The Ecological Criteria of Circular Growth and the Rebound Risk of Closed Loops
Abstract
:1. Introduction
2. Materials and Methods
- N = number of pairs of scores
- ∑xy = sum of the products of paired scores
- ∑x = sum of x scores
- ∑y = sum of y scores
- ∑x2 = sum of squared x scores
- ∑y2 = sum of squared y scores
3. Results
- CMU: Circular material use rate,
- U: circular use of material,
- M: overall material use,
- Rw: amount of recyclable waste,
- Rwimp: amount of imported recyclable waste,
- Rwexp: amount of exported recyclable waste,
- DMC: Domestic Material Consumption.
3.1. Measuring Circular Transitions Through Ecological Criteria
- ECI: Ecological Circulation Index,
- U: Circular use of material,
- DMC: Domestic Material Consumption,
- BC: Biocapacity,
- EF: Ecological Footprint,
- M: Overall material use.
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A
Member States | CMU (%) | ECI (%) | Circular Deficit (%) |
---|---|---|---|
Austria (AT) | 9.10 | 53.33 | 44.23 |
Belgium (BE) | 18.10 | 88.54 | 70.44 |
Croatia (HR) | 4.60 | 21.42 | 16.82 |
Cyprus (CY) | 3.10 | 92.89 | 89.79 |
Czech Republic (CZ) | 6.90 | 56.56 | 49.66 |
Denmark (DK) | 9.00 | 43.55 | 34.55 |
France (FR) | 17.80 | 52.25 | 34.45 |
Germany (DE) | 10.70 | 68.30 | 57.60 |
Greece (GR) | 1.40 | 63.18 | 61.78 |
Hungary (HU) | 5.40 | 32.98 | 27.58 |
Ireland (IE) | 1.90 | 30.87 | 28.97 |
Italy (IT) | 16.80 | 81.83 | 65.03 |
Lithuania (LT) | 3.80 | 17.07 | 13.27 |
Malta (MT) | 10.20 | 88.60 | 78.40 |
Netherlands (NL) | 26.70 | 89.29 | 62.59 |
Poland (PL) | 12.50 | 60.25 | 47.75 |
Portugal (PT) | 2.50 | 66.53 | 64.03 |
Romania (RO) | 1.70 | 14.56 | 12.86 |
Spain (ES) | 7.70 | 67.79 | 60.09 |
Slovakia (SK) | 4.80 | 36.05 | 31.25 |
Slovenia (SI) | 8.40 | 55.64 | 47.24 |
United Kingdom (UK) | 15.00 | 78.64 | 63.64 |
References
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A New Sustainability Paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A Review on Circular Economy: The Expected Transition to a Balanced Interplay of Environmental and Economic Systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Lieder, M.; Rashid, A. Towards Circular Economy Implementation: A Comprehensive Review in Context of Manufacturing Industry. J. Clean. Prod. 2016, 115, 36–51. [Google Scholar] [CrossRef]
- Blomsma, F.; Brennan, G. The Emergence of Circular Economy: A New Framing Around Prolonging Resource Productivity. J. Ind. Ecol. 2017, 21, 603–614. [Google Scholar] [CrossRef]
- Sauvé, S.; Bernard, S.; Sloan, P. Environmental Sciences, Sustainable Development and Circular Economy: Alternative Concepts for Trans-Disciplinary Research. Environ. Dev. 2016, 17, 48–56. [Google Scholar] [CrossRef]
- Murray, A.; Skene, K.; Haynes, K. The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context. J. Bus. Ethics 2017, 140, 369–380. [Google Scholar] [CrossRef]
- Lewandowski, M. Designing the Business Models for Circular Economy—Towards the Conceptual Framework. Sustainability 2016, 8, 43. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the Circular Economy: An Analysis of 114 Definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Braungart, M.; McDonough, W. Cradle to Cradle: Remaking the Way We Make Things; North Point Press: New York, NY, USA, 2002. [Google Scholar]
- Hawken, P.; Lovins, A.; Lovins, H.L. Natural Capitalism: Creating the Next Industrial Revolution; Little, Brown and Company: New York, NY, USA, 1999. [Google Scholar]
- Erkman, S. Industrial Ecology: An Historical View. J. Clean. Prod. 1997, 5, 1–10. [Google Scholar] [CrossRef]
- Pauli, G. Blue Economy-10 Years, 100 Innovations, 100 Million Jobs; Paradigm Pubns: Brookline, USA, 2010. [Google Scholar]
- Ramkumar, S.F.; Kraanen, F.; Plomp, R.; Edgerton, B.; Walrecht, A.; Baer, I.; Hirsch, P. Linear Risks; Circle Economy: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Horváth, B.; Khazami, N.; Ymeri, P.; Fogarassy, C. Investigating the Current Business Model Innovation Trends in the Biotechnology Industry. J. Bus. Econ. Manag. 2019, 20, 63–85. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Towards the Circular Economy: Opportunities for the Consumer Goods Sector; Ellen MacArthur Foundation Publishers: Cowes, UK, 2013. [Google Scholar]
- Brooks, A.L.; Wang, S.; Jambeck, J.R. The Chinese Import Ban and Its Impact on Global Plastic Waste Trade. Sci. Adv. 2018, 4, eaat0131. [Google Scholar] [CrossRef]
- Tóth, G.; Szigeti, C. The Historical Ecological Footprint: From over-Population to over-Consumption. Ecol. Indic. 2016, 60, 283–291. [Google Scholar] [CrossRef]
- Horváth, B.; Mallinguh, E.; Fogarassy, C. Designing Business Solutions for Plastic Waste Management to Enhance Circular Transitions in Kenya. Sustainability 2018, 10, 1664. [Google Scholar] [CrossRef]
- Venkatachalam, L. Environmental Economics and Ecological Economics: Where They Can Converge? Ecol. Econ. 2007, 61, 550–558. [Google Scholar] [CrossRef]
- Spash, C.L. The Shallow or the Deep Ecological Economics Movement? Ecol. Econ. 2013, 93, 351–362. [Google Scholar] [CrossRef]
- Plumecocq, G. The Second Generation of Ecological Economics: How Far Has the Apple Fallen from the Tree? Ecol. Econ. 2014, 107, 457–468. [Google Scholar] [CrossRef]
- Hobson, K.; Lynch, N. Diversifying and De-Growing the Circular Economy: Radical Social Transformation in a Resource-Scarce World. Futures 2016, 82, 15–25. [Google Scholar] [CrossRef]
- Stahel, W.R. The Circular Economy. Nat. News 2016, 531, 435. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Growth Within: A Circular Economy Vision for a Competitive Europe; Ellen MacArthur Foundation Publishers: Cowes, UK, 2015. [Google Scholar]
- Lacy, P.; Keeble, J.; McNamara, R.; Rutqvist, J. Circular Advantage—Innovative Business Models and Technologies to Create Value in a World without Limits to Growth; Accenture Strategy: London, UK, 2014. [Google Scholar]
- Roos, G. Business Model Innovation to Create and Capture Resource Value in Future Circular Material Chains. Resources 2014, 3, 248–274. [Google Scholar] [CrossRef] [Green Version]
- Spash, C.L. Social Ecological Economics: Understanding the Past to See the Future. Am. J. Econ. Sociol. 2011, 70, 340–375. [Google Scholar] [CrossRef]
- Birol, F.; Keppler, J.H. Prices, Technology Development and the Rebound Effect. Energy Policy 2000, 28, 457–469. [Google Scholar] [CrossRef]
- Berkhout, P.; Muskens, J.C.; Velthuijsen, J.W. Defining the Rebound Effect. Energy Policy 2000, 28, 425–432. [Google Scholar] [CrossRef]
- Greening, L.A.; Greene, D.L.; Difiglio, C. Energy Efficiency and Consumption—The Rebound Effect—A Survey. Energy Policy 2000, 28, 389–401. [Google Scholar] [CrossRef]
- Jevons, W.S. The Coal Question; MacMillan and Co.: London, UK, 1865. [Google Scholar]
- Alcott, B. Jevons’ Paradox. Ecol. Econ. 2005, 54, 9–21. [Google Scholar] [CrossRef]
- Sorrell, S. Jevons’ Paradox Revisited: The Evidence for Backfire from Improved Energy Efficiency. Energy Policy 2009, 37, 1456–1469. [Google Scholar] [CrossRef]
- Brookes, L. Energy Efficiency Fallacies Revisited. Energy Policy 2000, 28, 355–366. [Google Scholar] [CrossRef]
- Khazzoom, J.D. Economic Implications of Mandated Efficiency in Standards for Household Appliances. Energy J. 1980, 1, 21–40. [Google Scholar]
- Khazzoom, J.D. Energy Savings from More Efficient Appliances: A Rejoinder. Energy J. 1989, 10, 157–166. [Google Scholar]
- Saunders, H.D. The Khazzoom-Brookes Postulate and Neoclassical Growth. Energy J. 1992, 13, 131–148. [Google Scholar] [CrossRef]
- Schipper, L.; Grubb, M. On the Rebound? Feedback between Energy Intensities and Energy Uses in IEA Countries. Energy Policy 2000, 28, 367–388. [Google Scholar] [CrossRef]
- Evans, J.; Hunt, L.C. International Handbook on the Economics of Energy; Edward Elgar Publishing: Cheltenham, UK, 2009. [Google Scholar]
- Saunders, H.D. Fuel Conserving (and Using) Production Functions. Energy Econ. 2008, 30, 2184–2235. [Google Scholar] [CrossRef]
- Hajko, V.; Sebri, M.; Al-Saidi, M.; Balsalobre-Lorente, D. Chapter 1—The Energy-Growth Nexus: History, Development, and New Challenges. In The Economics and Econometrics of the Energy-Growth Nexus; Menegaki, A.N., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 1–46. [Google Scholar]
- Narayan, P.; Prasad, A. Electricity Consumption-Real GDP Causality Nexus: Evidence from a Bootstrapped Causality Test for 30 OECD Countries. Energy Policy 2008, 36, 910–918. [Google Scholar] [CrossRef]
- Sorrell, S. Improving the Evidence Base for Energy Policy: The Role of Systematic Reviews. Energy Policy 2007, 35, 1858–1871. [Google Scholar] [CrossRef]
- Tronchin, L.; Manfren, M.; Nastasi, B. Energy Efficiency, Demand Side Management and Energy Storage Technologies—A Critical Analysis of Possible Paths of Integration in the Built Environment. Renew. Sustain. Energy Rev. 2018, 95, 341–353. [Google Scholar] [CrossRef]
- Stern, D.I. The Rise and Fall of the Environmental Kuznets Curve. World Dev. 2004, 32, 1419–1439. [Google Scholar] [CrossRef]
- Herring, H. National Building Stocks: Addressing Energy Consumption or Decarbonization? Build. Res. Inf. 2009, 37, 192–195. [Google Scholar] [CrossRef]
- Brockway, P.E.; Saunders, H.; Heun, M.K.; Foxon, T.J.; Steinberger, J.K.; Barrett, J.R.; Sorrell, S. Energy Rebound as a Potential Threat to a Low-Carbon Future: Findings from a New Exergy-Based National-Level Rebound Approach. Energies 2017, 10, 51. [Google Scholar] [CrossRef]
- Sebestény Szép, T.; Nagy, Z. Increasing Energy Efficiency in the Post-Communist East-Central Europe—A Critical View. Int. J. Res. Bus. Stud. Manag. 2015, 2, 38–45. [Google Scholar]
- Herring, H.; Roy, R. Technological Innovation, Energy Efficient Design and the Rebound Effect. Technovation 2007, 27, 194–203. [Google Scholar] [CrossRef]
- Wei, T. A General Equilibrium View of Global Rebound Effects. Energy Econ. 2010, 32, 661–672. [Google Scholar] [CrossRef]
- UNEP. Fostering and Communicating Sustainable Lifestyles—Principles and Emerging Practices; United Nations Environmental Programme—Sustainable Lifestyles, Cities and Industry Branch: New York, NY, USA, 2016. [Google Scholar]
- Leismann, K.; Schmitt, M.; Rohn, H.; Baedeker, C. Collaborative Consumption: Towards a Resource-Saving Consumption Culture. Resources 2013, 2, 184–203. [Google Scholar] [CrossRef]
- Laurenti, R.; Martin, M.; Stenmarck, A. Developing Adequate Communication of Waste Footprints of Products for a Circular Economy—A Stakeholder Consultation. Resources 2018, 7, 78. [Google Scholar] [CrossRef]
- Csutora, M. One More Awareness Gap? The Behaviour–Impact Gap Problem. J. Consum. Policy 2012, 35, 145–163. [Google Scholar] [CrossRef]
- Csutora, M. The Ecological Footprint of Green and Brown Consumers. Introducing the Behaviour-Impact-Gap (BIG) Problem. In Proceedings of the 15th European Roundtable on Sustainable Consumption and Production (15th ERSCP), Bregenz, Austria, 3 May 2012; pp. 1–11. [Google Scholar]
- Missemer, A. William Stanley Jevons’ The Coal Question (1865), beyond the Rebound Effect. Ecol. Econ. 2012, 82, 97–103. [Google Scholar] [CrossRef]
- Zink, T.; Geyer, R.; Startz, R. A Market-Based Framework for Quantifying Displaced Production from Recycling or Reuse. J. Ind. Ecol. 2016, 20, 719–729. [Google Scholar] [CrossRef]
- Zink, T.; Geyer, R. Material Recycling and the Myth of Landfill Diversion. J. Ind. Ecol. 2018, 1–8. [Google Scholar] [CrossRef]
- Geyer, R.; Kuczenski, B.; Zink, T.; Henderson, A. Common Misconceptions about Recycling. J. Ind. Ecol. 2016, 20, 1010–1017. [Google Scholar] [CrossRef]
- Fogarassy, C.; Neubauer, É.; Mansur, H.; Tangl, A.; Oláh, J.; József, P. The Main Transition Management Issues and the Effects of Environmental Accounting on Financial Performance—With Focus on Cement Industry. Adm. Si Manag. Public 2018, 31, 52–66. [Google Scholar]
- Ellen MacArthur Foundation. Towards the Circular Economy: Business Rationale for an Accelerated Transition; Ellen MacArthur Foundation Publishers: Cowes, UK, 2015. [Google Scholar]
- Cramer, J. The Raw Materials Transition in the Amsterdam Metropolitan Area: Added Value for the Economy, Well-Being, and the Environment. Environ. Sci. Policy Sustain. Dev. 2017, 59, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Zink, T.; Geyer, R. Circular Economy Rebound: Circular Economy Rebound. J. Ind. Ecol. 2017, 21, 593–602. [Google Scholar] [CrossRef]
- Atherton, J. Declaration by the Metals Industry on Recycling Principles. Int. J. Life Cycle Assess. 2007, 12, 59–60. [Google Scholar] [CrossRef]
- Mathews, J.A.; Tan, H. Circular Economy: Lessons from China. Nat. News 2016, 531, 440. [Google Scholar] [CrossRef]
- Shehabi, A.; Walker, B.; Masanet, E. The Energy and Greenhouse-Gas Implications of Internet Video Streaming in the United States. Environ. Res. Lett. 2014, 9, 054007. [Google Scholar] [CrossRef]
- Weber, C.L.; Hendrickson, C.T.; Matthews, H.S.; Nagengast, A.; Nealer, R.; Jaramillo, P. Life Cycle Comparison of Traditional Retail and E-Commerce Logistics for Electronic Products: A Case Study of Buy.Com. In Proceedings of the 2009 IEEE International Symposium on Sustainable Systems and Technology, Phoenix, AZ, USA, 18–20 May 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Ekvall, T.; Finnveden, G. Allocation in ISO 14041—A Critical Review. J. Clean. Prod. 2001, 9, 197–208. [Google Scholar] [CrossRef]
- Cioca, L.I.; Ferronato, N.; Viotti, P.; Magaril, E.; Ragazzi, M.; Torretta, V.; Rada, E.C. Risk Assessment in a Materials Recycling Facility: Perspectives for Reducing Operational Issues. Resources 2018, 7, 85. [Google Scholar] [CrossRef]
- Ekvall, T. A Market-Based Approach to Allocation at Open-Loop Recycling. Resour. Conserv. Recycl. 2000, 29, 91–109. [Google Scholar] [CrossRef]
- Walgrove, A. The Explosive Growth of Online Video, in 5 Charts. Available online: https://contently.com/2015/07/06/the-explosive-growth-of-online-video-in-5-charts/ (accessed on 10 November 2018).
- EC. Closing the Loop—An EU Action Plan for the Circular Economy; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Trica, C.L.; Banacu, C.S.; Busu, M. Environmental Factors and Sustainability of the Circular Economy Model at the European Union Level. Sustainability 2019, 11, 1114. [Google Scholar] [CrossRef]
- Global Footprint Network. Free Public Data Set—Global Footprint Network. Available online: https://www.footprintnetwork.org/licenses/public-data-package-free-2018/ (accessed on 13 November 2018).
- Eurostat. Domestic Material Consumption per Capita (t2020_rl110). Available online: https://ec.europa.eu/eurostat/cache/metadata/en/t2020_rl110_esmsip2.htm (accessed on 13 May 2019).
- Eurostat. Resource Productivity and Domestic Material Consumption (DMC) (sdg_12_20). Available online: https://ec.europa.eu/eurostat/cache/metadata/en/sdg_12_20_esmsip2.htm (accessed on 13 May 2019).
- Eurostat. Generation of Waste Excluding Major Mineral Wastes per Domestic Material Consumption (cei_pc033). Available online: https://ec.europa.eu/eurostat/cache/metadata/en/cei_pc033_esmsip2.htm (accessed on 13 May 2019).
- Eurostat. Generation of Waste Excluding Major Mineral Wastes per GDP Unit (cei_pc032). Available online: https://ec.europa.eu/eurostat/cache/metadata/en/cei_pc032_esmsip2.htm (accessed on 13 May 2019).
- Eurostat. Recycling Rate of All Waste Excluding Major Mineral Waste (cei_wm010). Available online: https://ec.europa.eu/eurostat/cache/metadata/en/cei_wm010_esmsip2.htm (accessed on 13 May 2019).
- Eurostat. Circular Material Use Rate (cei_srm030). Available online: https://ec.europa.eu/eurostat/cache/metadata/en/cei_srm030_esmsip2.htm (accessed on 13 May 2019).
- Saidani, M.; Yannou, B.; Leroy, Y.; Cluzel, F.; Kendall, A. A Taxonomy of Circular Economy Indicators. J. Clean. Prod. 2019, 207, 542–559. [Google Scholar] [CrossRef]
- Zink, T.; Geyer, R.; Startz, R. Toward Estimating Displaced Primary Production from Recycling: A Case Study of U.S. Aluminum. J. Ind. Ecol. 2018, 22, 314–326. [Google Scholar] [CrossRef]
- Bocken, N.M.P.; de Pauw, I.; Bakker, C.; van der Grinten, B. Product Design and Business Model Strategies for a Circular Economy. J. Ind. Prod. Eng. 2016, 33, 308–320. [Google Scholar] [CrossRef]
- Camacho-Otero, J.; Boks, C.; Pettersen, I.N. Consumption in the Circular Economy: A Literature Review. Sustainability 2018, 10, 2758. [Google Scholar] [CrossRef]
- Didenko, N.; Klochkov, Y.; Skripnuk, D. Ecological Criteria for Comparing Linear and Circular Economies. Resources 2018, 7, 48. [Google Scholar] [CrossRef]
- Petit-Boix, A.; Leipold, S. Circular Economy in Cities: Reviewing How Environmental Research Aligns with Local Practices. J. Clean. Prod. 2018, 195, 1270–1281. [Google Scholar] [CrossRef]
Indicator | Description | Category |
---|---|---|
Biocapacity [74] | Regeneration capacity of local ecosystems, Global Hectare per capita | Ecological |
Ecological Footprint (Prod) [74] | Total amount of Ecological Footprint (EF) used for the production of goods and services, Global Hectare per capita | |
Ecological Footprint (Cons) [74] | Total amount of EF consumed through goods and services, Global Hectare per capita | |
Domestic Material Consumption (DMC) [75] | Total amount of materials directly used in an economy (excluding exports), Tons per capita | Material flow (input) |
Resource productivity [76] | Gross domestic product divided by DMC, EUR per kg | |
Waste per DMC [77] | Share of all generated waste (excluding major mineral wastes) from DMC, % | Material flow (output) |
Waste per GDP [78] | Ratio of generated waste (excluding major mineral wastes) to GDP, kg per EUR | |
Recycling rate [79] | Ratio of recycled waste to all generated waste (excluding major mineral wastes), % | Material flow (cycle) |
Circular material use rate (CMU) [80] | Ratio of recycled materials to the overall material use, % |
Variables | DMC/Capita | Resource Productivity | Waste/DMC | |
---|---|---|---|---|
Recycling rate | Pearson Correlation | −0.091 | 0.409 | 0.461 * |
Sig. (2-tailed) | 0.688 | 0.059 | 0.031 | |
N | 22 | 22 | 22 | |
CMU | Pearson Correlation | −0.391 | 0.769 ** | 0.787 ** |
Sig. (2-tailed) | 0.072 | 0.000 | 0.000 | |
N | 22 | 22 | 22 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horvath, B.; Bahna, M.; Fogarassy, C. The Ecological Criteria of Circular Growth and the Rebound Risk of Closed Loops. Sustainability 2019, 11, 2961. https://doi.org/10.3390/su11102961
Horvath B, Bahna M, Fogarassy C. The Ecological Criteria of Circular Growth and the Rebound Risk of Closed Loops. Sustainability. 2019; 11(10):2961. https://doi.org/10.3390/su11102961
Chicago/Turabian StyleHorvath, Balint, Miriam Bahna, and Csaba Fogarassy. 2019. "The Ecological Criteria of Circular Growth and the Rebound Risk of Closed Loops" Sustainability 11, no. 10: 2961. https://doi.org/10.3390/su11102961
APA StyleHorvath, B., Bahna, M., & Fogarassy, C. (2019). The Ecological Criteria of Circular Growth and the Rebound Risk of Closed Loops. Sustainability, 11(10), 2961. https://doi.org/10.3390/su11102961