A Novel Linear Time-Varying GM(1,N) Model for Forecasting Haze: A Case Study of Beijing, China
Abstract
:1. Introduction
2. Literature Reviews
2.1. Study of Haze
2.2. Study of Grey Prediction Model
3. Methodology
3.1. The Introduction of Interval Grey Number
3.2. Linear Time-Varying GM(1,N) Model Based on Interval Grey Number Sequences
3.3. Model Evaluation Criterion
4. Empirical Results and Discussion
4.1. Data Selection and Processing
4.2. Establishment and Comparison of Model
4.3. Forecast Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tao, M.; Chen, L.F.; Xiong, X.Z.; Zhang, M.G.; Ma, P.F.; Tao, J.H.; Wang, Z.F. Formation process of the widespread extreme haze pollution over northern China in January 2013: Implications for regional air quality and climate. Atmos. Environ. 2014, 98, 417–425. [Google Scholar] [CrossRef]
- Lu, Y.L.; Wang, Y.; Zuo, J.; Jiang, H.Q.; Huang, D.C.; Rameezdeen, R. Characteristics of public concern on haze in China and its relationship with air quality in urban areas. Sci. Total Environ. 2018, 637, 1597–1606. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.N.; Cheng, J.P.; Huang, X.; Zhu, Q.Y.; Liu, P.; Balasubramanian, R. Chemical composition and acidity of size-fractionated inorganic aerosols of 2013-14 winter haze in Shanghai and associated health risk of toxic elements. Atmos. Environ. 2015, 122, 259–271. [Google Scholar] [CrossRef]
- Yin, H.; Pizzol, M.; Jacobsen, J.B.; Xu, L.Y. Contingent valuation of health and mood impacts of PM2.5 in Beijing, China. Sci. Total Environ. 2018, 630, 1269–1282. [Google Scholar] [CrossRef] [PubMed]
- Faridi, S.; Shamsipour, M.; Krzyzanowski, M.; Künzli, N.; Amini, H.; Azimi, F.; Malkawi, M.; Momeniha, F.; Gholampour, A.; Hassanvand, M.S.; et al. Long-term trends and health impact of PM2.5 and O3 in Tehran, Iran, 2006–2015. Environ. Int. 2018, 114, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Quan, J.N.; Tie, X.X.; Li, X.; Liu, Q.; Gao, Y.; Zhao, D.L. Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China. Sci. Total Environ. 2015, 502, 578–584. [Google Scholar] [CrossRef]
- Gao, M.; Guttikunda, S.K.; Carmichael, G.R.; Wang, Y.S.; Liu, Z.R.; Stanier, C.O.; Saide, P.E.; Yu, M. Health impacts and economic losses assessment of the 2013 severe haze event in Beijing area. Sci. Total Environ. 2015, 511, 553–561. [Google Scholar] [CrossRef]
- Tian, S.L.; Pan, Y.P.; Liu, Z.R.; Wen, T.X.; Wang, Y.S. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China. J. Hazard. Mater. 2014, 279, 452–460. [Google Scholar] [CrossRef]
- Zheng, Z.F.; Xu, G.R.; Yang, Y.J.; Wang, Y.T.; Li, Q.C. Statistical characteristics and the urban spillover effect of haze pollution in the circum-Beijing region. Atmos. Pollut. Res. 2018, 9, 1062–1071. [Google Scholar] [CrossRef]
- Zhu, S.L.; Lian, X.Y.; Liu, H.X.; Hu, J.M.; Wang, Y.Y.; Che, J.X. Daily air quality index forecasting with hybrid models: A case in China. Environ. Pollut. 2017, 231, 1232–1244. [Google Scholar] [CrossRef]
- Liu, X.G.; Li, J.; Qu, Y.; Han, T.; Hou, L.; Gu, J.; Chen, C.; Yang, Y.; Liu, X.; Yang, T.; et al. Formation and evolution mechanism of regional haze: A case study in the megacity Beijing, China. Atmos. Chem. Phys. 2013, 13, 4501–4514. [Google Scholar] [CrossRef]
- Liu, S.F.; Dang, Y.G.; Fang, Z.G.; Xie, N.M. Grey Systems Theory and Its Applications, 5th ed.; Science Press: Beijing, China, 2010. [Google Scholar]
- Wu, L.F.; Nu, L.; Yang, Y.J. Prediction of air quality indicators for the Beijing-Tianjin-Hebei region. J. Clean. Prod. 2018, 196, 682–687. [Google Scholar] [CrossRef]
- Voukantsis, D.; Karatzas, K.; Kukkonen, J.; Räsänen, T.; Karppinen, A.; Kolehmainen, M. Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki. Sci. Total Environ. 2011, 409, 1266–1276. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Goyal, P. Forecasting of air quality in Delhi using principal component regression technique. Atmos. Pollut. Res. 2011, 2, 436–444. [Google Scholar] [CrossRef] [Green Version]
- Lang, Y.C.; Xiao, L.; George, C. Forecasting concentrations of PM2.5 in main urban area of Hangzhou and mapping using SARIMA model and ordinary Kringing method. Acta Sci. Circum. 2018, 1, 62–70. [Google Scholar]
- Mishra, D.; Goyal, P.; Upadhyay, A. Artificial intelligence based approach to forecast PM2.5, during haze episodes: A case study of Delhi, India. Atmos. Environ. 2015, 102, 239–248. [Google Scholar] [CrossRef]
- Konovalov, I.B.; Beekmann, M.; Meleux, F.; Dutot, A.; Foret, G. Combining deterministic and statistical approaches for PM10, forecasting in Europe. Atmos. Environ. 2009, 43, 6425–6434. [Google Scholar] [CrossRef]
- Cheng, Z.H.; Li, L.S.; Liu, J. Identifying the spatial effects and driving factors of urban PM2.5, pollution in China. Ecol. Indic. 2017, 82, 61–75. [Google Scholar] [CrossRef]
- Wu, X.H.; Tan, L.; Guo, J.; Wang, Y.Y.; Liu, H.; Zhu, W.W. A study of allocative efficiency of PM2.5, emission rights based on a zero sum gains data envelopment model. J. Clean. Prod. 2016, 113, 1024–1031. [Google Scholar] [CrossRef]
- Xu, Y.Z.; Du, P.; Wang, J.Z. Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: A case study in China. Environ. Pollut. 2017, 223, 435–448. [Google Scholar] [CrossRef]
- Han, X.; Liu, Y.Q.; Gao, H.; Ma, J.M.; Mao, X.X.; Wang, Y.T.; Ma, X.D. Forecasting PM2.5, induced male lung cancer morbidity in China using satellite retrieved PM2.5, and spatial analysis. Sci. Total Environ. 2017, 607, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Xiong, P.P.; Zhang, Y.; Yao, T.X.; Zeng, B. Multivariate grey prediction model based on interval grey number sequences. Math. Pract. Theor. 2017, 7, 310–319. [Google Scholar]
- Gong, M.; Ye, C.M. Prediction of the PM2.5 concentration in Shanghai Municipality based on Modified Grey Markov chain model. J. Nat. Disasters 2016, 5, 97–104. [Google Scholar]
- Wang, Z.X. Distribution characteristics and grey prediction model of PM2.5 in Huai’an. Math. Pract. Theor. 2018, 48, 286–291. [Google Scholar]
- Chen, L.; Pai, T.Y. Comparisons of GM(1,1) and BPNN for predicting hourly particulate matter in Dali area of Taichung City, Taiwan. Atmos. Pollut. Res. 2015, 6, 572–580. [Google Scholar] [CrossRef]
- Wang, J.J.; Hipel, K.W.; Dang, Y.G. An improved grey dynamic trend incidence model with application to factors causing smog weather. Expert Syst. Appl. 2017, 87, 240–251. [Google Scholar] [CrossRef]
- Wu, L.F.; Liu, S.F.; Yao, L.G.; Yan, S.L.; Liu, D.L. Grey system model with the fractional order accumulation. Commun. Nonlinear Sci. 2013, 18, 1775–1785. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, S.F. Linear time-varying parameters discrete grey forecasting model. Syst. Eng. Theor. Pract. 2010, 30, 1650–1657. [Google Scholar]
- Wang, Z.X. GM(1,1) power model with time-varying parameters and its application. Control Decis. 2014, 10, 1828–1832. [Google Scholar]
- Zeng, B.; Li, C. Forecasting the natural gas demand in China using a self-adapting intelligent grey model. Energy 2016, 112, 810–825. [Google Scholar] [CrossRef]
- Ding, S.; Dang, Y.G.; Li, X.M.; Wang, J.J.; Zhao, K. Forecasting Chinese CO2 emissions from fuel combustion using a novel grey multivariable model. J. Clean. Prod. 2017, 162, 1527–1538. [Google Scholar] [CrossRef]
- Zeng, B.; Li, C. Improved multi-variable grey forecasting model with a dynamic background-value coefficient and its application. Comput. Ind. Eng. 2018, 118, 278–290. [Google Scholar] [CrossRef]
- Wang, Z.X.; Ye, D.J. Forecasting Chinese carbon emissions from fossil energy consumption using non-linear grey multivariable models. J. Clean. Prod. 2017, 142, 600–612. [Google Scholar] [CrossRef]
- Ye, J.; Dang, Y.G.; Ding, S. Grey prediction model of interval grey numbers based on axiom of generalized non-decrease grey degree. Control Decis. 2016, 31, 1831–1836. [Google Scholar]
- Luo, D.; Li, L. Interval grey number prediction model based on kernel and measure. Math. Pract. Theor. 2014, 44, 96–100. [Google Scholar]
- Yang, J.W.; Xiao, X.P.; Guo, J.H. Grey prediction model for interval grey number of normal distribution. Control Decis. 2015, 9, 1711–1716. [Google Scholar]
- Xiong, P.P.; Yin, Y.; Shi, J.; Gao, H. Nonlinear multivariable GM(1,N) model based on interval grey number sequence. J. Grey Syst. 2018, 30, 33–47. [Google Scholar]
- Zeng, B.; Duan, H.M.; Zhou, Y.F. A new multivariable grey prediction model with structure compatibility. Appl. Math. Model. 2019, 75, 385–397. [Google Scholar] [CrossRef]
- Liu, J.F.; Liu, S.F.; Fang, Z.G. Continuous interval grey number prediction model based on kernel and grey radius. Syst. Eng. 2013, 2, 61–64. [Google Scholar]
- Lewis, C. Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting; Butterworth Scientific: Oxford, UK, 1982. [Google Scholar]
- Xie, Y.Y.; Zhao, B.; Zhang, L.; Luo, R. Spatiotemporal variations of PM2.5 and PM10 concentrations between 31 Chinese cities and their relationships with SO2, NO2, CO and O3. Particuology 2015, 20, 141–149. [Google Scholar] [CrossRef]
- Chang, L.Y.; Xu, J.M.; Tie, X.X.; Wu, J.B. Impact of the 2015 El Nino event on winter air quality in China. Sci. Rep. 2016, 6, 34275. [Google Scholar] [CrossRef] [PubMed]
Average Relative Error | Prediction Accuracy |
---|---|
10% | High prediction |
10–20% | Good prediction |
20–50% | Reasonable prediction |
50% | Weak prediction |
Year | ||||
---|---|---|---|---|
1 | 2008 | [122,161] | [36,53] | [49,66] |
2 | 2009 | [121,148] | [34,47] | [49,66] |
3 | 2010 | [114,122] | [32,36] | [49,55] |
4 | 2011 | [114,121] | [28,34] | [53,55] |
5 | 2012 | [109,121] | [28,32] | [52,55] |
6 | 2013 | [108,114] | [27,28] | [52,56] |
7 | 2014 | [108,116] | [22,28] | [52,59] |
8 | 2015 | [102,116] | [14,27] | [50,59] |
9 | 2016 | [100,116] | [10,22] | [48,59] |
10 | 2017 | [95,108] | [8,14] | [46,50] |
11 | 2018 | [91,100] | [6,10] | [42,48] |
1 | 141.5 | 44.5 | 57.5 | 19.5 | 8.5 | 8.5 |
2 | 134.5 | 40.5 | 57.5 | 13.5 | 6.5 | 8.5 |
3 | 118 | 34 | 52 | 4 | 2 | 3 |
4 | 117.5 | 31 | 54 | 3.5 | 3 | 1 |
5 | 115 | 30 | 53.5 | 6 | 2 | 1.5 |
6 | 111 | 27.5 | 54 | 3 | 0.5 | 2 |
7 | 112 | 25 | 55.5 | 4 | 3 | 3.5 |
Linear Time-Varying GM(1,3) Model | GM(1,3) Model | ||||||
---|---|---|---|---|---|---|---|
Year | Actual Value (μg/m3) | Simulated Value (μg/m3) | Lower Bound Relative Error (%) | Upper Bound Relative Error (%) | Simulated Value (μg/m3) | Lower Bound Relative Error (%) | Upper Bound Relative Error (%) |
2008 | [122,161] | [122.00,161.00] | 0.00 | 0.00 | [122.00,161.00] | 0.00 | 0.00 |
2009 | [121,148] | [107.05,130.05] | 11.54 | 12.13 | [105.05,126.89] | 13.18 | 14.26 |
2010 | [114,122] | [124.80,141.14] | 9.47 | 15.69 | [124.73,138.16] | 9.41 | 13.25 |
2011 | [114,121] | [121.66,123.27] | 6.72 | 1.88 | [115.38,125.57] | 1.21 | 3.78 |
2012 | [109,121] | [110.83,121.07] | 1.68 | 0.06 | [111.76,119.48] | 2.53 | 1.26 |
2013 | [108,114] | [110.18,115.51] | 2.02 | 1.32 | [110.10,114.59] | 1.95 | 0.52 |
2014 | [108,116] | [105.85,118.84] | 1.99 | 2.45 | [104.30,117.56] | 3.43 | 1.35 |
Average simulated relative error (%) | 4.78 | 4.79 | 4.53 | 4.92 | |||
Year | Actual Value (μg/m3) | Predicted Value (μg/m3) | Lower Bound Relative Error (%) | Upper Bound Relative Error (%) | Predicted Value (μg/m3) | Lower Bound Relative Error (%) | Upper Bound Relative Error (%) |
2015 | [102,116] | [103.77,109.13] | 1.74 | 5.92 | [103.88,106.75] | 1.85 | 7.98 |
2016 | [100,116] | [100.99,106.51] | 0.99 | 8.18 | [101.46,103.48] | 1.46 | 10.80 |
2017 | [95,108] | [98.52,104.11] | 3.70 | 3.60 | [99.14,100.56] | 4.36 | 6.89 |
2018 | [91,100] | [96.31,101.91] | 5.84 | 1.91 | [96.95,97.95] | 6.53 | 2.05 |
Average predicted relative error (%) | 3.07 | 4.90 | 3.55 | 6.93 |
Year | 2019 | 2020 | 2021 |
---|---|---|---|
PM10 concentration (μg/m3) | [94.36,99.88] | [92.62,98.07] | [91.06,96.29] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, P.; Shi, J.; Pei, L.; Ding, S. A Novel Linear Time-Varying GM(1,N) Model for Forecasting Haze: A Case Study of Beijing, China. Sustainability 2019, 11, 3832. https://doi.org/10.3390/su11143832
Xiong P, Shi J, Pei L, Ding S. A Novel Linear Time-Varying GM(1,N) Model for Forecasting Haze: A Case Study of Beijing, China. Sustainability. 2019; 11(14):3832. https://doi.org/10.3390/su11143832
Chicago/Turabian StyleXiong, Pingping, Jia Shi, Lingling Pei, and Song Ding. 2019. "A Novel Linear Time-Varying GM(1,N) Model for Forecasting Haze: A Case Study of Beijing, China" Sustainability 11, no. 14: 3832. https://doi.org/10.3390/su11143832
APA StyleXiong, P., Shi, J., Pei, L., & Ding, S. (2019). A Novel Linear Time-Varying GM(1,N) Model for Forecasting Haze: A Case Study of Beijing, China. Sustainability, 11(14), 3832. https://doi.org/10.3390/su11143832