Long-Term Cointegration Relationship between China’s Wind Power Development and Carbon Emissions
Abstract
:1. Introduction
2. Literature Review
2.1. Development and Application of Wind Energy
2.2. Time and Spatial Distributions of Carbon Emissions and the Reduction of Renewable Energy
2.3. Related Research on the ARDL Model
2.4. Granger Causality Test and Its Application
3. Materials and Methods
3.1. Data Processing
3.2. ARDL Cointegration Test
3.3. Granger Causality Test
4. Model Results and Analysis
4.1. Unit Root Test
4.2. Co-Integration Test Based on the ARDL Model
4.3. Granger Causality Analysis
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gao, H.; Yang, W.; Yang, Y.; Yuan, G. Analysis of the Air Quality and the Effect of Governance Policies in China’s Pearl River Delta, 2015–2018. Atmosphere 2019, 10, 412. [Google Scholar] [CrossRef]
- Yang, W.X.; Li, L.G. Energy Efficiency, Ownership Structure, and Sustainable Development: Evidence from China. Sustainability 2017, 9, 912. [Google Scholar] [CrossRef]
- Yang, W.; Li, L. Analysis of Total Factor Efficiency of Water Resource and Energy in China: A Study Based on DEA-SBM Model. Sustainability 2017, 9, 1316. [Google Scholar] [CrossRef]
- Yuan, G.; Yang, W. Evaluating China’s Air Pollution Control Policy with Extended AQI Indicator System: Example of the Beijing-Tianjin-Hebei Region. Sustainability 2019, 11, 939. [Google Scholar] [CrossRef]
- Li, L.; Yang, W. Total Factor Efficiency Study on China’s Industrial Coal Input and Wastewater Control with Dual Target Variables. Sustainability 2018, 10, 2121. [Google Scholar] [CrossRef]
- Yang, W.; Li, L. Efficiency Evaluation and Policy Analysis of Industrial Wastewater Control in China. Energies 2017, 10, 1201. [Google Scholar] [CrossRef]
- Yang, W.; Li, L. Efficiency evaluation of industrial waste gas control in China: A study based on data envelopment analysis (DEA) model. J. Clean. Prod. 2018, 179, 1–11. [Google Scholar] [CrossRef]
- Yang, W.; Yuan, G.; Han, J. Is China’s air pollution control policy effective? Evidence from Yangtze River Delta cities. J. Clean. Prod. 2019, 220, 110–133. [Google Scholar] [CrossRef]
- Yuan, G.; Yang, W. Study on optimization of economic dispatching of electric power system based on Hybrid Intelligent Algorithms (PSO and AFSA). Energy 2019, 183, 926–935. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, W. Does Whistleblowing Work for Air Pollution Control in China? A Study Based on Three-party Evolutionary Game Model under Incomplete Information. Sustainability 2019, 11, 324. [Google Scholar] [CrossRef]
- Gnatowska, R.; Moryń-Kucharczyk, E. Current status of wind energy policy in Poland. Renew. Energy 2019, 135, 232–237. [Google Scholar] [CrossRef]
- Jefferson, M. Renewable and low carbon technologies policy. Energy Policy 2018, 123, 367–372. [Google Scholar] [CrossRef]
- Wei, X.; Duan, Y.; Liu, Y.; Jin, S.; Sun, C. Onshore-offshore wind energy resource evaluation based on synergetic use of multiple satellite data and meteorological stations in Jiangsu Province, China. Front. Earth Sci. 2019, 13, 132–150. [Google Scholar] [CrossRef]
- Adefarati, T.; Bansal, R.C. Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources. Appl. Energy 2019, 236, 1089–1114. [Google Scholar] [CrossRef]
- Dalla Longa, F.; Strikkers, T.; Kober, T.; van der Zwaan, B. Advancing Energy Access Modelling with Geographic Information System Data. Environ. Model. Assess. 2018, 23, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, M.; Rahmani, D. A five-dimensional approach to sustainability for prioritizing energy production systems using a revised GRA method: A case study. Renew. Energy 2019, 135, 345–354. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; He, B.-J.; Xu, W.; Jin, G.; Zhang, X. Application and suitability analysis of the key technologies in nearly zero energy buildings in China. Renew. Sustain. Energy Rev. 2019, 101, 329–345. [Google Scholar] [CrossRef]
- Bandoc, G.; Pravalie, R.; Patriche, C.; Degeratu, M. Spatial assessment of wind power potential at global scale. A geographical approach. J. Clean. Prod. 2018, 200, 1065–1086. [Google Scholar] [CrossRef]
- Liu, F.; Sun, F.; Liu, W.; Wang, T.; Wang, H.; Wang, X.; Lim, W.H. On wind speed pattern and energy potential in China. Appl. Energy 2019, 236, 867–876. [Google Scholar] [CrossRef]
- deCastro, M.; Costoya, X.; Salvador, S.; Carvalho, D.; Gomez-Gesteira, M.; Javier Sanz-Larruga, F.; Gimeno, L. An overview of offshore wind energy resources in Europe under present and future climate. Ann. N. Y. Acad. Sci. 2019, 1436, 70–97. [Google Scholar] [CrossRef]
- Li, X.; Feng, D.; Li, J.; Zhang, Z. Research on the Spatial Network Characteristics and Synergetic Abatement Effect of the Carbon Emissions in Beijing–Tianjin–Hebei Urban Agglomeration. Sustainability 2019, 11, 1444. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, X.; Wu, H.; Zhang, A.; Feng, J.; Gong, J. Spatiotemporal Analysis of Carbon Emissions and Carbon Storage Using National Geography Census Data in Wuhan, China. ISPRS Int. J. Geo-Inf. 2019, 8, 7. [Google Scholar] [CrossRef]
- Martin, C.R.; Zeng, N.; Karion, A.; Mueller, K.; Ghosh, S.; Lopez-Coto, I.; Gurney, K.R.; Oda, T.; Prasad, K.; Liu, Y.; et al. Investigating sources of variability and error in simulations of carbon dioxide in an urban region. Atmos. Environ. 2019, 199, 55–69. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, Y.; Yang, R.; Zhang, H.; Wang, C.; Du, Z. Temporal and spatial differences in carbon emissions in the Pearl River Delta based on multi-resolution emission inventory modeling. J. Clean. Prod. 2019, 214, 615–622. [Google Scholar] [CrossRef]
- Brouwer, A.S.; van den Broek, M.; Zappa, W.; Turkenburg, W.C.; Faaij, A. Least-cost options for integrating intermittent renewables in low-carbon power systems. Appl. Energy 2016, 161, 48–74. [Google Scholar] [CrossRef]
- Hanak, D.P.; Anthony, E.J.; Manovic, V. A review of developments in pilot-plant testing and modelling of calcium looping process for CO2 capture from power generation systems. Energy Environ. Sci. 2015, 8, 2199–2249. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Gibon, T.; Bouman, E.A.; Arvesen, A.; Suh, S.; Heath, G.A.; Bergesen, J.D.; Ramirez, A.; Vega, M.I.; Shi, L. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl. Acad. Sci. USA 2015, 112, 6277–6282. [Google Scholar] [CrossRef] [PubMed]
- Foley, A.M.; Leahy, P.G.; Li, K.; McKeogh, E.J.; Morrison, A.P. A long-term analysis of pumped hydro storage to firm wind power. Appl. Energy 2015, 137, 638–648. [Google Scholar] [CrossRef]
- Guandalini, G.; Campanari, S.; Romano, M.C. Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment. Appl. Energy 2015, 147, 117–130. [Google Scholar] [CrossRef]
- Lund, P.D.; Mikkola, J.; Ypya, J. Smart energy system design for large clean power schemes in urban areas. J. Clean. Prod. 2015, 103, 437–445. [Google Scholar] [CrossRef]
- Sun, H.; Luo, X.; Wang, J. Feasibility study of a hybrid wind turbine system—Integration with compressed air energy storage. Appl. Energy 2015, 137, 617–628. [Google Scholar] [CrossRef]
- Boluk, G.; Mert, M. The renewable energy, growth and environmental Kuznets curve in Turkey: An ARDL approach. Renew. Sustain. Energy Rev. 2015, 52, 587–595. [Google Scholar] [CrossRef]
- Shahbaz, M.; Loganathan, N.; Muzaffar, A.T.; Ahmed, K.; Jabran, M.A. How urbanization affects CO2 emissions of STIRPAT model in Malaysia? The application. Renew. Sustain. Energy Rev. 2016, 57, 83–93. [Google Scholar] [CrossRef]
- Asumadu-Sarkodie, S.; Owusu, P.A. The relationship between carbon dioxide and agriculture in Ghana: A comparison of VECM and ARDL model. Environ. Sci. Pollut. Res. 2016, 23, 10968–10982. [Google Scholar] [CrossRef]
- Cerdeira Sento, J.P.; Moutinho, V. CO2 emissions, non-renewable and renewable electricity production, economic growth, and international trade in Italy. Renew. Sustain. Energy Rev. 2016, 55, 142–155. [Google Scholar] [CrossRef]
- Shahbaz, M.; Loganathan, N.; Zeshan, M.; Zaman, K. Does renewable energy consumption add in economic growth? An application of auto-regressive distributed lag model in Pakistan. Renew. Sustain. Energy Rev. 2015, 44, 576–585. [Google Scholar] [CrossRef]
- Asumadu-Sarkodie, S.; Owusu, P.A. Carbon dioxide emissions, GDP, energy use, and population growth: A multivariate and causality analysis for Ghana, 1971-2013. Environ. Sci. Pollut. Res. 2016, 23, 13508–13520. [Google Scholar] [CrossRef]
- Shahbaz, M.; Khraief, N.; Ben Jemaa, M.M. On the causal nexus of road transport CO2 emissions and macroeconomic variables in Tunisia: Evidence from combined cointegration tests. Renew. Sustain. Energy Rev. 2015, 51, 89–100. [Google Scholar] [CrossRef]
- Abbasi, F.; Riaz, I. CO2 emissions and financial development in an emerging economy: An augmented VAR approach. Energy Policy 2016, 90, 102–114. [Google Scholar] [CrossRef]
- Ahmad, N.; Du, L. Effects of energy production and CO2 emissions on economic growth in Iran: ARDL approach. Energy 2017, 123, 521–537. [Google Scholar] [CrossRef]
- Liu, X.; Bae, J. Urbanization and industrialization impact of CO2 emissions in China. J. Clean. Prod. 2018, 172, 178–186. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, F.; Xu, M. Investigation of pollution haven hypothesis for China: An ARDL approach with breakpoint unit root tests. J. Clean. Prod. 2017, 161, 153–164. [Google Scholar] [CrossRef]
- Li, N.; Chen, M.Z.; Chen, M. Nonlinear Progress and Application Research of Granger Causality Test. J. Appl. Stat. Manag. 2017, 36, 891–905. [Google Scholar]
- Liu, H.; Wang, Y.L.; Chen, D.K. Analysis of the Efficacy and Robustness of Mixed Granger Causality Test. J. Quant. Tech. Econ. 2017, 34, 144–161. [Google Scholar]
- Dogan, E.; Turkekul, B. CO2 emissions, real output, energy consumption, trade, urbanization and financial development: Testing the EKC hypothesis for the USA. Environ. Sci. Pollut. Res. 2016, 23, 1203–1213. [Google Scholar] [CrossRef]
- Tang, C.F.; Tan, B.W. The impact of energy consumption, income and foreign direct investment on carbon dioxide emissions in Vietnam. Energy 2015, 79, 447–454. [Google Scholar] [CrossRef]
- Ben Jebli, M.; Ben Youssef, S.; Ozturk, I. Testing environmental Kuznets curve hypothesis: The role of renewable and non-renewable energy consumption and trade in OECD countries. Ecol. Indic. 2016, 60, 824–831. [Google Scholar] [CrossRef]
- Dogan, E. The relationship between economic growth and electricity consumption from renewable and non-renewable sources: A study of Turkey. Renew. Sustain. Energy Rev. 2015, 52, 534–546. [Google Scholar] [CrossRef]
- Seker, F.; Ertugrul, H.M.; Cetin, M. The impact of foreign direct investment on environmental quality: A bounds testing and causality analysis for Turkey. Renew. Sustain. Energy Rev. 2015, 52, 347–356. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Kubota, J. The relationship between urbanization, energy use and carbon emissions: Evidence from a panel of Association of Southeast Asian Nations (ASEAN) countries. J. Clean. Prod. 2016, 112, 1368–1374. [Google Scholar] [CrossRef]
- Yousefi-Sahzabi, A.; Sasaki, K.; Yousefi, H.; Pirasteh, S.; Sugai, Y. GIS aided prediction of CO2 emission dispersion from geothermal electricity production. J. Clean. Prod. 2011, 19, 1982–1993. [Google Scholar] [CrossRef]
- Charenza, W.W.; Deadman, D.F. New Directions in Econometric Analysis; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Ouattara, B. Foreign Aid and Fiscal Policy in Senegal; Mimeo University of Manchester: Manchester, UK, 2004. [Google Scholar]
Data Sources | Coal Consumption Carbon Emissions Coefficient | Petroleum Consumption Carbon Emissions Coefficient | Natural Gas Consumption Carbon Emissions Coefficient |
---|---|---|---|
DOE/EIA | 0.702 | 0.478 | 0.389 |
Japan Institute of Energy Economics | 0.756 | 0.586 | 0.449 |
National Science and Technology Commission Climate Change Project | 0.726 | 0.583 | 0.409 |
Xu Guoquan | 0.7476 | 0.5825 | 0.4435 |
average value | 0.7329 | 05574 | 0.4226 |
Years | Total Amount | Years | Total Amount |
---|---|---|---|
1990 | 65,131.425 | 2005 | 151,096.135 |
1991 | 68,652.9008 | 2006 | 165,792.045 |
1992 | 72,093.6518 | 2007 | 179,477.125 |
1993 | 76,201.8913 | 2008 | 184,448.433 |
1994 | 80,354.932 | 2009 | 193,867.63 |
1995 | 85,513.0048 | 2010 | 202,395.535 |
1996 | 91,068.6173 | 2011 | 242,899.904 |
1997 | 89,110.1581 | 2012 | 248,151.036 |
1998 | 87,583.4832 | 2013 | 255,020.596 |
1999 | 90,768.2709 | 2014 | 256,274.833 |
2000 | 93,169.9358 | 2015 | 255,275.396 |
2001 | 95,090.6289 | 2016 | 254,395.482 |
2002 | 100,890.264 | 2017 | 259,093.115 |
2003 | 117,681.65 | 2018 | 263,041.807 |
2004 | 136,325.105 |
Null Hypothesis: D(LNY) Has A Unit Root | ||||
---|---|---|---|---|
Exogenous: Constant | ||||
Lag Length: 0 (Automatic—Based on SIC, Maxlag = 8) | ||||
t-Statistic | Prob. * | |||
Augmented Dickey-Fuller | test statistic | −3.020011 | 0.0456 | |
Test critical values: | 1% level | −3.699871 | ||
5% level | −2.976263 | |||
10% level | −2.627420 | |||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
D(LNY(−1)) | −0.543901 | 0.180099 | −3.020011 | 0.0058 |
C | 0.026425 | 0.012796 | 2.065096 | 0.0494 |
EC = LNX − (6.1556 *LNY − 68.9407) | ||||
---|---|---|---|---|
F-Bounds Test | Null Hypothesis: No level relationship | |||
Test Statistic | Value | Signif. | I (0) | I (1) |
Asymptotic: n = 1000 | ||||
F-statistic | 5.501287 | 10% | 3.02 | 3.51 |
K | 1 | 5% | 3.62 | 4.16 |
2.5% | 4.18 | 4.79 | ||
1% | 4.94 | 5.58 |
Pairwise Granger Causality Tests | |||
---|---|---|---|
Sample: 1990 2018 | |||
Lags: 4 | |||
Null Hypothesis | Obs | F-Statistic | Prob. |
LNY does not Granger Cause LNX | 24 | 3.42253 | 0.0354 |
LNX does not Granger Cause LNY | 0.38472 | 0.8162 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Zou, R.; Yuan, G.; Wang, H.; Tan, Z. Long-Term Cointegration Relationship between China’s Wind Power Development and Carbon Emissions. Sustainability 2019, 11, 4625. https://doi.org/10.3390/su11174625
Zhao W, Zou R, Yuan G, Wang H, Tan Z. Long-Term Cointegration Relationship between China’s Wind Power Development and Carbon Emissions. Sustainability. 2019; 11(17):4625. https://doi.org/10.3390/su11174625
Chicago/Turabian StyleZhao, Wenhui, Ruican Zou, Guanghui Yuan, Hui Wang, and Zhongfu Tan. 2019. "Long-Term Cointegration Relationship between China’s Wind Power Development and Carbon Emissions" Sustainability 11, no. 17: 4625. https://doi.org/10.3390/su11174625
APA StyleZhao, W., Zou, R., Yuan, G., Wang, H., & Tan, Z. (2019). Long-Term Cointegration Relationship between China’s Wind Power Development and Carbon Emissions. Sustainability, 11(17), 4625. https://doi.org/10.3390/su11174625