Understanding Farmers’ Perceptions and Behaviors towards Farmland Quality Change in Northeast China: A Structural Equation Modeling Approach
Abstract
:1. Introduction
2. Conceptual Framework
3. Data and Methodology
3.1. Study Area and Data Collection
3.2. Specifications of the Structural Model
3.3. Variable Measurement and Descriptive Statistics
4. Results
4.1. Goodness-of-Fit of SEM
4.2. Causal Chain among the Three Constructs
4.2.1. Drivers of Land Protection Perception
4.2.2. Impact of Farmers’ Perceptions on Land Use Behaviors
4.2.3. Causal Chain of Land Quality
4.3. Indirect Impacts among the Variables
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Scherr, S.J.; Yadav, S.; Pinstrupandersen, P.; Pandyalorch, R. Land Degradation in the Developing World: Issues and Policy Options for 2020; International Food Policy Research Institute: Washington, DC, USA, 1997. [Google Scholar]
- Heerink, N. Soil fertility decline and economic policy reform in Sub-Saharan Africa. Land Use Policy 2005, 22, 67–74. [Google Scholar] [CrossRef]
- Rasul, G.; Thapa, G.B. The impact of policy and institutional environment on costs and benefits of sustainable agricultural land uses: The case of the Chittagong hill Tracts, Bangladesh. Environ. Manag. 2007, 40, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Ranst, V.E. Production scenarios and the effect of soil degradation on long-term food security in China. Global Environ. Chang. 2009, 19, 464–481. [Google Scholar] [CrossRef]
- Lindert, P. The bad earth? China’s soil and agricultural soils and development since the 1930s. Econ. Dev. Cult. Chang. 1999, 47, 701–736. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.H. Do Land characteristics affect farmers’ soil fertility management? J. Integr. Agric. 2014, 13, 2546–2557. [Google Scholar] [CrossRef]
- Sliman, N.; Kassab, M.T.; Mrabet, F. Land policies and agricultural land markets in Russia. Land Use Policy 2007, 24, 14–23. [Google Scholar]
- Zhang, J.J.; Fu, M.C.; Zhang, Z.Y.; Tao, J.; Fu, W. A trade-off approach of optimal land allocation between socio-economic development and ecological stability. Ecol. Model. 2014, 272, 175–187. [Google Scholar] [CrossRef]
- Deng, X.Z.; Gibson, J.; Wang, P. Management of trade-offs between cultivated land conversions and land productivity in Shandong Province. J. Clean. Prod. 2017, 142, 767–774. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, R.Q.; Liu, L.M.; Gao, L.L. Evaluation of the sustainable land use status of the North China Plain. Int. J. Sustain. Dev. World Ecol. 2009, 16, 253–259. [Google Scholar] [CrossRef]
- Gao, L.L.; Sun, D.Q.; Huang, J.Q. Impact of land tenure policy on agricultural investments in China: Evidence from a panel data study Research article. China Econ. Rev. 2017, 45, 244–252. [Google Scholar] [CrossRef]
- Liu, X.W.; Zhao, C.L.; Song, W. Review of the evolution of cultivated land protection policies in the period following China’s reform and liberalization. Land Use Policy 2017, 67, 660–669. [Google Scholar] [CrossRef]
- Xu, H.Z.; Chen, T. Impact of farmers’ differentiation on farmland-use efficiency: Evidence from household survey data in rural China. Agric. Econ. 2013, 59, 227–234. [Google Scholar] [Green Version]
- Yang, Z.H.; Wang, Y.P.; Tuersun, M.E.D. Farm households’ input behavior of land conservation and its driving factors: From a perspective of farm household differentiation. China Pop. Res. Environ. 2015, 25, 105–112. (In Chinese) [Google Scholar]
- Duangjai, W.; Schmidt-Vogt, D.; Shrestha, R.P. Farmers’ land use decision-making in the context of changing land and conservation policies: A case study of Doi Mae Salong in Chiang Rai Province, Northern Thailand. Land Use Policy 2015, 48, 179–189. [Google Scholar] [CrossRef]
- Zhang, W.; Kato, E.; Bhandary, P.; Nkonya, E.; Ibrahim, H.I.; Agbonlahor, M.; Ibrahim, H.Y.; Cox, C. Awareness and perceptions of ecosystem services in relation to land use types: Evidence from rural communities in Nigeria. Ecosyst. Serv. 2016, 22, 150–160. [Google Scholar] [CrossRef]
- Tatsvarei, S.; Mushunje, A.; Matsvai, S.; Ngarava, S. Farmer perceptions in Mashonaland East Province on Zimbabwe’s agricultural land rental policy. Land Use Policy 2018, 75, 468–477. [Google Scholar] [CrossRef]
- Wang, X.; Liang, L.T.; Chen, C.Y. The willingness of cultivated land protection for different households. J. Arid Land Rec. Environ. 2015, 29, 52–56. (In Chinese) [Google Scholar]
- Xu, D.D.; Guo, S.L.; Xie, F.T.; Liu, S.Q.; Cao, S. The impact of rural laborer migration and household structure on household land use arrangements in mountainous areas of Sichuan Province, China. Habitat Int. 2017, 70, 72–80. [Google Scholar] [CrossRef]
- Zhu, L.L.; Cai, Y.Y.; Luo, C.; Wang, P.F. Characteristics and its influencing factors of farmer land-use behavior under framework of land-use control: Comparing Chengdu City of Sichuan Province with Wuhan City of Hubei Province. Bull. Soil Water Conserv. 2016, 36, 198–213. [Google Scholar]
- Li, W.; Xue, C.X.; Yao, S.B.; Zhu, R.X. The adoption behavior of households’ conservation tillage technology: An empirical analysis based on data collected from 476 households on the Loess Plateau. China Rural Econ. 2017, 1, 44–57. (In Chinese) [Google Scholar]
- Adimassu, Z.; Kessler, A. Impact of the productive safety net program on farmers’ investments in sustainable land management in the Central Rift Valley of Ethiopia. Environ. Dev. 2015, 16, 54–66. [Google Scholar] [CrossRef]
- Illukpitiya, P.; Gopalakrishnan, C. Decision-making in soil conservation: Application of a behavioral model to potato farmers in Sri Lanka. Land Use Policy 2004, 21, 321–331. [Google Scholar] [CrossRef]
- Kessler, C.A. Decisive key-factors influencing farm households’ soil and water conservation investments. Appl. Geogr. 2006, 26, 40–60. [Google Scholar] [CrossRef]
- Greiner, R.; Gregg, D. Farmers’ intrinsic motivations, barriers to the adoption of conservation practices and effectiveness of policy instruments: Empirical evidence from northern Australia. Land Use Policy 2011, 28, 257–265. [Google Scholar] [CrossRef]
- Jürgenson, E. Land reform, land fragmentation and perspectives for future land consolidation in Estonia. Land Use Policy 2016, 57, 34–43. [Google Scholar] [CrossRef]
- Beedell, J.; Rehman, T. Using social-psychology models to understand farmers’ conservation behavior. J. Rural Stud. 2000, 16, 117–127. [Google Scholar] [CrossRef]
- Söderqvist, T. Are farmers prosocial? Determinants of the willingness to participate in a Swedish catchment-based wetland creation programme. Ecol. Econ. 2003, 47, 105–120. [Google Scholar] [CrossRef]
- Bernués, A.; Tello-García, E.; Rodríguez-Orteg, T.; Ripoll-Bosch, R.; Casasús, I. Agricultural practices, ecosystem services and sustainability in High Nature Value farmland: Unraveling the perceptions of farmers and nonfarmers. Land Use Policy 2016, 59, 130–142. [Google Scholar] [CrossRef]
- Helliwell, R. Where did the marginal land go? Farmers perspectives on marginal land and its implications for adoption of dedicated energy crops. Energy Policy 2018, 117, 166–172. [Google Scholar] [CrossRef]
- Li, H.Q.; Zheng, F.; Zhao, Y.Y. Farmer behavior and perceptions to alternative scenarios in a highly intensive agricultural region, south central China. J. Integr. Agric. 2017, 16, 1852–1864. [Google Scholar] [CrossRef]
- Grilli, G.; Curtis, J.; Hynes, S.; O’Reilly, P. Sea bass angling in Ireland: A structural equation model of catch and effort. Ecol. Econ. 2018, 149, 285–293. [Google Scholar] [CrossRef]
- Hou, D.Y.; Al-Tabbaa, A.; Chen, H.Q.; Mamic, I. Factor analysis and structural equation modelling of sustainable behavior in contaminated land remediation. J. Clean. Prod. 2014, 84, 439–449. [Google Scholar] [CrossRef]
- Shao, Y.; Bao, W.; Chen, D.; Eisenhauer, N.; Zhang, W.; Pang, X.; Xu, G.; Fu, S. Using structural equation modeling to test established theory and develop novel hypotheses for the structuring forces in soil food webs. Pedobiologia 2015, 58, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Gama-Rodrigues, A.C. Litter and soil-related variation in functional group abundances in cacao agroforests using structural equation modelling. Ecol. Indic. 2018, 84, 254–262. [Google Scholar]
- Tang, J.J.; Folmer, H.; Xue, J.H. Estimation of awareness and perception of water scarcity among farmers in the Guanzhong Plain, China, by means of a structural equation model. J. Environ. Manag. 2013, 126, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.L.; Li, E.; Nuberg, I.; Bruwer, J. Understanding farmers’ adaptation intention to climate change: A structural equation modelling study in the Mekong Delta, Vietnam. Environ. Sci. Policy 2014, 41, 11–22. [Google Scholar] [CrossRef]
- Shubham; Charan, P.; Murty, L.S. Organizational adoption of sustainable manufacturing practices in India: Integrating institutional theory and corporate environmental responsibility. Int. J. Sustain. Dev. World Ecol. 2016, 25, 23–34. [Google Scholar] [CrossRef]
- Chekima, B.; Chekima, S.; Igau, O.A.; Sondoh, S.L., Jr. Sustainable consumption: The effects of knowledge, cultural values, environmental advertising, and demographics. China. Int. J. Sustain. Dev. World Ecol. 2016, 23, 210–220. [Google Scholar] [CrossRef]
- Gama-Rodrigues, A.C.; Sales, M.V.S.; Silva, P.S.D.; Comerford, N.B.; Cropper, W.P.; Gama-Rodrigues, E.F. An exploratory analysis of phosphorus transformations in tropical soils using structural equation modeling. Biogeochemistry 2014, 118, 453–469. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Bowker, M.A.; Grace, J.B.; Powell, JR. From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology. Pedobiologia 2015, 58, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Pied, C.; Dumanski, J.; Hamblin, A.; Young, A. Land Quality Indicators (World Bank Discussion Paper No. 315); World Bank: Washington, DC, USA, 1995. [Google Scholar]
- Liu, H.B.; Yu, G.F.; Wang, Q.B.; Sun, Y. Characteristics of farmers’ land use behaviors in Metropolises Suburb: A case study in Sujiatun District of Shenyang City, Liaoning Province. Res. Sci. 2012, 34, 879–888. (In Chinese) [Google Scholar]
- Katz, E.G. Social capital and natural capital: A comparative analysis of land tenure and natural resource management in Guatemala. Land Econ. 2000, 76, 114–132. [Google Scholar] [CrossRef]
- Deininger, K.; Jin, S. The impact of property rights on households’ investment, risk coping, and policy preferences: Evidence from China. Econ. Dev. Cult. Chang. 2003, 51, 851–882. [Google Scholar] [CrossRef]
- Tittonell, P.; Vanlauwe, B.; de Ridder, N.; Giller, K.E. Heterogeneity of crop productivity and resource use efficiency within smallholder Kenyan farms: Soil fertility gradients or management intensity gradients? Agric. Syst. 2007, 94, 376–390. [Google Scholar] [CrossRef]
- Ericksen, P.J.; Ardón, M. Similarities and differences between farmer and scientist views on soil quality issues in central Honduras. Geoderma 2003, 111, 233–248. [Google Scholar] [CrossRef]
- Jacoby, H.G.; Li, G.; Rozelle, S. Hazards of expropriation: Tenure insecurity and investment in rural China. Am. Econ. Rev. 2002, 92, 1420–1447. [Google Scholar] [CrossRef]
- Ikudayisi, J.O.; Ayedun, B. Property Rights and Adoption of Land Management Practices in Ekiti State, Nigeria. Int. J. Agric. For. 2014, 4, 217–223. [Google Scholar]
- Kong, X.B.; Li, G.Z.; Liang, Y. Arable land productivity and its elastic loss on the basis of farm household land use behavior. Prog. Geogr. 2010, 29, 869–877. (In Chinese) [Google Scholar]
- Shen, R.F.; Chen, M.J.; Kong, X.B. Conception and evaluation of quality of arable land and strategies for its management. Acta Pedol. Sin. 2012, 49, 1210–1217. (In Chinese) [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, RL. Multivariate data analysis. Technometrics 2010, 30, 130–131. [Google Scholar]
- Ding, C.R. Land policy reform in China: Assessment and prospects. Land Use Policy 2003, 20, 109–120. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, Y.; Brown, G.; Searle, G. Factors affecting farmers’ satisfaction with contemporary China’s land allocation policy—The Link Policy: Based on the empirical research of Ezhou. Habitat Int. 2018, 75, 38–49. [Google Scholar] [CrossRef]
- Harper, J.K.; Roth, G.W.; Garalejić, B.; Škrbić, N. Programs to promote adoption of conservation tillage: A Serbian case study. Land Use Policy 2018, 78, 295–302. [Google Scholar] [CrossRef]
- Moges, D.M.; Taye, A.A. Determinants of farmers’ perception to invest in soil and water conservation technologies in the North-Western Highlands of Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 56–61. [Google Scholar] [CrossRef]
- Lamb, R.L. Fertilizer use, risk, and off-farm labor markets in the semi-arid tropics of India. Am. J. Agric. Econ. 2003, 85, 359–371. [Google Scholar] [CrossRef]
- Yu, H.; Huang, J.K.; Rozelle, S. Land right stability, land circulation and sustainable utilization of agricultural land resources. Econ. Res. 2003, 9, 82–91. (In Chinese) [Google Scholar]
- He, H.R.; Zhang, L.X.; Li, Q. Study on farmers’ fertilization behavior and agricultural non-point source pollution. J. Agrotech. Econ. 2006, 6, 2–10. (In Chinese) [Google Scholar]
- Lian, G.; Guo, X.D.; Fu, B.J.; Wang, J.; He, T. Farmer’s perception and response towards land policy and eco-environment based on participatory rural appraisal: A case study in the Loess hilly area, China. Int. J. Sustain. Dev. World Ecol. 2007, 14, 182–191. [Google Scholar] [CrossRef]
- Ellison, A.M. Preserving the picturesque: Perceptions of landscape, landscape Art, and land protection in the United States and China. Land 2014, 3, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Baidu-Forson, J. Factors influencing adoption of land-enhancing technology in the Sahel: Lessons from a case study in Niger. Agric. Econ. 1999, 20, 231–239. [Google Scholar] [CrossRef]
- Mponela, P.; Tamene, L.; Ndengu, G.; Magreta, R.; Kihara, J. Determinants of integrated soil fertility management technologies adoption by smallholder farmers in the Chinyanja Triangle of Southern Africa. Land Use Policy 2016, 59, 38–48. [Google Scholar] [CrossRef]
- Pan, D.; Kong, F.B.; Zhang, N.; Ying, R.Y. Knowledge training and the change of fertilizer use intensity: Evidence from wheat farmers in China. J. Environ. Manag. 2017, 197, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Jiang, P.H.; Chen, W.; Li, M.C.; Wang, L.Y.; Gong, Y.; Pian, Y.Z.; Xia, N.; Duan, Y.W.; Huang, Q.H. Farmland protection policies and rapid urbanization in China: A case study for Changzhou City. Land Use Policy 2015, 48, 552–566. [Google Scholar]
Latent Variables | Code | Observed Variable Definition | Units | Mean | S.D. | Min. | Max. |
---|---|---|---|---|---|---|---|
Driver 1: external driving factors | VCD | Distance from the sample village to the town center | km | 13.94 | 5.83 | 5.70 | 21.70 |
LAN | Times of land adjustment | times | 1.1 | 1.8 | 0.0 | 10.0 | |
NFN | Off-farm employment | persons | 2 | 1 | 1 | 5 | |
APP | Price of agricultural products | RMB/kg (USD/kg) | 2.52 (0.40) | 2.22 (0.36) | 0.20 (0.03) | 12.40 (1.99) | |
MPP | Price of agricultural materials | RMB/kg (USD/kg) | 8.00 (1.28) | 5.18 (0.83) | 0.60 (0.10) | 23.60 (3.79) | |
LN | Number of plots | plots | 2 | 1 | 1 | 5 | |
AST | Agricultural subsidy received in total | RMB (USD) | 652 (105) | 659 (106) | 55 (8.83) | 6860 (1101) | |
TTN | Times participating in technology training | times | 3 | 10 | 0 | 99 | |
Driver 2: internal driving factors | AGE | Age of the respondent farmer | Years | 53 | 11 | 25 | 88 |
EDU | Education of the respondent farmer | Years | 8 | 2 | 2 | 13 | |
YEAR | Years engaged in agricultural production | Years | 28 | 15 | 5 | 70 | |
ALN | Number of agricultural laborers in the family | persons | 2 | 1 | 1 | 6 | |
HIT | Household annual income | RMB (USD) | 51,896 (8332) | 71,061 (11,409) | 786 (126) | 771,960 (123,941) | |
LRN | Farmland area | ha | 0.88 | 0.83 | 0.07 | 8.00 | |
State: land protection perception | GZ | Sensibility of the land protection status | / | 2.5 | 0.5 | 0.5 | 3.0 |
RZ | Understanding of policy | / | 1.2 | 0.6 | 0.0 | 2.0 | |
PD | Prospect of land protection status in the future | / | 3.9 | 0.7 | 2.0 | 5.0 | |
YY | Willingness to attend to land protection | / | 1.4 | 0.5 | 0.0 | 2.0 | |
Response: land use behavior | LII | Capital input per unit of farmland | RMB/ha (USD/ha) | 16,215 (2603) | 16,485 (2647) | 1785 (286) | 67,680 (10,866) |
MCI | Multiple crop index | / | 1.3 | 0.5 | 1 | 3 | |
GCC | Grow cash crop,1 = yes; 0 = no | / | 0.6 | 0.4 | 0 | 1 | |
Effect: land quality | pH | pH value | / | 5.8 | 0.6 | 4.8 | 8.4 |
AVK | Available potassium | mg/kg | 200.5 | 148.5 | 82.3 | 833.7 | |
AVP | Available phosphorus | mg/kg | 167.5 | 169.5 | 7.1 | 800.8 | |
AVN | Alkaline nitrogen | mg/kg | 138.0 | 37.9 | 77.0 | 314.0 | |
OM | Organic matter | g/kg | 26.8 | 6.5 | 15.3 | 51.7 |
Causal Relationship | Non-Normalized Path Coefficient | S.E. | C.R. | P | Normalized Path Coefficient | ||
---|---|---|---|---|---|---|---|
Perception | <--- | External factors | 0.009 | 0.005 | 1.976 | * | 0.686 |
Perception | <--- | Internal factors | 0.001 | 0.000 | 2.64 | ** | 0.168 |
Behavior | <--- | Perception | 5.76 | 2.036 | 2.829 | ** | 0.442 |
Land quality | <--- | Behavior | 4.906 | 0.916 | 5.356 | *** | 0.753 |
Perception | <--- | Land quality | 0.008 | 0.003 | 2.418 | * | 0.272 |
VCD | <--- | External factors | 1 | — | — | — | 0.882 |
LAN | <--- | External factors | −0.019 | 0.007 | −2.768 | ** | −0.054 |
NFN | <--- | External factors | −0.217 | 0.090 | −2.413 | * | −0.768 |
APP | <--- | External factors | 0.124 | 0.014 | 8.652 | *** | 0.576 |
MPP | <--- | External factors | −0.058 | 0.022 | −2.641 | ** | −0.114 |
LN | <--- | External factors | −0.073 | 0.013 | −5.421 | *** | −0.371 |
AST | <--- | External factors | 3.563 | 1.486 | 2.398 | * | 0.028 |
TTN | <--- | External factors | 0.144 | 0.069 | 2.074 | * | 0.075 |
AGE | <--- | Internal factors | 1 | — | — | — | 0.889 |
EDU | <--- | Internal factors | 0.095 | 0.016 | 5.955 | *** | 0.45 |
YEAR | <--- | Internal factors | 1.132 | 0.143 | 7.904 | *** | 0.722 |
ALN | <--- | Internal factors | 0.153 | 0.057 | 2.695 | ** | 0.121 |
HIT | <--- | Internal factors | 0.022 | 0.008 | 2.823 | ** | 0.202 |
LRN | <--- | Internal factors | 1267.24 | 520.427 | 2.435 | * | 0.174 |
GZ | <--- | Perception | 1 | — | — | — | 0.129 |
RZ | <--- | Perception | 0.553 | 0.198 | 2.799 | ** | 0.060 |
PD | <--- | Perception | 2.394 | 0.897 | 2.669 | ** | 0.229 |
YY | <--- | Perception | 0.416 | 0.146 | 2.846 | ** | 0.064 |
GCC | <--- | Behavior | 1 | — | — | — | 0.802 |
MCI | <--- | Behavior | −0.498 | 0.079 | −6.311 | *** | −0.417 |
LII | <--- | Behavior | 2167.136 | 165.493 | 13.095 | *** | 0.785 |
OM | <--- | Land quality | 1 | — | — | — | 0.385 |
AVN | <--- | Land quality | 10.065 | 1.848 | 5.446 | *** | 0.674 |
AVP | <--- | Land quality | 58.047 | 10.018 | 5.794 | *** | 0.879 |
AVK | <--- | Land quality | 43.485 | 7.754 | 5.608 | *** | 0.746 |
pH | <--- | Land quality | −0.072 | 0.019 | −3.744 | *** | −0.316 |
χ2 | 506.781 | ||||||
df | 294 | ||||||
RMSEA | 0.077 | ||||||
CFI | 0.738 | ||||||
NFI | 0.628 |
Path | Normalized Path Coefficients | ||
---|---|---|---|
Direct Effect | Indirect Effect | Total Effect | |
Internal factors → Perception | 0.168 | — | 0.168 |
External factors → Perception | 0.686 | — | 0.686 |
Internal factors → Behavior | — | 0.223 | 0.223 |
External factors → Behavior | — | 0.909 | 0.909 |
Internal factors → Land quality | — | 0.168 | 0.168 |
External factors → Land quality | — | 0.685 | 0.685 |
Perception → Behavior | 0.442 | — | 0.442 |
Perception → Land quality | — | 0.998 | 0.998 |
Behavior → Land quality | 0.753 | — | 0.753 |
Behavior → Perception | — | 0.260 | 0.260 |
Land quality → Perception | 0.272 | — | 0.272 |
Land quality → Behavior | — | 0.360 | 0.360 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Luo, X. Understanding Farmers’ Perceptions and Behaviors towards Farmland Quality Change in Northeast China: A Structural Equation Modeling Approach. Sustainability 2018, 10, 3345. https://doi.org/10.3390/su10093345
Liu H, Luo X. Understanding Farmers’ Perceptions and Behaviors towards Farmland Quality Change in Northeast China: A Structural Equation Modeling Approach. Sustainability. 2018; 10(9):3345. https://doi.org/10.3390/su10093345
Chicago/Turabian StyleLiu, Hongbin, and Xiaojuan Luo. 2018. "Understanding Farmers’ Perceptions and Behaviors towards Farmland Quality Change in Northeast China: A Structural Equation Modeling Approach" Sustainability 10, no. 9: 3345. https://doi.org/10.3390/su10093345
APA StyleLiu, H., & Luo, X. (2018). Understanding Farmers’ Perceptions and Behaviors towards Farmland Quality Change in Northeast China: A Structural Equation Modeling Approach. Sustainability, 10(9), 3345. https://doi.org/10.3390/su10093345