Nitrate Runoff Contributing from the Agriculturally Intensive San Joaquin River Watershed to Bay-Delta in California
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Data Sources and Preprocessing
2.2.1. Input Data
2.2.2. Monitoring Data
2.3. Model Setup
2.4. Calibration and Uncertainty Analysis
2.5. Performance Measures
3. Results
3.1. Tile Drainage Simulation
3.2. Sensitive SWAT Parameters
3.3. Simulation of Riverine Nitrate Loads
4. Discussion
4.1. Tile Drainage Simulation
4.2. Simulation of Riverine Nitrate Loads
4.3. Riverine Nitrate Exports, Aquatic Weed Infestation, and Future Climate Change Impact
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef]
- Ruddy, B.C.; Lorenz, D.L.; Mueller, D.K. County-Level Estimates of Nutrient Inputs to the Land Surface of the Conterminous United States, 1982–2001; 2006-5012; US Geological Survey: Reston, VA, USA, 2006.
- Dahm, C.N.; Parker, A.E.; Adelson, A.E.; Christman, M.A.; Bergamaschi, B.A. Nutrient dynamics of the Delta: Effects on primary producers. San Franc. Estuary Watershed Sci. 2016, 14. [Google Scholar] [CrossRef]
- Glibert, P.M.; Fullerton, D.; Burkholder, J.M.; Cornwell, J.C.; Kana, T.M. Ecological stoichiometry, biogeochemical cycling, invasive species, and aquatic food webs: San Francisco Estuary and comparative systems. Rev. Fish. Sci. 2011, 19, 358–417. [Google Scholar] [CrossRef]
- Seitzinger, S.; Lee, R.Y. Land-based nutrient loading to LMEs: A global watershed perspective on magnitudes and sources. Environ. Dev. 2016, 17, 220–229. [Google Scholar]
- Yuan, Y.; Wang, R.; Cooter, E.; Ran, L.; Daggupati, P.; Yang, D.; Srinivasan, R.; Jalowska, A. Integrating multimedia models to assess nitrogen losses from the Mississippi River basin to the Gulf of Mexico. Biogeosciences 2018, 15, 7059–7076. [Google Scholar] [CrossRef]
- Kyser, G.B.; Moran, P.J.; Madsen, J.D.; Pratt, P.D.; Bubenheim, D.L.; Hard, E.; Zhang, M.; Lawler, S.P.; Jetter, K.; Stanton, B.; et al. Delta Region Areawide Aquatic Weed Project Website. Available online: http://www.ucanr.edu/sites/DRAAWP/ (accessed on 17 May 2019).
- Luo, Y.; Zhang, X.; Liu, X.; Ficklin, D.; Zhang, M. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California. Environ. Pollut. 2008, 156, 1171–1181. [Google Scholar] [CrossRef]
- Connolly, R.D.; Kennedy, I.R.; Silburn, D.M.; Simpson, B.W.; Freebairn, D.M. Simulating endosulfan transport in runoff from cotton fields in Australia with the GLEAMS model. J. Environ. Qual. 2001, 30, 702–713. [Google Scholar] [CrossRef] [PubMed]
- Fohrer, N.; Dietrich, A.; Kolychalow, O.; Ulrich, U. Assessment of the Environmental Fate of the Herbicides Flufenacet and Metazachlor with the SWAT Model. J. Environ. Qual. 2014, 43, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yuan, Y.; Yen, H.; Grieneisen, M.; Arnold, J.; Wang, D.; Wang, C.; Zhang, M. A review of pesticide fate and transport simulation at watershed level using SWAT: Current status and research concerns. Sci. Total Environ. 2019, 669, 512–526. [Google Scholar] [CrossRef]
- Yen, H.; Lu, S.; Feng, Q.; Wang, R.; Gao, J.; Brady, D.M.; Sharifi, A.; Ahn, J.; Chen, S.-T.; Jeong, J. Assessment of optional sediment transport functions via the complex watershed simulation model SWAT. Water 2017, 9, 76. [Google Scholar] [CrossRef]
- Wang, R.; Chen, H.; Luo, Y.; Yen, H.; Arnold, J.G.; Bubenheim, D.; Moran, P.; Zhang, M. Modeling Pesticide Fate and Transport at Watershed Scale Using the Soil & Water Assessment Tool: General Applications and Mitigation Strategies. In Pesticides in Surface Water: Monitoring, Modeling, Risk Assessment, and Management; American Chemical Society: Washington, DC, USA, 2019; Volume 1308, pp. 391–419. [Google Scholar]
- Saleh, D.; Domagalski, J. SPARROW modeling of nitrogen sources and transport in rivers and streams of California and adjacent states, U.S. J. Am. Water Resour. Assoc. 2015, 51, 1487–1507. [Google Scholar] [CrossRef]
- Chen, H.; Zhan, Y.; Grieneisen, M.L.; Zhang, M. Spatio-Temporal Analyses of Pesticide Use on Walnuts and Potential Risks to Surface Water in California. In Managing and Analyzing Pesticide Use Data for Pest Management, Environmental Monitoring, Public Health, and Public Policy; Zhang, M., Jackson, S., Robertson, M.A., Zeiss, M.R., Eds.; American Chemical Society: Washington, DC, USA, 2018; Volume 1283, pp. 171–201. [Google Scholar]
- Wang, R.; Luo, Y.; Chen, H.; Yuan, Y.; Bingner, R.L.; Denton, D.; Locke, M.; Zhang, M. Environmental fate and impact assessment of thiobencarb application in California rice fields using RICEWQ. Sci. Total Environ. 2019, 664, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Niraula, R.; Kalin, L.; Wang, R.; Srivastava, P. Determining Nutrient and Sediment Critical Source Areas with Swat: Effect of Lumped Calibration. Trans. ASABE 2012, 55, 137–147. [Google Scholar] [CrossRef]
- Arnold, J.G.; White, M.J.; Harmel, R.D.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; Srinivasan, R.; Santhi, C.; Kannan, N.; Van Griensven, A.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Jha, M.K.; Gassman, P.W.; Arnold, J.G. Water quality modeling for the Raccoon River watershed using SWAT. Trans. ASABE 2007, 50, 479–493. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Luo, Y.; Zhang, M. Climate change sensitivity assessment of streamflow and agricultural pollutant transport in California’s Central Valley using Latin hypercube sampling. Hydrol. Process. 2013, 27, 2666–2675. [Google Scholar] [CrossRef]
- Guo, T.; Gitau, M.; Merwade, V.; Arnold, J.; Srinivasan, R.; Hirschi, M.; Engel, B. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in the Midwest. Hydrol. Earth Syst. Sci. 2018, 22, 89–110. [Google Scholar] [CrossRef]
- Boithias, L.; Srinivasan, R.; Sauvage, S.; Macary, F.; Sánchez-Pérez, J.M. Daily Nitrate Losses: Implication on Long-Term River Quality in an Intensive Agricultural Catchment of Southwestern France. J. Environ. Qual. 2014, 43, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; McIsaac, G.F.; David, M.B.; Louwers, C.A.L. Modeling riverine nitrate export from an East-Central Illinois watershed using SWAT. J. Environ. Qual. 2007, 36, 996–1005. [Google Scholar] [CrossRef]
- Chen, H.; Luo, Y.; Potter, C.; Moran, P.J.; Grieneisen, M.L.; Zhang, M. Modeling pesticide diuron loading from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT. Water Res. 2017, 121, 374–385. [Google Scholar] [CrossRef]
- Quinn, N.W. The San Joaquin Valley: Salinity and drainage problems and the framework for a response. In Salinity and Drainage in San Joaquin Valley, California; Springer: Berlin, Germany, 2014; pp. 47–97. [Google Scholar]
- Quinn, N.W.T. Adaptive implementation of information technology for real-time, basin-scale salinity management in the San Joaquin Basin, USA and Hunter River Basin, Australia. Agric. Water Manag. 2011, 98, 930–940. [Google Scholar] [CrossRef]
- Capel, P.D.; McCarthy, K.A.; Barbash, J.E. National, Holistic, Watershed-Scale Approach to Understand the Sources, Transport, and Fate of Agricultural Chemicals. J. Environ. Qual. 2008, 37, 983–993. [Google Scholar] [CrossRef]
- Saleh, D.K.; Kratzer, C.R.; Green, C.H.; Evans, D.G. Using the Soil and Water Assessment Tool (SWAT) to Simulate Runoff in Mustang Creek Basin, California; US. Geological Survey: Reston, VA, USA, 2009.
- Dubrovsky, N.M. Water Quality in the San Joaquin-Tulare Basins, California; 1992–1995; US Geological Survey: Reston, VA, USA, 1998; Volume 1159.
- Wang, R.Y.; Bowling, L.C.; Cherkauer, K.A. Estimation of the effects of climate variability on crop yield in the Midwest USA. Agric. For. Meteorol. 2016, 216, 141–156. [Google Scholar] [CrossRef]
- Guo, T.; Cibin, R.; Chaubey, I.; Gitau, M.; Arnold, J.G.; Srinivasan, R.; Kiniry, J.R.; Engel, B.A. Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT. Sci. Total Environ. 2018, 613, 724–735. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Rossi, C.G.; Arnold, J.G.; Tomer, M.D. Evaluating hydrology of the Soil and Water Assessment Tool (SWAT) with new tile drain equations. J. Soil Water Conserv. 2012, 67, 513–524. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gowda, P.H.; Arnold, J.G.; Mulla, D.J.; Ale, S.; Steiner, J.L.; Tomer, M.D. Evaluation of the Hooghoudt and Kirkham tile drain equations in the Soil and Water Assessment Tool to simulate tile flow and nitrate-nitrogen. J. Environ. Qual. 2014, 42, 1699–1710. [Google Scholar] [CrossRef]
- Boles, C.M.; Frankenberger, J.R.; Moriasi, D.N. Tile drainage simulation in SWAT2012: Parameterization and evaluation in an Indiana watershed. Trans. ASABE 2015, 58, 1201–1213. [Google Scholar]
- Lockhart, K.M.; King, A.M.; Harter, T. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. J. Contam. Hydrol. 2013, 151, 140–154. [Google Scholar] [CrossRef]
- USEPA. Region 9 Strategic Plan 2011–2014; Technical Report; United States Environmental Protection Agency: Washington, DC, USA, 2012.
- USDA-NASS. National Agricultural Statistics Service Cropland Data Layer. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 17 May 2019).
- Kratzer, C.R.; Kent, R.H.; Seleh, D.K.; Knifong, D.L.; Dileanis, P.D.; Orlando, J.L. Trends in Nutrient Concentrations, Loads, and Yields in Streams in the Sacramento, San Joaquin, and Santa Ana Basins, California 1975–2004; U.S. Geological Survey: Reston, VA, USA, 2011.
- Kratzer, C.R.; Shelton, J.L. Water Quality Assessment of the San Joaquin--Tulare Basins, California: Analysis of Available Data on Nutrients and Suspended Sediment in Surface Water 1972–1990; U.S. Dept. of the Interior, US Geological Survey: Reston, VA, USA, 1998.
- USGS. The National Map. Available online: http://nationalmap.gov/3dep_prodserv.html (accessed on 17 May 2019).
- USGS. National Hydrography Dataset (NHD). Available online: http://nhd.usgs.gov/data.html (accessed on 17 May 2019).
- Winchell, M.; Srinivasan, R.; Di Luzio, M.; Arnold, J. ArcSWAT interface for SWAT2012 User’s Guide; Blackland Research and Extension Center, Texas Agrilife Research; Grassland, Soil and Water Research Laboratory, USDA Agricultural Research Service: College Station, TX, USA, 2013.
- Fuka, D.R.; Walter, M.T.; MacAlister, C.; Degaetano, A.T.; Steenhuis, T.S.; Easton, Z.M. Using the Climate Forecast System Reanalysis as weather input data for watershed models. Hydrol. Process. 2013, 28, 5613–5623. [Google Scholar] [CrossRef]
- CDWR. California Irrigation Management Information System. Available online: http://www.cimis.water.ca.gov (accessed on 17 May 2019).
- USDA. Soil Survey Geographic (SSURGO) Database. Available online: http://sdmdataaccess.nrcs.usda.gov/ (accessed on 17 May 2019).
- Doll, D. Almond Nutrients & Fertilization. Available online: http://fruitsandnuts.ucdavis.edu/almondpages/AlmondNutrientsFertilization/ (accessed on 17 May 2019).
- CDFA. California Fertilization Guidelines. Available online: https://apps1.cdfa.ca.gov/fertilizerresearch/docs/guidelines.html (accessed on 17 May 2019).
- Peacock, B.; Christensen, P.; Hirschfelt, D. Best Management Practices for Nitrogen Fertilization of Grapevines; NG4-96; UC ANR: Davis, CA, USA, 1996. [Google Scholar]
- Hartz, T.; Miyao, G.; Mickler, J.; Lestrange, M.; Stoddard, S.; Nunez, J.; Aegerter, B. Processing Tomato Production in California; Publication No. 7228; UC ANR: Davis, CA, USA, 2008. [Google Scholar]
- Strange, M.L.; Schrader, W.L.; Hartz, T.K. Fresh-Market Tomato Production in California; Publication No. 8017; UC ANR: Davis, CA, USA, 2000. [Google Scholar]
- Ransom, J. Corn Growth and Management Quick Guide; NDSU Extension Service: Fargo, ND, USA, 2013. [Google Scholar]
- Geisseler, D.; Lazicki, P.A.; Pettygrove, G.S.; Ludwig, B.; Bachand, P.A.M.; Horwath, W.R. Nitrogen dynamics in irrigated forage systems fertilized with liquid dairy manure. Agron. J. 2012, 104, 897. [Google Scholar] [CrossRef]
- Munier, D.; Kearney, T.; Pettygrove, G.S.; Brittan, K.; Mathews, M.; Jackson, L. Small Grain Production Manual; Publication No. 8208; UC ANR: Davis, CA, USA, 2006. [Google Scholar]
- Harter, T.; Davis, H.; Mathews, M.C.; Meyer, R.D. Shallow groundwater quality on dairy farms with irrigated forage crops. J. Contam. Hydrol. 2002, 55, 287–315. [Google Scholar] [CrossRef]
- Sobota, D.J.; Harrison, J.A.; Dahlgren, R.A. Influences of climate, hydrology, and land use on input and export of nitrogen in California watersheds. Biogeochemistry 2009, 94, 43–62. [Google Scholar] [CrossRef]
- Chang, A.; Harter, T.; Letey, J.; Meyer, D.; Meyer, R.D.; Campbell, M.; Mitloehner, F.; Pettygrove, S.; Robinson, P.; Zhang, R. Groundwater Quality Protection: Managing Dairy Manure in the Central Valley of California; Publication No. 9004; UC ANR: Davis, CA, USA, 2007. [Google Scholar]
- NWQMC. Water Quality Portal (WQP). Available online: http://www.waterqualitydata.us/portal/ (accessed on 17 May 2019).
- State Water Board California Environmental Data Exchange Network (CEDEN). Available online: http://ceden.waterboards.ca.gov/AdvancedQueryTool (accessed on 17 May 2019).
- USGS rloadest: USGS Water science R Functions for LOAD ESTimation of constituents in rivers and Streams (version 0.4.4). Available online: https://github.com/USGS-R/rloadest (accessed on 17 May 2019).
- Wieczorek, M. Subsurface Drains on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice 606; U.S. Geological Survey: Reston, VA, USA, 2004.
- LSCE. Grassland Drainage Area Groundwater Quality Assessment Report; Luhdorff & Scalmanini, Consulting Engineers: Woodland, CA, USA, 2016. [Google Scholar]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool: Input/Output Documentation Version 2012; Texas Water Resources Institute: College Station, TX, USA, 2015. [Google Scholar]
- Abbaspour, K.C. SWAT-CUP: SWAT Calibration and Uncertainty Programs—A User Manual; Swiss Federal Institute of Aquatic Science and Technology: Dübendorf, Switzerland, 2015. [Google Scholar]
- Yen, H.; Wang, R.; Feng, Q.; Young, C.-C.; Chen, S.-T.; Tseng, W.-H.; Wolfe, J.E., III; White, M.J.; Arnold, J.G. Input uncertainty on watershed modeling: Evaluation of precipitation and air temperature data by latent variables using SWAT. Ecol. Eng. 2018, 122, 16–26. [Google Scholar] [CrossRef]
- Yen, H.; Wang, X.; Fontane, D.G.; Harmel, R.D.; Arabi, M. A framework for propagation of uncertainty contributed by parameterization, input data, model structure, and calibration/validation data in watershed modeling. Environ. Model. Softw. 2014, 54, 211–221. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.C.; Yang, H.; Srinivasan, R.; Zehnder, A.J.B. Modeling blue and green water availability in Africa. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- R Development Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 17 May 2019).
- Stringfellow, W.T.; Hanlon, J.S.; Borglin, S.E.; Quinn, N.W.T. Comparison of wetland and agriculture drainage as sources of biochemical oxygen demand to the San Joaquin River, California. Agric. Water Manag. 2008, 95, 527–538. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; 406; Texas Water Resources Institute, Texas A&M University System: College Station, TX, USA, 2011. [Google Scholar]
- Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Guzman, J.A.; Shirmohammadi, A.; Sadeghi, A.M.; Wang, X.; Chu, M.L.; Jha, M.K.; Parajuli, P.B.; Harmel, R.D.; Khare, Y.P.; Hernandez, J.E. Uncertainty considerations in calibration and validation of hydrologic and water quality models. Trans. ASABE 2015, 58, 1745–1762. [Google Scholar]
- Zeiger, S.J.; Hubbart, J.A. A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA. Sci. Total Environ. 2016, 572, 232–243. [Google Scholar] [CrossRef]
- White, K.L.; Chaubey, I. Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model. J. Am. Water Resour. Assoc. 2005, 41, 1077–1089. [Google Scholar] [CrossRef]
- Malagó, A.; Bouraoui, F.; Vigiak, O.; Grizzetti, B.; Pastori, M. Modelling water and nutrient fluxes in the Danube River Basin with SWAT. Sci. Total Environ. 2017, 603–604, 196–218. [Google Scholar] [CrossRef]
- Wang, R. Modeling Hydrologic and Water Quality Responses to Changing Climate and Land Use/Cover in the Wolf Bay Watershed, South Alabama; Auburn University: Auburn, AL, USA, 2010. [Google Scholar]
- Burow, K.R.; Shelton, J.L.; Dubrovsky, N.M. Regional nitrate and pesticide trends in ground water in the eastern San Joaquin Valley, California. J. Environ. Qual. 2008, 37, S249–S263. [Google Scholar] [CrossRef]
- Sobota, D.J.; Harrison, J.A.; Dahlgren, R.A. Linking dissolved and particulate phosphorus export in rivers draining California’s Central Valley with anthropogenic sources at the regional scale. J. Environ. Qual. 2011, 40, 1290–1302. [Google Scholar] [CrossRef]
- Gronberg, J.A.M.; Spahr, N.E. County-Level Estimates of Nitrogen and Phosphorus from Commercial Fertilizer for the Conterminous United States, 1987–2006; 2012-5207; US Geological Survey: Reston, VA, USA, 2012.
- Mueller, D.K.; Gronberg, J.A.M. County-Level Estimates of Nitrogen and Phosphorus from Animal Manure for the Conterminous United States, 2002; 2013-1065; US Geological Survey: Reston, VA, USA, 2013.
- Saadat, S.; Bowling, L.; Frankenberger, J.; Kladivko, E. Nitrate and phosphorus transport through subsurface drains under free and controlled drainage. Water Res. 2018, 142, 196–207. [Google Scholar] [CrossRef]
- You, W.; Yu, D.; Xie, D.; Yu, L.; Xiong, W.; Han, C. Responses of the invasive aquatic plant water hyacinth to altered nutrient levels under experimental warming in China. Aquat. Bot. 2014, 119, 51–56. [Google Scholar] [CrossRef]
- Boyer, K.; Sutula, M. Factors Controlling Submersed and Floating Macrophytes in the Sacramento-San Joaquin Delta; 870; Southern California Coastal Water Research Project: Costa Mesa, CA, USA, 2015. [Google Scholar]
- Ficklin, D.L.; Luo, Y.; Luedeling, E.; Gatzke, S.E.; Zhang, M. Sensitivity of agricultural runoff loads to rising levels of CO2 and climate change in the San Joaquin Valley watershed of California. Environ. Pollut. 2010, 158, 223–234. [Google Scholar] [CrossRef]
- Hidalgo, H.; Brekke, L.; Miller, N.; Quinn, N.; Keyantash, J.; Dracup, J. Assessment of the Impacts of Climate Change on the Water Allocation, Water Quality and Salmon Production in the San Joaquin River Basin. In Regional Climate Change and Variability: Impacts and Responses; Edward Elgar Pub: Cheltenham, UK, 2006; pp. 30–57. [Google Scholar]
- Brekke, L.D.; Miller, N.L.; Bashford, K.E.; Quinn, N.W.T.; Dracup, J.A. Climate Change Impacts Uncertainty for Water Resources in the San Joaquin River Basin, California. J. Am. Water Resour. Asso. 2004, 40, 149–164. [Google Scholar] [CrossRef]
- Draper, A.J.; Munévar, A.; Arora, S.K.; Reyes, E.; Parker, N.L.; Chung, F.I.; Peterson, L.E. CalSim: Generalized model for reservoir system analysis. J. Water Resour. Plan. Manag. 2004, 130, 480–489. [Google Scholar] [CrossRef]
- Heard, T.A.; Winterton, S.L. Interactions between nutrient status and weevil herbivory in the biological control of water hyacinth. J. Appl. Ecol. 2000, 37, 117–127. [Google Scholar] [CrossRef]
- Wilson, J.R.; Holst, N.; Rees, M. Determinants and patterns of population growth in water hyacinth. Aquat. Bot. 2005, 81, 51–67. [Google Scholar] [CrossRef]
- Novick, E.; Holleman, R.; Jabusch, T.; Sun, J.; Trowbridge, P.; Senn, D.; Guerin, M.; Kendall, C.; Young, M.; Peek, S. Characterizing and Quantifying Nutrient Sources, Sinks, and Transformations in the Delta: Synthesis, Modeling, and Recommendations for Monitoring; San Francisco Estuary Institute: Richmond, CA, USA, 2015. [Google Scholar]
- Wang, R.; Kalin, L. Combined and synergistic effects of climate change and urbanization on water quality in the Wolf Bay watershed, southern Alabama. J. Environ. Sci. 2018, 64, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, A.; Volk, M. Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of alternative management practices on water quality and quantity. Agric. Water Manag. 2009, 96, 1207–1217. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Gitau, M.W.; Engel, B.A.; Flanagan, D.C.; Harbor, J.M. Evaluation of the effectiveness of green infrastructure on hydrology and water quality in a combined sewer overflow community. Sci. Total Environ. 2019, 65, 69–79. [Google Scholar] [CrossRef]
- Gitau, M.W.; Chen, J.Q.; Ma, Z. Water Quality Indices as Tools for Decision Making and Management. Water Resour. Manag. 2016, 30, 2591–2610. [Google Scholar] [CrossRef]
Parameter | Description | Value |
---|---|---|
Parameters for the original tile drainage routine | ||
ITDRN.bsn | Tile drainage equations flag | 0 = original, 1 = DRAINMOD |
DDRAIN.mgt | Depth to the subsurface drain (mm) | 1510 |
TDRAIN.mgt | Time to drain soil to field capacity (h) | 24 |
GDRAIN.mgt | Drain tile lag time (h) | 96 |
DEP_IMP.hru | Depth to impervious layer in soil profile (mm) | Approximated by depth to the bottom of the soil profile |
Additional parameters for the alternate tile drainage routine | ||
DRAIN_CO.sdr | Daily drainage coefficient (mm/day) | 35 |
LATKSATF.sdr | Multiplication factor to determine lateral ksat (conk(j1,j)) from SWAT ksat input value (sol_k(j1,j)) for HRU | 1 |
RE.sdr | Effective radius of drains (mm) | 20 |
SDRAIN.sdr | Distance between two drain tubes or tiles (mm) | 30,000 |
Performance Ratings | Nitrogen | ||
---|---|---|---|
Very good | |||
Good | |||
Satisfactory | |||
Unsatisfactory |
Parameter | Description | Lower Limit | Upper Limit | Optimal Value |
---|---|---|---|---|
CMN.bsn | Rate factor for humus mineralization of active organic nutrients (N and P) | 0.000145 | 0.000249 | 0.000169 |
CDN.bsn | Denitrification exponential rate coefficient | 1.1 | 3 | 2.357197 |
SDNCO.bsn | Denitrification threshold water content | 0.57 | 1.1 | 1.001510 |
NPERCO.bsn | Nitrate percolation coefficient | 0 | 0.2 | 0.176200 |
ANION_EXCL.sol | Fraction of porosity from which anions are excluded | 0.01 | 0.79 | 0.446 |
HLIFE_NGW.gw | Half-life of nitrate in the shallow aquifer (days) | 33 | 200 | 90.870819 |
DEP_IMP.hru | Depth to impervious layer in soil profile (m) | 0 | 6 | 1.23500 |
BC1.swq | Rate constant for biological oxidation of NH4 to NO2 (day−1) | 0.21 | 1 | 0.909150 |
BC2.swq | Rate constant for biological oxidation of NO2 to NO3 (day−1) | 0.37 | 2 | 1.789952 |
BC3.swq | Rate constant for hydrolysis of organic N to NH4 (day−1) | 0.24 | 0.4 | 0.267680 |
Station | P-Factor | R-Factor | R2 | R2 Rating | NSE | NSE Rating | PBIAS (%) | PBIAS Rating |
---|---|---|---|---|---|---|---|---|
Calibration of nitrate simulation (2003–2008) | ||||||||
Vernalis | 0.53 | 0.63 | 0.68 | Good | 0.45 | Satisfactory | −22 | Satisfactory |
Fremont Ford Bridge | 0.56 | 1.72 | 0.67 | Good | −0.11 | Unsatisfactory | 16 | Good |
Validation of nitrate simulation (2009–2014) | ||||||||
Vernalis | 0.51 | 0.86 | 0.71 | Very good | 0.25 | Unsatisfactory | 24 | Satisfactory |
Fremont Ford Bridge | 0.67 | 1.82 | 0.52 | Satisfactory | −0.73 | Unsatisfactory | 29 | Satisfactory |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Chen, H.; Luo, Y.; Moran, P.; Grieneisen, M.; Zhang, M. Nitrate Runoff Contributing from the Agriculturally Intensive San Joaquin River Watershed to Bay-Delta in California. Sustainability 2019, 11, 2845. https://doi.org/10.3390/su11102845
Wang R, Chen H, Luo Y, Moran P, Grieneisen M, Zhang M. Nitrate Runoff Contributing from the Agriculturally Intensive San Joaquin River Watershed to Bay-Delta in California. Sustainability. 2019; 11(10):2845. https://doi.org/10.3390/su11102845
Chicago/Turabian StyleWang, Ruoyu, Huajin Chen, Yuzhou Luo, Patrick Moran, Michael Grieneisen, and Minghua Zhang. 2019. "Nitrate Runoff Contributing from the Agriculturally Intensive San Joaquin River Watershed to Bay-Delta in California" Sustainability 11, no. 10: 2845. https://doi.org/10.3390/su11102845
APA StyleWang, R., Chen, H., Luo, Y., Moran, P., Grieneisen, M., & Zhang, M. (2019). Nitrate Runoff Contributing from the Agriculturally Intensive San Joaquin River Watershed to Bay-Delta in California. Sustainability, 11(10), 2845. https://doi.org/10.3390/su11102845