A Self-Predictable Crop Yield Platform (SCYP) Based On Crop Diseases Using Deep Learning
Abstract
:1. Introduction
1.1. Related Works
1.1.1. Smart Farm
1.1.2. Disease Prediction
2. Material and Methods
2.1. Design of a Self-Predictable Crop Yield Platform Based on Crop Diseases Using Deep Learning
2.2. Design of Image Preprocessing Module
Algorithm 1 Image preprocessing of the IPM |
//Image Preprocessing Algorithm Image Preprocess(Image img){ from google.cloud import vision; Image crop, resize, image; SET hint_params by using image SET image_context by using hint_params SET response by using image and image_context SET hints by using response FOR(n = 1 to hint in enumerate(hints)){ print hint COMPUTE vertices FOR(1 to vertex) print vertices bounds END FOR END FOR IF(size(vertices)==size(image) or hints==null) return null; ELSEIF crop=image.crop(hints); resize=image.resize(crop, 128,128); return resize; END IF } //Image storage algorithm int saveImage(Image img, String imageName, String path, String cropsName, String disease, boolean isTraining){ IF(isTraining) Image preImg = Preprocess(img); IF(preImg != null) saveFile(preImg, path+”\”+cropsName+”\Training\”+disease+”\”+imageName+”.jpg”); return 1; ELSE IF return 0; END IF END IF ELSE saveFile(img, path+”\”+cropsName+”\Test\”+imageName+”.jpg”); return 1; END IF } |
2.3. Design of Crop Disease Diagnosis Module
2.4. Design of Crop Yield Prediction Module
Algorithm 2 Operation of LearningCYPM and UsingCYPM functions |
//learning algorithm void LearningCYPM(double dX[][13], double dY[], double a, double w[6][][], Emax, int training_size_n){ SET Initial eSignal[6][], output y, hidden layer node value to 0 and e value to 9999; WHILE (e is greater than Emax) FOR (i= 1 to the number of input layer nodes) y=UsingCYPM(dX[i], w[6][][], 12); END FOR //e computation using loss function e= (dY[i]-y)2; //the computation of error signal eSignal[5][0] = dY[i]-y; FOR(j = 1 to the number of hidden layer nodes) eSignal[4][j] = a*eSignal[5][0]*w[5][j][0]; END FOR FOR(p = 1 to the number of hidden layer) FOR(k = 1 to the number of hidden layer nodes) FOR(j = 1 to the number of hidden layer nodes) eSignal[p][k]=a*eSignal[p+1][j]*w[p+1][k][j]; END FOR END FOR END FOR // weight modification FOR(j = 1 to the number of last hidden layer nodes) w[5][j][0] = w[5][j][0] + a*h[4][j]*eSignal[5][0]; END FOR FOR(p = 4 to 1) FOR(k = 1 to the number of hidden layer nodes) FOR(j = 1 to the number of hidden layer nodes) w[p][j][k] = w[p][j][k] + a*h[p-1][j]*eSignal[p][k] END FOR END FOR END FOR FOR(j = 1 to the number of input layer nodes) FOR(p = 1 to the number of hidden layer nodes) w[0][j][p] = w[0][j][p] + a*x[j]*eSignal[0][p] END FOR END FOR END WHILE } // CYPM computation algorithm double UsingCYPM(double X[], double w[][][]){ SET h[5][size_x+16], NET =0; FOR(p = 1 to the number of hidden layer nodes) FOR(j = 1 to the number of input layer nodes) NET = NET+(x[j]*w[0][j][i]); END FOR h[0][i] = Max(0, NET); NET=0; END FOR FOR(p = 1 to the number of hidden layer) FOR(p = 1 to the number of hidden layer nodes) FOR(j = 1 to the number of hidden layer nodes) NET = NET+(x[j]*w[k][j][i]); END FOR h[k][i] = Max(0, NET); NET=0; END FOR END FOR FOR(j = 1 to the number of hidden layer nodes) NET=h[4][i]*w[5][i][0] END FOR y=Max(0, NET); RETURN y; } |
3. Results and Discussion
3.1. CDDM Performance Analysis
3.2. CYPM Performance Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Use Case: Precision Agriculture, the Internet of Things, and Big Data Management. Available online: https://helioswire.com/case-study-precision-agriculture-the-internet-of-things-and-big-data-management/ (accessed on 18 April 2019).
- Precision Ag & Big Data Learning. Available online: https://www.precisionag.com/systems-management/data/precision-ag-big-data-learning/ (accessed on 20 April 2019).
- Plant Village: A Deep-Learning App Diagnoses Crop Diseases. Available online: https://actu.epfl.ch/news/plantvillage-a-deep-learning-app-diagnoses-crop-di/ (accessed on 16 April 2019).
- Jirapond, M.; Nathaphon, B.; Siriwan, K.; Narongsak, L.; Apirat, W.; Pichetwut, N. IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar]
- Chae, C.-J.; Cho, H.-J. Enhanced secure device authentication algorithm in P2P-based smart farm system. Peer-To-Peer Netw. Appl. 2018, 11, 1230–1239. [Google Scholar] [CrossRef]
- Hwang, S.I.; Joo, J.-M.; Joo, S.-Y. ICT-based smart farm factory systems through the case of hydroponic ginseng plant factory. J. Korean Inst. Commun. Inf. Sci. 2015, 40, 780–790. [Google Scholar]
- Jo, H.-K.; Choi, H.-H.; Kim, D.-S.; Lee, J.-M. Design and implementation of smart farm wireless network: LoRa and IEEE 802.11 wireless backhaul network. J. Korean Inst. Commun. Inf. Sci. 2018, 43, 850–862. [Google Scholar] [CrossRef]
- Gan, H.; Lee, W.S. Development of a navigation system for a smart farm. IFAC-PapersOnLine 2018, 51, 1–4. [Google Scholar] [CrossRef]
- Kim, J.M.; Moon, S.J.; Hwang, D.-Y. A Study on greenhouse smart farm system based on wireless sensor. Adv. Sci. Lett. 2018, 24, 2041–2045. [Google Scholar] [CrossRef]
- Choi, W.H.; Jie, M.S. Study on the development of wireless sensor network using smart farm system. J. Korea Entertain. Ind. Assoc. 2014, 8, 387–393. [Google Scholar] [CrossRef]
- Liu, B.L.; Yuan, M.H.; Chen, G.R.; Peng, J. The design and simulation of a smart farm system based on ultra-narrow band communication. Science 2013, 427, 1398–1401. [Google Scholar]
- Suk, C.M. Development of serious game system for cultivating using smart farm technology. KSCG 2016, 29, 35–41. [Google Scholar]
- Jeong, Y.N.; Son, S.; Lee, S.S.; Lee, B.K. A total crop-diagnosis platform based on deep learning models in a natural nutrient environment. Appl. Sci. 2018, 8, 1992. [Google Scholar] [CrossRef]
- Feng, S.J.; Gang, W.; Yong, W. The dynamic model prediction study of the forest disease, insect pest and rat based on BP neural networks. J. Agric. Sci. 2012, 4, 221–224. [Google Scholar]
- Alves, D.P.; Tomaz, R.S.; Laurindo, B.S.; Laurindo, R.D.S.; Silva, F.F.E.; Cruz, C.D.; Nick, C.; da Silva, D.J.H. Artificial neural network for prediction of the area under the disease progress curve of tomato late blight. Sci. Agric. 2017, 74, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, W.T.; de França, J.A.; Silva, M.A.; de Igarashi, S.; Saab, O.J.G.A. Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr. Semina Ciências Agrárias 2016, 37, 2881–2890. [Google Scholar] [CrossRef]
- Etebu, E.; Osborn, A.M. Molecular prediction of pea footrot disease. Asian J. Agric. Sci. 2011, 3, 417–426. [Google Scholar]
- Goldstein, A.; Fink, L.; Meitin, A.; Bohadana, S.; Lutenberg, O.; Ravid, G. Applying machine learning on sensor data for irrigation recommendations: Revealing the agronomist’s tacit knowledge. Precis. Agric. 2017, 19, 421–444. [Google Scholar] [CrossRef]
- Tanaka, K. A java framework for developing a plant growth and disease prediction model. Agric. Inf. Res. 2006, 15, 183–193. [Google Scholar]
- Amar, D.; Vizel, A.; Levy, C.; Shamir, R. ADEPTUS: A discovery tool for disease prediction, enrichment and network analysis based on profiles from many diseases. Bioinformatics 2018, 34, 1959–1961. [Google Scholar] [CrossRef]
- Okonya, J.S.; Ocimati, W.; Nduwayezu, A.; Kantungeko, D.; Niko, N.; Blomme, G.; Legg, J.P.; Kroschel, J. Farmer reported pest and disease impacts on root, tuber, and banana crops and livelihoods in Rwanda and Burundi. Sustainability 2019, 11, 1592. [Google Scholar] [CrossRef]
- Abdipour, M.; Younessi-Hmazekhanlu, M.; RezaRamazani, S.H.; Omidi, A.H. Artificial neural networks and multiple linear regression as potential methods for modeling seed yield of safflower (Carthamus tinctorius L.). Ind. Crops Prod. 2019, 127, 185–194. [Google Scholar] [CrossRef]
- Niedbała, G. Application of artificial neural networks for multi-criteria yield prediction of winter rapeseed. Sustainability 2019, 11, 533. [Google Scholar] [CrossRef]
- Kerkech, M.; Hafiane, A.; Canals, R. Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images. Comput. Electron. Agric. 2018, 155, 237–243. [Google Scholar] [CrossRef]
- Barbedo, J.G.A. Plant disease identification from individual lesions and spots using deep learning. Biosyst. Eng. 2019, 180, 96–107. [Google Scholar] [CrossRef]
- Gabryel, M.; Damaševičius, R. The image classification with different types of image features. Int. Conf. Artif. Intell. Soft Comput. 2017, 10245, 497–506. [Google Scholar]
- Improve Your Model Performance Using Cross Validation (in Python and R). Available online: https://www.analyticsvidhya.com/blog/2018/05/improve-model-performance-cross-validation-in-python-r/ (accessed on 10 June 2019).
Layer | Input Channel | Filter | Output Channel | Stride | Max Pooling | Activation Function |
---|---|---|---|---|---|---|
Convolution layer 1 | 3 | (4, 4) | 20 | 1 | – | ReLU |
Max pooling layer 1 | 20 | – | 20 | 2 | (2, 2) | – |
Convolution layer 2 | 20 | (4, 4) | 40 | 1 | – | ReLU |
Max pooling layer 2 | 40 | – | 40 | 2 | (2, 2) | – |
Convolution layer 3 | 40 | (4, 4) | 60 | 1 | 1 | ReLU |
Max pooling layer 3 | 60 | – | 60 | 2 | (2, 2) | – |
Flatten | – | – | – | - | – | – |
Fully connected layer | – | – | – | - | – | Softmax |
Input Node | Description | Source |
---|---|---|
Disease 1 | CDDM | |
Disease 1′ infectious | ||
Disease 2 | ||
Disease 2′ infectious | ||
Disease 3 | ||
Disease 3′ infectious | ||
… | … | |
Normal | ||
Precipitation | meteorologicaladministration | |
Humidity | ||
Sunshine | ||
Temperature | ||
Ground temperature | ||
Evaporation | ||
Atmospheric pressure | ||
Crop name | server | |
Date remaining (daily) to harvest | ||
Water pH | ||
Water quality | ||
Soil pH |
The Number of Total Datasets | R-CNN | YOLO | CNN | |||
---|---|---|---|---|---|---|
Disease Name Failure | Disease Count Failure | Disease Name Failure | Disease Count Failure | Disease Name Failure | Disease Count Failure | |
5500 | 0 | 0 | 1 | 0 | 0 | 0 |
6000 | 9 | 1 | 1 | 0 | 0 | 0 |
6500 | 6 | 0 | 2 | 1 | 2 | 1 |
8000 | 6 | 1 | 31 | 5 | 2 | 1 |
8500 | 15 | 1 | 35 | 7 | 3 | 2 |
10,000 | 29 | 2 | 96 | 10 | 10 | 3 |
10,500 | 34 | 2 | 101 | 12 | 11 | 3 |
12,000 | 115 | 10 | 306 | 28 | 21 | 8 |
12,500 | 152 | 17 | 344 | 29 | 22 | 9 |
14,000 | 244 | 21 | 478 | 53 | 33 | 10 |
14,500 | 223 | 25 | 528 | 51 | 30 | 8 |
16,000 | 371 | 39 | 682 | 89 | 39 | 12 |
16,500 | 426 | 34 | 691 | 98 | 46 | 8 |
18,000 | 599 | 81 | 802 | 100 | 52 | 9 |
18,500 | 622 | 75 | 841 | 93 | 64 | 8 |
20,000 | 712 | 86 | 930 | 120 | 82 | 10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Jeong, Y.; Son, S.; Lee, B. A Self-Predictable Crop Yield Platform (SCYP) Based On Crop Diseases Using Deep Learning. Sustainability 2019, 11, 3637. https://doi.org/10.3390/su11133637
Lee S, Jeong Y, Son S, Lee B. A Self-Predictable Crop Yield Platform (SCYP) Based On Crop Diseases Using Deep Learning. Sustainability. 2019; 11(13):3637. https://doi.org/10.3390/su11133637
Chicago/Turabian StyleLee, SangSik, YiNa Jeong, SuRak Son, and ByungKwan Lee. 2019. "A Self-Predictable Crop Yield Platform (SCYP) Based On Crop Diseases Using Deep Learning" Sustainability 11, no. 13: 3637. https://doi.org/10.3390/su11133637
APA StyleLee, S., Jeong, Y., Son, S., & Lee, B. (2019). A Self-Predictable Crop Yield Platform (SCYP) Based On Crop Diseases Using Deep Learning. Sustainability, 11(13), 3637. https://doi.org/10.3390/su11133637