Fuzzy Measures of Multidimensional Poverty in the Mediterranean Area: A Focus on Financial Dimension
Abstract
:1. Introduction
2. Literature review
3. Background: Financial Situation in the Mediterranean Area
4. Methodology
- (1)
- Non-monetary poverty depends on forced non-access to various facilities or possessions determining the basic conditions of life. An individual may have access to some of those but not to others. Hence, clearly, non-monetary poverty is inherently a matter of degree, and some quantitative approach (such as the present one) is essential.
- (2)
- The fuzzy approach provides more robust and stable indicators of poverty [58]. Apart from the various methodological choices involved in the construction of conventional poverty measures, the introduction of fuzzy measures carries additional factors on which choices have to be made. The fundamental factor concerns the choice of “membership functions”, meaning a quantitative specification of the propensity to poverty of each statistical unit (household/person), given the level and distribution of income of the population.
4.1. Fuzzy Membership Function
4.2. Construction of the FS Measure
5. Empirical Analysis
- FS1—basic lifestyle
- FS5—environment
- FS6—work and education
- FS7—health related.
- FS2—consumer durables
- FS3—housing amenities
- FS4—financial situation.
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kolm, S.C. Multidimensional egalitarism. Q. J. Econ. 1977, 91, 1–13. [Google Scholar] [CrossRef]
- Atkinson, A.B.; Bourguignon, F. The comparison of multidimensional distributions of economic status. Rev. Econ. Stud. 1982, 49, 183–201. [Google Scholar] [CrossRef]
- Tsui, K. Multidimensional generalisation of the relative and absolute inequality indices: The Atkinson-Kolm-Sen approach. J. Econ. Theory 1985, 67, 251–265. [Google Scholar] [CrossRef]
- Maasoumi, E. The measurement and decomposition of multidimensional inequality. Econometrica 1986, 54, 771–779. [Google Scholar] [CrossRef]
- Sen, A.K. Development as Freedom; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Anand, S.; Sen, A.K. Concepts of Human Development and Poverty: A Multidimensional Perspective; Human Development Papers; United Nations Development Programme (UNDP): New York, NY, USA, 1997. [Google Scholar]
- Townsend, P. Poverty in the United Kingdom; Allen Lane: Harmondsworth, UK, 1979. [Google Scholar]
- Smeeding, T.; Saunders, P.; Coder, J.; Jenkins, S.P.; Fritzell, J.; Hagenaars, A.; Hauser, R.; Wolfson, M. Poverty inequality and family living standards impacts across seven nations: The effect of non-cash subsidies for health, education and housing. Rev. Income Wealth 1993, 39, 229–256. [Google Scholar] [CrossRef]
- Klasen, S. Measuring poverty and deprivation in South Africa. Rev. Income Wealth 2000, 46, 33–58. [Google Scholar] [CrossRef]
- Chakravarty, S.R.; Mukherjee, D.; Ranade, R. On the family of subgroup and factor decomposable measures of multidimensional poverty. Res. Econ. Inequal. 1998, 8, 175–194. [Google Scholar]
- Miceli, D. Measuring poverty using fuzzy sets. Canberra: National Centre for Social and Economic Modelling; University of Canberra: Canberra, Australia, 1998. [Google Scholar]
- Bourguignon, F.; Chakravarty, S.R. The measurement of multidimensional poverty. J. Econ. Inequal. 2003, 1, 25–49. [Google Scholar] [CrossRef]
- Caramuta, D.M.; Contiggiani, F. A Fuzzy Set Approach to Poverty Measurement. Fuzzy Econ. Rev. 2006, 11, 37–55. [Google Scholar] [CrossRef]
- Atkinson, A.B.; Cantillon, B.; Marlier, E.; Nolan, B. Social Indicators: The EU and Social Inclusion; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Duclos, J.-Y.; Sahn, D.; Younger, S.D. Robust Multidimensional Poverty Comparisons; Université Laval: Quebec, QC, Canada, 2001. [Google Scholar]
- Atkinson, A.B. Multidimensional deprivation: Contrasting social welfare and counting approaches. J. Econ. Inequal. 2003, 1, 51–65. [Google Scholar] [CrossRef]
- Pipino, I.L.; van Gigch, J.P. Potential Impact of Fuzzy Sets on the Social Sciences. Cybern. Syst. 1981, 12, 21–35. [Google Scholar] [CrossRef]
- Cerioli, A.; Zani, S. A fuzzy approach to the measurement of poverty. In Income and Wealth Distribution, Inequality and Poverty; Dagum, C., Zenga, M., Eds.; Springer: Berlin, Germany, 1990; pp. 272–284. [Google Scholar]
- Chiappero Martinetti, E. A New Approach to Evaluation of Well-Being and Poverty by Fuzzy Set Theory. G. Econ. Ann. Econ. 1994, 53, 367–387. [Google Scholar]
- Cheli, B. Totally Fuzzy and Relative Measures of Poverty in Dynamics Context. Metron 1995, 53, 183–205. [Google Scholar]
- Vero, J.; Werquin, P. Re-examining the Measurement of Poverty: How Do Young People in the Stage of Being Integrated in the Labour Force Manage. Econ. Stat. 1997, 8–10, 143–156. (In French) [Google Scholar]
- Cheli, B.; Betti, G. Fuzzy analysis of poverty dynamics on an Italian pseudo panel, 1985–1994. Metron 1999, 57, 83–104. [Google Scholar]
- Betti, G.; Cheli, B.; Cambini, R. A statistical model for the dynamics between two fuzzy states: Theory and application to poverty analysis. Metron 2004, 62, 391–411. [Google Scholar]
- Cheli, B.; Lemmi, A. A Totally Fuzzy and Relative Approach to the Multidimensional Analysis of Poverty. Econ. Notes 1995, 24, 115–134. [Google Scholar]
- Betti, G.; Verma, V. Measuring the degree of poverty in a dynamic and comparative context: A multi-dimensional approach using fuzzy set theory. In Proceedings of the ICCS-VI, Lahore, Pakistan, 27–31 August 1999; Volume 11, pp. 289–301. [Google Scholar]
- Betti, G.; Verma, V. Fuzzy measures of the incidence of relative poverty and deprivation: A multi-dimensional perspective. Stat. Methods Appl. 2008, 17, 225–250. [Google Scholar] [CrossRef]
- Baràn, B.; Rojas, A.; Britez, D.; Baràn, L. Measurement and Analysis of Poverty and Welfare Using Fuzzy Sets. In Proceedings of the International Conference on Systemics, Cybernetics and Informatics SCI’99, Orlando, FL, USA, 31 July–4 August 1999. [Google Scholar]
- Garcia, P.; Lazzari, L.; Machado, E. Una Propuesta Fuzzy para Definir Indicadores de Pobreza. In Proceedings of the V SIGEF Congress, Lausanne, Switzerland, 24–27 November 1998. [Google Scholar]
- Chiappero Martinetti, E. A Multidimensional Assessment of Well-Being Based on Sen’s Functioning Approach. Riv. Int. Sci. Soc. 2000, 2, 207–239. [Google Scholar]
- Lelli, S. Factor Analysis vs. Fuzzy Set Theory: Assessing the Influence of Different Techniques on Sen’s Functioning Approach. 2001. Available online: http://www.econ.kuleuven.ac.be/ew/academic/econover/Papers/DPS0121.pdf (accessed on 5 October 2018).
- Sen, A.K. Capability and Well-Being. In The Quality of Life; Nussbaum, M., Sen, A., Eds.; Clarendon Press: Oxford, UK, 1993. [Google Scholar]
- Deutsch, J.; Silber, J. Measuring Multidimensional Poverty: An Empirical Comparison of Various Approaches. Rev. Income Wealth 2005, 51, 145–174. [Google Scholar] [CrossRef]
- Lemmi, A.; Betti, G. Fuzzy Set Approach to Multidimensional Poverty Measurement; Series: Economic Studies in Inequality, Social Exclusion and Well-Being; Springer: New York, NY, USA, 2006. [Google Scholar]
- Qizilbash, M. Philosophical Accounts of Vagueness, Fuzzy Poverty Measures and Multidimensionality. In Fuzzy Set Approach to Multidimensional Poverty Measurement; Lemmi, A., Betti, G., Eds.; Series: Economic Studies in Inequality, Social Exclusion and Well-Being; Springer: New York, NY, USA, 2006. [Google Scholar]
- Vero, J. A Comparison of Poverty According to Primary Goods, Capabilities, and Outcomes. Evidence from French School Leaver’s Surveys. In Fuzzy Set Approach to Multidimensional Poverty Measurement; Lemmi, A., Betti, G., Eds.; Series: Economic Studies in Inequality, Social Exclusion and Well-Being; Springer: New York, NY, USA, 2006. [Google Scholar]
- Betti, G.; Cheli, B.; Lemmi, A.; Verma, V. The fuzzy set approach to multidimensional poverty: The case of Italy in the 1990s. In Quantitative Approaches to Multidimensional Poverty Measurement; Kakwani, N., Silber, J., Eds.; Palgrave Macmillan: Basingstoke, UK; New York, NY, USA, 2008; pp. 30–48. [Google Scholar]
- Costa, M.; De Angelis, L. The multidimensional measurement of poverty: A fuzzy set approach. Statistica 2008, 68, 303–319. [Google Scholar]
- Giordani, P.; Giorgi, G.M. A fuzzy logic approach to poverty analysis based on the Gini and Bonferroni inequality indices. Stat. Methods Appl. 2010, 19, 587–607. [Google Scholar] [CrossRef]
- Belhadj, B. A new fuzzy unidimensional poverty index from an information theory perspective. Empir. Econ. 2011, 40, 687–704. [Google Scholar] [CrossRef]
- Belhadj, B.; Limam, M. Unidimensional and Multidimensional Fuzzy Poverty Measures: New Approach. Econ. Model. 2012, 29, 995–1002. [Google Scholar] [CrossRef]
- Betti, G.; Gagliardi, F.; Lemmi, A.; Verma, V. Sub-national indicators of poverty and deprivation in Europe: Methodology and applications. Camb. J. Reg. Econ. Soc. 2012, 5, 149–162. [Google Scholar] [CrossRef]
- Belhadj, B. New fuzzy indices for multidimensional poverty. J. Intell. Fuzzy Syst. 2013, 24, 587–591. [Google Scholar]
- Neff, D. Fuzzy set theoretic applications in poverty research. Policy Soc. 2013, 32, 319–331. [Google Scholar] [CrossRef]
- Betti, G.; Gagliardi, F.; Lemmi, A.; Verma, V. Comparative measures of multidimensional deprivation in the European Union. Empir. Econ. 2015, 49, 1071–1100. [Google Scholar] [CrossRef]
- Leu, C.H.; Chen, K.M.; Chen, H.H. A Multidimensional Approach to Child Poverty in Taiwan. Child. Youth Serv. Rev. 2016, 66, 35–44. [Google Scholar] [CrossRef]
- Aristondo, O.; Ciommi, M.T. The Orness Value for Rank-Dependent Welfare Functions and Rank-Dependent Poverty Measures. Fuzzy Sets Syst. 2017, 325, 114–136. [Google Scholar] [CrossRef]
- Aassve, A.; Betti, G.; Mazzuco, S.; Mencarini, L. Marital Disruption and Economic Well-being; A Comparative Analysis. J. R. Stat. Soc. Ser. A 2007, 170, 781–799. [Google Scholar] [CrossRef]
- Imanov, G. The Fuzzy Approach to Estimation of the Index of Population Life Quality. Fuzzy Econ. Rev. 2007, 12, 85–93. [Google Scholar] [CrossRef]
- Betti, G. Fuzzy measures of quality of life: A multidimensional and comparative approach. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 2016, 24 (Suppl. 1), 25–37. [Google Scholar] [CrossRef]
- Betti, G.; Soldi, R.; Talev, I. Fuzzy Multidimensional Indicators of Quality of Life: The Empirical Case of Macedonia. Soc. Indic. Res. 2016, 127, 39–53. [Google Scholar] [CrossRef]
- Betti, G. What impact has the economic crisis had on Quality of Life in Europe? A multidimensional and fuzzy approach. Q. Q. 2017, 51, 351–364. [Google Scholar] [CrossRef]
- Betti, G.; D’Agostino, A.; Neri, L. Educational mismatch of graduates: A multidimensional and fuzzy indicator. Soc. Indic. Res. 2011, 103, 465–480. [Google Scholar] [CrossRef]
- Belhadj, B. Employment measure in development countries via minimum wage and poverty: New Fuzzy approach. Opsearch 2015, 52, 329–339. [Google Scholar]
- Casini, M.; Bastianoni, S.; Gagliardi, F.; Gigliotti, M.; Riccaboni, A.; Betti, G. Sustainable Development Goals indicators: A methodological proposal for a Multidimensional Fuzzy Index in the Mediterranean area. Sustainability 2018, 11, 1–20. [Google Scholar]
- European Commission. Towards a Common Operational European Definition of Overindebtedness; European Commission: Directorate-General for Employment, Social Affairs and Equal Opportunities: Brussels, Belgium, 2008. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Verma, V.; Betti, G.; Gagliardi, F. Fuzzy Measures of Longitudinal Poverty in a Comparative Perspective. Soc. Indic. Res. 2017, 130, 435–454. [Google Scholar] [CrossRef]
- Betti, G.; Gagliardi, F.; Verma, V. Simplified Jackknife variance estimates for fuzzy measures of multidimensional poverty. Int. Stat. Rev. 2018, 86, 68–86. [Google Scholar] [CrossRef]
- Eurostat. Income, Poverty and Social Exclusion: 2nd Report; Office for Official Publications of the European Communities: Luxembourg, Luxembourg, 2002. [Google Scholar]
- Verma, V.; Betti, G. EU Statistics on Income and Living Conditions (EU-SILC): Choosing the survey structure and sample design. Stat. Trans. 2006, 7, 935–970. [Google Scholar]
Households with Arrears (%) | Inability to Face Unexpected Expenses (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Country | Arrears on Key Commitments | Arrears on Utility Bills | Arrears on Mortgage or Rent Payments | Arrears on Consumer Loans | ||||||
2007 | 2013 | 2007 | 2013 | 2007 | 2013 | 2007 | 2013 | 2008 | 2013 | |
Cyprus | 23.0 | 33.6 | 10.0 | 21.9 | 6.1 | 8.8 | 15.3 | 22.1 | 40.0 | 55.0 |
Greece | 26.4 | 39.0 | 15.7 | 31.8 | 7.4 | 12.9 | 12.2 | 15.0 | 27.5 | 48.0 |
Spain | 7.6 | 11.9 | 4.6 | 8.3 | 3.5 | 6.4 | 2.2 | 3.1 | 30.0 | 42.0 |
France | 9.8 | 9.2 | 6.4 | 6.2 | 5.8 | 5.5 | 2.7 | 2.3 | 35 | 35.0 |
Italy | 12.5 | 14.2 | 10.4 | 12.0 | 3.8 | 4.9 | 3.2 | 2.0 | 31.5 | 40.0 |
Malta | 8.0 | 12.2 | 7.2 | 11.4 | 1.2 | 2.3 | 0.8 | 1.0 | 33.0 | 22.5 |
Portugal | 7.0 | 11.8 | 5.2 | 8.2 | 3.1 | 5.7 | 1.8 | 2.9 | 27.0 | 43.0 |
Slovenia | 14.2 | 21.2 | 11.4 | 19.7 | 2.3 | 3.7 | 5.1 | 4.1 | 45.0 | 45.0 |
Croatia | - | 29.7 | - | 28.2 | - | 1.3 | - | 6.0 | - | - |
Average EU | 10 | 12 | 7.3 | 10.1 | 3.4 | 4.1 | 2.8 | 2.9 | 34.3 | 39.4 |
Dimension | Items of Deprivation | Weights |
---|---|---|
1 Basic lifestyle (FS1) | Meals with meat, fish or chicken | 1.90 |
Household adequately warm | 2.18 | |
Holiday away from home | 0.68 | |
Ability to make ends meet | 0.39 | |
2 Consumer durables (FS2) | Car | 2.22 |
PC | 2.87 | |
Telephone | 8.43 | |
Washing Machine | 8.05 | |
TV | 10.68 | |
3 Housing amenities (FS3) | Bath or Shower | 4.85 |
Indoor flushing toilet | 5.17 | |
Leaking roof and damp | 1.80 | |
Rooms too dark | 2.95 | |
4 Financial situation (FS4) | Inability to cope with unexpected expenses | 0.80 |
Arrears on mortgage or rent payments | 3.69 | |
Arrears on utility bills | 1.99 | |
Arrears on hire purchase instalments | 4.06 | |
5 Environment (FS5) | Crime, Violence, vandalism | 1.57 |
Pollution | 1.77 | |
Noise | 1.34 | |
6 Work and Education (FS6) | Early school leavers | 5.45 |
Low education | 1.35 | |
Worklessness | 0.51 | |
Duration of unemployment | 1.79 | |
7 Health related (FS7) | General health | 0.97 |
Chronic illness | 0.46 | |
Mobility restriction | 0.51 | |
Unmet need for medical exam | 1.79 | |
Unmet need for dental exam | 1.69 |
Index | Value |
---|---|
Goodness of fit (GFI) | 0.927 |
Adjusted GFI | 0.914 |
Parsimonious GFI | 0.845 |
Root Mean Square Residual | 0.065 |
RMSEA | 0.052 |
2007 | FS | FS1 | FS2 | FS3 | FS4 | FS5 | FS6 | FS7 |
Cyprus | 0.1555 | 0.1396 | 0.0585 | 0.0749 | 0.1166 | 0.1455 | 0.1284 | 0.1425 |
Greece | 0.2027 | 0.1653 | 0.1089 | 0.1129 | 0.1517 | 0.1689 | 0.1600 | 0.1651 |
Spain | 0.1975 | 0.1452 | 0.0732 | 0.1034 | 0.0950 | 0.1721 | 0.1628 | 0.1427 |
France | 0.1313 | 0.1006 | 0.0585 | 0.0777 | 0.0775 | 0.1262 | 0.1106 | 0.1068 |
Italy | 0.1983 | 0.1641 | 0.0641 | 0.0996 | 0.1170 | 0.1919 | 0.1554 | 0.1687 |
Portugal | 0.1815 | 0.1296 | 0.1147 | 0.1187 | 0.0965 | 0.1583 | 0.1511 | 0.1538 |
Slovenia | 0.1086 | 0.0936 | 0.0516 | 0.0656 | 0.0751 | 0.0999 | 0.0929 | |
2011 | FS | FS1 | FS2 | FS3 | FS4 | FS5 | FS6 | FS7 |
Cyprus | 0.1453 | 0.1252 | 0.0370 | 0.0684 | 0.1153 | 0.1382 | 0.1230 | 0.1333 |
Greece | 0.2137 | 0.1853 | 0.0939 | 0.1083 | 0.1713 | 0.2126 | 0.1662 | 0.1796 |
Spain | 0.2176 | 0.1537 | 0.0635 | 0.0921 | 0.1023 | 0.1436 | 0.1795 | 0.1704 |
France | 0.1406 | 0.1142 | 0.0459 | 0.0815 | 0.0870 | 0.1221 | 0.1184 | 0.1174 |
Italy | 0.1957 | 0.1929 | 0.0454 | 0.1010 | 0.1160 | 0.1696 | 0.1564 | 0.1715 |
Malta | 0.1542 | 0.1442 | 0.0326 | 0.0805 | 0.0837 | 0.1432 | 0.1259 | 0.1136 |
Portugal | 0.1797 | 0.1356 | 0.0944 | 0.0977 | 0.1080 | 0.1477 | 0.1511 | 0.1279 |
Slovenia | 0.1365 | 0.1181 | 0.0478 | 0.0736 | 0.0909 | 0.1158 | 0.1163 | |
2015 | FS | FS1 | FS2 | FS3 | FS4 | FS5 | FS6 | FS7 |
Cyprus | 0.1622 | 0.1243 | 0.0455 | 0.0769 | 0.1299 | 0.1292 | 0.1389 | 0.1127 |
Greece | 0.2139 | 0.2078 | 0.1010 | 0.0962 | 0.1779 | 0.1762 | 0.1691 | 0.2070 |
Spain | 0.2213 | 0.1635 | 0.0789 | 0.0921 | 0.1183 | 0.1501 | 0.1839 | 0.1463 |
France | 0.1362 | 0.1115 | 0.0369 | 0.0798 | 0.0799 | 0.1168 | 0.1152 | 0.1063 |
Croatia | 0.1999 | 0.1703 | 0.0813 | 0.1011 | 0.1174 | 0.0923 | 0.1631 | 0.1323 |
Italy | 0.1994 | 0.1864 | 0.0362 | 0.0974 | 0.1162 | 0.1776 | 0.1601 | 0.1777 |
Malta | 0.1634 | 0.1507 | 0.0426 | 0.0821 | 0.0984 | 0.1494 | 0.1078 | 0.1072 |
Portugal | 0.1946 | 0.1568 | 0.0872 | 0.1003 | 0.0976 | 0.1498 | 0.1608 | 0.1629 |
Slovenia | 0.1435 | 0.1211 | 0.0462 | 0.0678 | 0.0965 | 0.1122 | 0.1217 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciani, M.; Gagliardi, F.; Riccarelli, S.; Betti, G. Fuzzy Measures of Multidimensional Poverty in the Mediterranean Area: A Focus on Financial Dimension. Sustainability 2019, 11, 143. https://doi.org/10.3390/su11010143
Ciani M, Gagliardi F, Riccarelli S, Betti G. Fuzzy Measures of Multidimensional Poverty in the Mediterranean Area: A Focus on Financial Dimension. Sustainability. 2019; 11(1):143. https://doi.org/10.3390/su11010143
Chicago/Turabian StyleCiani, Martina, Francesca Gagliardi, Samuele Riccarelli, and Gianni Betti. 2019. "Fuzzy Measures of Multidimensional Poverty in the Mediterranean Area: A Focus on Financial Dimension" Sustainability 11, no. 1: 143. https://doi.org/10.3390/su11010143
APA StyleCiani, M., Gagliardi, F., Riccarelli, S., & Betti, G. (2019). Fuzzy Measures of Multidimensional Poverty in the Mediterranean Area: A Focus on Financial Dimension. Sustainability, 11(1), 143. https://doi.org/10.3390/su11010143