–85% acrylonitrile | |
Elastane (spandex) | filament | 1–1.3 | 400–700 | 0.05–0.1 | 85% segmented polyurethane, polyether type |
Washing Method by Fiber | Hand Wash | Machine Wash | Dry-Clean | Combination of Methods or Unknown |
---|---|---|---|---|
Cotton and cotton blends | 8% | 80.5% | 6.5% | 5% |
Wool and wool blends | 11% | 35% | 36% | 18% |
Synthetics and man-made materials | 9.5% | 71.5% | 9% | 10% |
Silk | 23% | 25% | 37% | 15% |
Cleaning Process/Solvent | Electricity Use (KWh/kg Textiles) |
---|---|
GreenEarth® (decamethylcyclo-pentasiloxane D5) | 1.195 |
Hydrocarbon | 0.783 |
LCO2 | 0.681 |
PERC | 0.586 |
Wet cleaning | 0.205 |
Type | Temperature (°C) | Load Used (kg/cycle) | Energy Use per Load (kWh/cycle) | Energy Use per kg Laundry (kWh/kg) | Water Use per kg Laundry (L/kg) |
---|---|---|---|---|---|
Cotton | 49.7 | 3.18 | 1.02 | 0.32 | 13.8 |
Mix | 42.2 | 2.64 | 0.66 | 0.25 | 16.7 |
Easy care | 39.3 | 2.8 | 0.67 | 0.24 | 15.7 |
Delicate | 36.5 | 2.36 | 0.76 | 0.32 | 18.6 |
Wool | 25 | 2.46 | 0.56 | 0.23 | 17.9 |
Washing Program | Number of Wash Cycles | Arithmetic Average Amount of Load with Standard Deviation (in kg per Wash Cycle) | Average Wash Temperature |
---|---|---|---|
Cotton | 1967 | 3.4 ± 1.2 | 47.1 |
Synthetics | 47 | 3.0 ± 1.0 | 44.1 |
Easy care | 492 | 2.8 ± 1.3 | 38.8 |
Silk | 1 | - | 20.0 |
Mix | 74 | 3.7 ± 1.4 | 43.7 |
Wool | 31 | 2.1 ± 1.1 | 30.3 |
Delicates | 151 | 2.3 ± 1.2 | 34.6 |
Not specified | 104 | - | 40.6 |
Garment | Norway [63,89] (3 Surveys) | Netherlands [89,90] (1–2 Surveys) | Greece [89] | Spain [89] | Other Countries | Average Estimate |
---|---|---|---|---|---|---|
Woolen sweater | 8.9 (mode 10) >7.1 (mode > 10 days) | 10.3 | 10 | |||
Cotton sweater | 4.7 (mode 2) | 6.9 | 5 | |||
Woolen undershirt or thin sweater | 3.4 3.9 4.3 | 3.2 | 2.8 | 2.7 | 3.2 USA [91] | 3 |
Cotton t-shirt | 1.8 2.1 2.8 | 1.4 1.7 | 2.0 | 1.5 | 2.26 USA, Sweden, Germany and Poland [86] | 1.5 |
Jeans | 4.7 >5.7 | 3.3 4.2 | 3.0 | 3.6 | 9.5 Canada [92] 5.4 Australia [93] 8.9 Sweden [94] 8.24 USA, Sweden, Germany and Poland [86] | 5.5 |
Blouse/shirt | 1.9 | 1.6 2.0 | 2.0 | 1.6 | 2 | |
Sports clothing | 2.3 | 1.5 | 1.5 | |||
Thin socks | 1.5 | 1.3 | 1.4 | 1.1 | 1.5 | |
Wool socks | 2.3 USA [91] | 2.5 | ||||
Underpants/briefs | 1.2 1.3 | 1.1 | 1.2 | 1.1 | 1 |
Garment Type | Wardrobe Audit Survey in Seven Countries [39] | Wardrobe Audit Interviews Norway (Textile Waste) [40] | Survey, Norway [95] | Online Survey, UK [96] | Survey, UK [97] | 16 Households’ Purchases, Netherlands [90] | Survey, Netherlands [98] | Survey (Germany, Poland, Sweden, & USA) [86] | Online Survey, Finland [99] | Total Lifespan, Average and Range |
---|---|---|---|---|---|---|---|---|---|---|
T-shirts | 4.6 | 4.2 | 4.0 | 3.3 | 6.8 | 3–4 | 4.5 | 4.6 (3.3–6.8) | ||
Blouses/shirts | 4.6 | 5.6 | 3.3/4.3 | 3.6 | 7.2 | 5.7 | 4.8 (3.3–7.2) | |||
Jumpers/sweaters | 5.8 | 10.8 (wool) | 4.5 | 3.7 | 7.1 | 6.17 (wool) | 6.0 (3.7–10.8) | |||
Suits | 8.7 | 8.7 | ||||||||
Jeans | 3.9 | 4.3 | 3.8 | 3.1 | 2.45 (cotton) | 3–4 | 3.5 (2.5–4.3) | |||
Trousers/pants | 4.9 | 4.4 | 5.4 | 6.2 | 5.3 | 4.7 (2.5–6.2) | ||||
Skirts | 4.8 | 4.1 | 5.2 | 15.2 | 6.9 (4.1–15.2) | |||||
Dresses | 4.5 | 4.7 | 7.1 (4.1–15.2) | |||||||
Jackets/Blazers | 5.3 | 4.0 | 6.5 | 11.5 | 6.8 (4.0–11.5) | |||||
Coats | 6.3 | 6.4 | 6.2 | 11.6 | 7.6 | 7.0 (4.0–11.6) | ||||
Underwear briefs/boxers | 2.5 | 4.4 | 2.4 | 3 | 3.1 (2.4–4.4) | |||||
Bras | 3.0 | 3.5 (3.0–4.4) | ||||||||
Socks | 3.6 (incl. stockings) | 2.9 | 2.4 | 1.8 | 2.3 | 2.6 (1.8–3.6) | ||||
Average of all garments | 4.7 | 4 | 3.3 | 4 |
Garment Category | Cotton and Blends | Synthetic/Man Made | Wool and Blends | Silk |
---|---|---|---|---|
Suits − jacket + trouser/skirt | 7.0 | 6.6 | 9.7 | - |
Pants/trousers (casual/everyday) | 4.2 | 5.1 | 4.8 | - |
Jackets/blazers (work/formal) | 4.3 | 4.9 | 5.7 | - |
Overcoats/coats/raincoats (casual/everyday) | 5.8 | 8.4 | 5.3 | - |
Jumpers/pullovers/sweaters/cardigans | 5.6 | 6.5 | 6.0 | - |
Shirts/blouses/tops (casual/everyday) | 3.8 | 6.2 | 6.0 | 8.5 |
Singlets/tanks (women’s) | 3.0 | 2.2 | 2.6 | 3.1 |
Ties (men’s) | 9.5 | 12.8 | 9.3 | 14.5 |
Socks/stockings | 3.3 | 4.2 | 5.5 | 4.3 |
Underwear briefs/boxers | 2.2 | 3.2 | 3.9 | 3.5 |
Fiber Content | Donate to Charity | Donate to Family/Friends | Bin | Recycle at Home | Sell | Other | Don’t Know | Total for Reuse |
---|---|---|---|---|---|---|---|---|
Cotton and blends | 29% | 11% | 32% | 14% | 2% | 6% | 7% | 42% |
Wool and blends | 27% | 20% | 31% | 9% | 4% | 3% | 7% | 50% |
Synthetics | 28% | 13% | 39% | 8% | 3% | 5% | 6% | 44% |
Silk | 28% | 15% | 32% | 9% | 4% | 6% | 7% | 47% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laitala, K.; Klepp, I.G.; Henry, B. Does Use Matter? Comparison of Environmental Impacts of Clothing Based on Fiber Type. Sustainability 2018, 10, 2524. https://doi.org/10.3390/su10072524
Laitala K, Klepp IG, Henry B. Does Use Matter? Comparison of Environmental Impacts of Clothing Based on Fiber Type. Sustainability. 2018; 10(7):2524. https://doi.org/10.3390/su10072524
Chicago/Turabian StyleLaitala, Kirsi, Ingun Grimstad Klepp, and Beverley Henry. 2018. "Does Use Matter? Comparison of Environmental Impacts of Clothing Based on Fiber Type" Sustainability 10, no. 7: 2524. https://doi.org/10.3390/su10072524
APA StyleLaitala, K., Klepp, I. G., & Henry, B. (2018). Does Use Matter? Comparison of Environmental Impacts of Clothing Based on Fiber Type. Sustainability, 10(7), 2524. https://doi.org/10.3390/su10072524