Sector Portfolio Performance Comparison between Islamic and Conventional Stock Markets
Abstract
:1. Introduction and Literature Review
2. Islamic Banking: Principles
- ▪
- The prohibition of interest or utilization: The interest rate or Riba is considered the key factor of Islamic finance and is defined as the price of money at a certain point in time, which would be a benefit for the lender.
- ▪
- Gharar and maysir prohibition: The concept gharar refers to the realization of contracts in which excessive risks are taken, due to asymmetric information between parties and the assumption of high uncertainty. On the other hand, we have the maysir concept that refers to speculation and gambling—that is, to those activities that allow us to make profits without making any fruitful efforts (short sale of shares, derivatives, and lottery between others) [32].
- ▪
- The distribution of losses and benefits: With the aim of equality between the lender and borrower.
- ▪
- Zakat: The azaque or zakat is the third of the five pillars of Islam. It literally translates to “increase” or “purify”, and it is an economic obligation that Muslims have to help the poor or fund charities.
- ▪
- The prohibition of economic activities that are haram: Islam establishes a ban on financing haram or illicit activities such as pornography and gambling, as well as those related to alcohol, tobacco, drugs, weapons, and food products derived from pork.
3. Data and Performance
3.1. Data
3.2. Performance
4. Main Results
4.1. Analysis of the Whole Sample Period
4.2. Analysis by Sub-Periods
- Pre-crisis sub-period—before the US subprime mortgage market crisis (from January 1996 to June 2007).
- Financial crisis sub-period (from July 2007 to December 2010).
- Post-financial crisis sub-period (from January 2011 to December 2015).
4.2.1. Pre-Crisis Sub-Period (January 1996–June 2007)
4.2.2. Crisis Sub-Period (July 2007–December 2010)
4.2.3. Post-Crisis Sub-Period (January 2011–December 2015)
4.3. Extended Statistical Analysis of the Results
4.4. Overall Comments
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boudt, K.; Raza, M.W.; Ashraf, D. Macro-financial regimes and performance of Shariah-compliant equity portfolios. J. Int. Financ. Mark. Inst. Money 2019, 60, 252–266. [Google Scholar] [CrossRef]
- Al-Khazali, O.; Lean, H.H.; Samet, A. Do Islamic stock indexes outperform conventional stock indexes? A stochastic dominance approach. Pac. Basin Financ. J. 2014, 28, 29–46. [Google Scholar] [CrossRef]
- Ali, S.; Shahzad, S.J.H.; Raza, N.; Al-Yahyaee, K.H. Stock market efficiency: A comparative analysis of Islamic and conventional stock markets. Phys. A 2018, 503, 139–153. [Google Scholar] [CrossRef]
- Usman, M.; Jibran, M.A.Q.; Amir-ud-Din, R.; Akhter, W. Decoupling hypothesis of Islamic stocks: Evidence from copula CoVaR approach. Borsa Istanb. Rev. 2018, 1–7. [Google Scholar] [CrossRef]
- Rizvi, S.A.R.; Arshad, S. Understanding time-varying systematic risks in Islamic and conventional sectoral indices. Econ. Model. 2018, 70, 561–570. [Google Scholar] [CrossRef]
- Uddin, G.S.; Areola, J.; Shahzad, S.J.H.; Yoon, S.-M. Time-varying evidence of efficiency, decoupling, and diversification of conventional and Islamic stocks. Int. Rev. Financ. Anal. 2018, 56, 167–180. [Google Scholar] [CrossRef]
- Alam, N.; Arshad, S.; Rizvi, S.A.R. Do Islamic stock indices perform better than conventional counterparts? An empirical investigation of sectoral efficiency. Rev. Financ. Econ. 2016, 31, 108–114. [Google Scholar] [CrossRef]
- Hoanga, T.-H.-V.; Zhu, Z.; El Khamlichi, A.; Wong, W.-K. Does the Shari’ah screening impact the gold-stock nexus? A sectorial analysis. Resour. Policy 2019, 61, 617–626. [Google Scholar] [CrossRef]
- Ahmad, W.; Rais, S.; Shaik, A.R. Modelling the directional spillovers from DJIM Index to conventionalbenchmarks: Different this time? Q. Rev. Econ. Financ. 2018, 67, 14–27. [Google Scholar] [CrossRef]
- Ahmed, H.; Elsayed, A.H. Are Islamic and conventional capital markets decoupled? Evidence from stock and bonds/sukuk markets in Malaysia. Q. Rev. Econ. Financ. 2018. [Google Scholar] [CrossRef]
- Jawadi, F.; Jawadi, N.; Cheffou, A.I. A statistical analysis of uncertainty for conventional and ethical stock indexes. Q. Rev. Econ. Financ. 2018. [Google Scholar] [CrossRef]
- Ahmed, W.M.A. Islamic and conventional equity markets: Two sides of the same coin, or not? Q. Rev. Econ. Financ. 2019, 72, 191–205. [Google Scholar] [CrossRef]
- Umar, Z. Islamic vs conventional equities in a strategic asset allocation framework. Pac. Basin Financ. J. 2015, 42, 1–10. [Google Scholar] [CrossRef]
- Jawadi, F.; Jawadi, N.; Louhichi, W. Does Islamic Finances Outperform Conventional Finance? Further evidence from the Recent Financial Crisis; Ipag Business School Research Working Paper; Ipag Business School: Paris, France, 2014; p. 279. [Google Scholar]
- Ho, C.S.F.; Abd Rahman, N.A.; Yusuf, N.H.M.; Zamzamin, Z. Performance of global Islamic versus conventional share indices: International evidence. Pac. Basin Financ. J. 2014, 43, 110–121. [Google Scholar] [CrossRef]
- Hkiri, B.; Hammoudeh, S.; Aloui, C.; Yarovaya, L. Are Islamic indexes a safe haven for investors? An analysis of total, directional and net volatility spillovers between conventional and Islamic indexes and importance of crisis periods. Pac. Basin Financ. J. 2017, 43, 124–150. [Google Scholar] [CrossRef]
- Mumtaz, R.; Usman, M.; Nasir, S.B. An Empirical Study of Risk-Return Profile of Islamic Mutual Funds: A Case from Pakistan. Eur. J. Bus. Manag. 2014, 6, 156–167. [Google Scholar]
- Hakim, S.; Rashidian, M. Risk & Return of Islamic Stock Market Indexes. In Proceedings of the 9th Economic Research Forum Annual Meeting, 26–28 October 2004; Economic Research Forum: Sharjah, UAE. [Google Scholar]
- Ashraf, D.; Mohammad, N. Matching perception with the reality—Performance of Islamic equity investments. Pac. Basin Financ. J. 2014, 28, 175–189. [Google Scholar] [CrossRef]
- Ahmad, Z.; Ibrahim, H. A Study of Performance of the KLSE Syariah Index. Malays. Manag. J. 2002, 6, 25–34. [Google Scholar]
- Elfakhani, S.; Hassan, M.K. Performance of Islamic Mutual Funds; Working Paper; American University of Beirut: Beirut, Lebanon, 2005. [Google Scholar]
- Albaity, M.; Ahmad, R. Performance of Syariah and Composite Indices: Evidence from Bursa Malaysia. Asian Acad. Manag. J. Acc. Financ. 2008, 4, 23–43. [Google Scholar]
- Jensen, M.C. The Performance of Mutual Funds in the period 1945–1964. J. Financ. 1968, 23, 389–416. [Google Scholar] [CrossRef]
- Treynor, J.L. How to Rate Management of Investment Funds. Harv. Bus. Rev. 1965, 43, 63–75. [Google Scholar]
- Sharpe, W.F. Mutual Frund Performance. J. Bus. 1966, 39, 119–138. [Google Scholar] [CrossRef]
- Sortino, F.; van der Meer, R. Downside risk. J. Portf. Manag. 1991, 17, 27–31. [Google Scholar] [CrossRef]
- Keating, C.; Shadwick, W.F. A Universal Performance Measure; The Finance Development Centre Limited: London, UK, 2002. [Google Scholar]
- Ingersoll, J.; Spiegel, M.; Goetzmann, W.; Welch, I. Portfolio Performance Manipulation and Manipulation-Proof Performance Measures. Rev. Financ. Stud. 2007, 20, 1503–1546. [Google Scholar]
- González, M.O.; Skinner, F.S.; Agyei-Ampomah, S. Term Structure Information and Bond Investment Strategies. Rev. Quant. Financ. Acc. 2013, 41, 53–74. [Google Scholar] [CrossRef]
- González, M.O.; Papageorgiou, N.A.; Skinner, F.S. Persistent doubt: An examination of hedge fund performance. Eur. Financ. Manag. 2016, 22, 613–639. [Google Scholar] [CrossRef]
- Jiang, Y.; Yu, M.; Hashmi, S.M. The Financial Crisis and Co-Movement of Global Stock Markets—A Case of Six Major Economies. Sustainability 2017, 9, 260. [Google Scholar] [CrossRef]
- Di Mauro, F.; Caristi, P.; Couderc, S.; di Maria, A.; Ho, L.; Grewal, B.K.; Masciantonio, S.; Ongena, S.; Zaher, S. Islamic finance in Europe. Eur. Cent. Bank. Occas. Pap. Ser. 2013, 146, 29–30. [Google Scholar]
- Ferrer, R.; Bolós, V.; Benítez, R. Interest rate changes and stock returns: A European multi-country study with wavelets. Int. Rev. Econ. Financ. 2016, 44, 1–12. [Google Scholar] [CrossRef]
- Flannery, M.J.; James, C. The effect of interest rate changes on the common stock returns of financial institutions. J. Financ. 1984, 39, 1141–1153. [Google Scholar] [CrossRef]
- Hirtle, B.J. Derivatives, Portfolio Composition, and Bank Holding Company Interest Rate Risk Exposure. J. Financ. Serv. Res. 1997, 12, 243–266. [Google Scholar] [CrossRef]
- Umar, Z.; Shahzad, S.J.; Ferrer, R.; Jareño, F. Does Shariah compliance make interest rate sensitivity of Islamic equities lower? An industry level analysis under different market states. Appl. Econ. 2018, 50, 4500–4521. [Google Scholar] [CrossRef]
- Tang, Y.; Whitelaw, R.F. Time-varying sharpe ratios and markettiming. Q. J. Financ. 2011, 1, 465–493. [Google Scholar] [CrossRef]
- Andersen, T.G.; Bollerslev, T.; Christoffersen, P.F.; Diebold, F.X. Chapter 15 Volatility and Correlation Forecasting. In Handbook of Economic Forecasting; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1, pp. 777–878. [Google Scholar]
- Brown, S.; Kang, M.S.; In, F.; Lee, G. Resisting the Manipulation of Performance Metrics: An Empirical Analysis of the Manipulation-Proof Performance Measure; NYU Working Paper; New York University: New York, NY, USA, 2010. [Google Scholar]
- Opdyke, J.D.J. Comparing sharpe ratios: So where are the p-values? J. Asset Manag. 2007, 8, 308–336. [Google Scholar] [CrossRef]
- Abad, P.; Benito, S.; López, C. The role of the loss function in value-at-risk comparisons. J. Risk Model Valid. 2015, 9, 1–19. [Google Scholar] [CrossRef]
- Amendola, A.; Candila, V. Evaluation of volatility predictions in a VaR framework. Quant. Financ. 2016, 16, 695–709. [Google Scholar] [CrossRef]
- Caporin, M. Evaluating Value-at-Risk Measures in the Presence of Long Memory Conditional Volatility. J. Risk 2008, 10, 79–110. [Google Scholar] [CrossRef]
Code | Sector |
---|---|
BM | BASIC MATERIALS |
CG | CONSUMER GOODS |
CS | CONSUMER SERVICES |
OG | OIL AND GAS |
FIN | FINANCIALS |
HC | HEALTH CARE |
I | INDUSTRIALS |
TEC | TECHNOLOGY |
TEL | TELECOMMUNICATIONS |
UT | UTILITIES |
Sector Portfolio Returns | Mean | Median | Max. | Min. | Std. Dev. | Skewness | Kurtosis | JB Stat. | ADF Stat. | PP Stat. | KPSS Stat. |
---|---|---|---|---|---|---|---|---|---|---|---|
DJIM index | 0.0011 | 0.0035 | 0.1076 | −0.2121 | 0.0246 | −0.9950 *** | 10.4872 *** | 2608.3 *** | −33.245 *** | −33.233 *** | 0.1122 |
Islamic Basic Materials | 0.0008 | 0.0031 | 0.1852 | −0.2274 | 0.0334 | −0.6294 *** | 8.9561 *** | 1610.6 *** | −32.625 *** | −32.656 *** | 0.1061 |
Islamic Consumer Goods | 0.0011 | 0.0025 | 0.0866 | −0.1773 | 0.0195 | −1.0084 *** | 11.2922 *** | 3165.0 *** | −32.111 *** | −32.120 *** | 0.0582 |
Islamic Consumer Services | 0.0017 | 0.0033 | 0.1143 | −0.1602 | 0.0252 | −0.6102 *** | 7.3553 *** | 889.1 *** | −32.775 *** | −32.772 *** | 0.1327 |
Islamic Oil & Gas | 0.0009 | 0.0026 | 0.1401 | −0.2999 | 0.0328 | −1.0172 *** | 11.2150 *** | 3112.7 *** | −34.826 *** | −34.872 *** | 0.2029 |
Islamic Financials | 0.0005 | 0.0019 | 0.1682 | −0.2163 | 0.0335 | −0.4140 *** | 7.5213 *** | 918.2 *** | −31.446 *** | −31.518 *** | 0.0326 |
Islamic Health Care | 0.0015 | 0.0019 | 0.0957 | −0.2097 | 0.0223 | −1.0539 *** | 12.5492 *** | 4155.9 *** | −35.508 *** | −35.670 *** | 0.1775 |
Islamic Industrials | 0.0010 | 0.0032 | 0.1222 | −0.1815 | 0.0275 | −0.7021 *** | 7.5584 *** | 988.7 *** | −31.952 *** | −32.038 *** | 0.0514 |
Islamic Technology | 0.0013 | 0.0032 | 0.1606 | −0.2559 | 0.0372 | −0.6485 *** | 6.8442 *** | 715.3 *** | −33.213 *** | −33.207 *** | 0.1515 |
Islamic Telecommunications | 0.0007 | 0.0024 | 0.1246 | −0.1888 | 0.0260 | −0.5095 *** | 7.7364 *** | 1020.0 *** | −32.455 *** | −32.477 *** | 0.1930 |
Islamic Utilities | 0.0002 | 0.0023 | 0.1135 | −0.3137 | 0.0254 | −2.2008 *** | 27.5053 *** | 26,939.0 *** | −33.464 *** | −33.538 *** | 0.2090 |
DJCM index | 0.0008 | 0.0029 | 0.1151 | −0.2211 | 0.0239 | −1.1158 *** | 12.2095 *** | 3902.4 *** | −32.602 *** | −32.615 *** | 0.0541 |
Conventional Basic Materials | 0.0005 | 0.0029 | 0.1584 | −0.2349 | 0.0321 | −0.7404 *** | 9.3359 *** | 1839.9 *** | −31.769 *** | −31.912 *** | 0.0965 |
Conventional Consumer Goods | 0.0011 | 0.0028 | 0.1014 | −0.1806 | 0.0194 | −1.1715 *** | 12.5361 *** | 4190.5 *** | −32.091 *** | −32.117 *** | 0.0527 |
Conventional Consumer Services | 0.0012 | 0.0030 | 0.1034 | −0.2005 | 0.0233 | −0.9201 *** | 10.2772 *** | 2448.6 *** | −32.231 *** | −32.248 *** | 0.0848 |
Conventional Oil & Gas | 0.0009 | 0.0030 | 0.1456 | −0.3031 | 0.0325 | −1.0856 *** | 12.0716 *** | 3781.2 *** | −34.345 *** | −34.330 *** | 0.1965 |
Conventional Financials | 0.0004 | 0.0022 | 0.1884 | −0.2601 | 0.0299 | −0.9494 *** | 14.0898 *** | 5501.4 *** | −32.462 *** | −32.482 *** | 0.0682 |
Conventional Health Care | 0.0015 | 0.0024 | 0.0933 | −0.2121 | 0.0218 | −1.1882 *** | 13.6496 *** | 5174.2 *** | −35.327 *** | −35.392 *** | 0.1395 |
Conventional Industrials | 0.0008 | 0.0030 | 0.1233 | −0.1735 | 0.0261 | −0.7472 *** | 7.7983 *** | 1097.6 *** | −31.550 *** | −31.645 *** | 0.0414 |
Conventional Technology | 0.0012 | 0.0032 | 0.1583 | −0.2429 | 0.0359 | −0.6331 *** | 6.6441 *** | 646.8 *** | −32.655 *** | −32.694 *** | 0.1064 |
Conventional Telecommunications | 0.0005 | 0.0023 | 0.1178 | −0.2169 | 0.0253 | −0.8476 *** | 9.9721 *** | 2237.4 *** | −32.204 *** | −32.284 *** | 0.1204 |
Conventional Utilities | 0.0004 | 0.0014 | 0.1026 | −0.2537 | 0.0198 | −2.2501 *** | 30.3285 *** | 33,336.8 *** | −32.698 *** | −32.696 *** | 0.0925 |
Whole Sample Period | MPPM Rank | OMEGA Rank | JENSEN | TREYNOR | SHARPE | SORTINO | COND. SHARPE | OMEGA | MPPM |
---|---|---|---|---|---|---|---|---|---|
Conventional | |||||||||
DJCM | 0 | 0.00037 | 0.01564 | 0.04554 | 0.05128 | 1.10026 | −1.19313 | ||
BM | 10 | 9 | −0.00037 | 0.00005 | 0.00201 | 0.02057 | 0.01441 | 1.04485 | −1.24357 |
CG | 2 | 2 | 0.00039 | 0.00090 | 0.03236 | 0.07689 | 0.05905 | 1.16963 | −1.16320 |
CS | 3 | 3 | 0.00040 | 0.00081 | 0.03229 | 0.06880 | 0.06613 | 1.15003 | −1.17411 |
OG | 7 | 6 | 0.00006 | 0.00043 | 0.01835 | 0.03655 | 0.04427 | 1.07893 | −1.22593 |
FIN | 9 | 10 | −0.00045 | −0.00002 | −0.00084 | 0.01872 | 0.03742 | 1.04228 | −1.24019 |
HC | 1 | 1 | 0.00083 | 0.00157 | 0.05469 | 0.09667 | 0.08264 | 1.21696 | −1.14824 |
I | 5 | 5 | −0.00006 | 0.00032 | 0.01367 | 0.04009 | 0.04516 | 1.08572 | −1.20349 |
TEC | 8 | 4 | 0.00034 | 0.00065 | 0.02997 | 0.04670 | 0.06100 | 1.09978 | −1.23274 |
TEL | 6 | 8 | −0.00024 | 0.00009 | 0.00365 | 0.02794 | 0.04366 | 1.05816 | −1.21100 |
UT | 4 | 7 | −0.00023 | 0.00001 | 0.00024 | 0.02944 | 0.03290 | 1.06677 | −1.19505 |
Islamic | |||||||||
DJIM | 0 | 0.00070 | 0.02838 | 0.06261 | 0.06483 | 1.13707 | −1.18082 | ||
BM | 8 | 8 | −0.00035 | 0.00037 | 0.01568 | 0.03412 | 0.02783 | 1.07473 | −1.23536 |
CG | 3 | 3 | 0.00026 | 0.00110 | 0.03578 | 0.08036 | 0.06220 | 1.17608 | −1.16295 |
CS | 2 | 2 | 0.00067 | 0.00148 | 0.05552 | 0.09409 | 0.08317 | 1.20660 | −1.15583 |
OG | 7 | 6 | −0.00019 | 0.00051 | 0.02055 | 0.03871 | 0.04277 | 1.08261 | −1.22751 |
FIN | 10 | 9 | −0.00054 | 0.00006 | 0.00237 | 0.02036 | 0.03163 | 1.04251 | −1.26472 |
HC | 1 | 1 | 0.00062 | 0.00163 | 0.05407 | 0.09548 | 0.07832 | 1.21181 | −1.14974 |
I | 4 | 4 | −0.00015 | 0.00056 | 0.02321 | 0.05084 | 0.05892 | 1.10867 | −1.19627 |
TEC | 9 | 5 | −0.00003 | 0.00068 | 0.03132 | 0.04843 | 0.05975 | 1.10376 | −1.23791 |
TEL | 5 | 7 | −0.00027 | 0.00037 | 0.01353 | 0.03952 | 0.04493 | 1.08048 | −1.20106 |
UT | 6 | 10 | −0.00070 | −0.00030 | −0.01031 | 0.01153 | 0.03858 | 1.02736 | −1.22629 |
Pre-Crisis Sub-Period | MPPM Rank | OMEGA Rank | JENSEN | TREYNOR | SHARPE | SORTINO | COND. SHARPE | OMEGA | MPPM |
---|---|---|---|---|---|---|---|---|---|
Conventional | |||||||||
DJM | 0 | 0.00067 | 0.03338 | 0.09593 | 0.05329 | 1.19643 | −1.81720 | ||
BM | 7 | 5 | 0.00031 | 0.00102 | 0.04794 | 0.09188 | 0.02258 | 1.18913 | −1.83039 |
CG | 4 | 4 | 0.00013 | 0.00086 | 0.03553 | 0.10897 | 0.03948 | 1.22529 | −1.81126 |
CS | 6 | 7 | −0.00004 | 0.00064 | 0.03144 | 0.08585 | 0.04696 | 1.17832 | −1.82662 |
OG | 2 | 1 | 0.00108 | 0.00209 | 0.09034 | 0.11928 | 0.06753 | 1.24192 | −1.80153 |
FIN | 5 | 6 | 0.00006 | 0.00074 | 0.03670 | 0.09250 | 0.05829 | 1.18634 | −1.81419 |
HC | 1 | 2 | 0.00044 | 0.00130 | 0.05393 | 0.11338 | 0.05926 | 1.22880 | −1.80062 |
I | 8 | 8 | −0.00015 | 0.00053 | 0.02692 | 0.07874 | 0.03732 | 1.16307 | −1.83733 |
TEC | 10 | 10 | −0.00035 | 0.00046 | 0.02895 | 0.04909 | 0.04940 | 1.10258 | −1.92190 |
TEL | 9 | 9 | −0.00021 | 0.00046 | 0.02233 | 0.06249 | 0.05090 | 1.12471 | −1.85078 |
UT | 3 | 3 | 0.00024 | 0.00118 | 0.03989 | 0.11458 | 0.04892 | 1.22806 | −1.80332 |
Islamic | |||||||||
DJM | 0 | 0.00095 | 0.04236 | 0.10308 | 0.06528 | 1.21460 | −1.81485 | ||
BM | 6 | 2 | 0.00069 | 0.00189 | 0.07204 | 0.11284 | 0.04640 | 1.23606 | −1.81467 |
CG | 5 | 5 | 0.00015 | 0.00123 | 0.04005 | 0.10903 | 0.04516 | 1.22653 | −1.81081 |
CS | 2 | 1 | 0.00050 | 0.00149 | 0.06378 | 0.11373 | 0.07465 | 1.24846 | −1.80421 |
OG | 3 | 4 | 0.00093 | 0.00234 | 0.08529 | 0.11441 | 0.06473 | 1.22985 | −1.80757 |
FIN | 9 | 10 | −0.00082 | 0.00004 | 0.00177 | 0.02919 | 0.03350 | 1.05960 | −1.91799 |
HC | 1 | 6 | 0.00034 | 0.00149 | 0.05237 | 0.11086 | 0.05706 | 1.22307 | −1.80185 |
I | 7 | 7 | −0.00018 | 0.00078 | 0.03494 | 0.08446 | 0.05413 | 1.17671 | −1.83479 |
TEC | 10 | 9 | −0.00063 | 0.00057 | 0.03236 | 0.05314 | 0.04993 | 1.11112 | −1.92804 |
TEL | 8 | 8 | 0.00010 | 0.00107 | 0.04457 | 0.08627 | 0.05664 | 1.17068 | −1.83642 |
UT | 4 | 3 | 0.00046 | 0.00202 | 0.05905 | 0.10548 | 0.07629 | 1.23037 | −1.80868 |
Crisis Sub-Period | MPPM Rank | OMEGA Rank | JENSEN | TREYNOR | SHARPE | SORTINO | COND. SHARPE | OMEGA | MPPM |
---|---|---|---|---|---|---|---|---|---|
Conventional | |||||||||
DJM | 0 | −0.00116 | −0.03158 | −0.03310 | −0.02128 | 0.92769 | −0.60419 | ||
BM | 8 | 1 | 0.00187 | 0.00026 | 0.00824 | 0.01357 | 0.00742 | 1.02882 | −0.71434 |
CG | 1 | 2 | 0.00074 | −0.00016 | −0.00379 | 0.00337 | 0.01690 | 1.00765 | −0.48853 |
CS | 3 | 6 | 0.00029 | −0.00081 | −0.02043 | −0.01937 | 0.01449 | 0.95813 | −0.51952 |
OG | 9 | 4 | 0.00073 | −0.00054 | −0.01624 | −0.01214 | −0.01955 | 0.97278 | −0.73545 |
FIN | 10 | 10 | −0.00179 | −0.00251 | −0.07877 | −0.07668 | −0.05481 | 0.83773 | −0.84422 |
HC | 2 | 5 | 0.00019 | −0.00086 | −0.01918 | −0.01602 | 0.01373 | 0.95981 | −0.49393 |
I | 7 | 7 | 0.00022 | −0.00094 | −0.02634 | −0.02605 | −0.02036 | 0.94726 | −0.61518 |
TEC | 4 | 3 | 0.00087 | −0.00019 | −0.00494 | 0.00084 | 0.01477 | 1.00180 | −0.52474 |
TEL | 5 | 8 | −0.00048 | −0.00175 | −0.04275 | −0.04671 | −0.03946 | 0.89567 | −0.59893 |
UT | 6 | 9 | −0.00073 | −0.00213 | −0.05031 | −0.05332 | −0.04368 | 0.86812 | −0.60870 |
Islamic | |||||||||
DJM | 0 | −0.00042 | −0.01197 | −0.00820 | −0.00389 | 0.98181 | −0.55780 | ||
BM | 8 | 1 | 0.00119 | 0.00040 | 0.01391 | 0.01907 | 0.01158 | 1.04031 | −0.72214 |
CG | 3 | 2 | 0.00007 | −0.00032 | −0.00780 | −0.00163 | 0.00754 | 0.99636 | −0.49270 |
CS | 1 | 6 | −0.00028 | −0.00078 | −0.01970 | −0.01739 | 0.01807 | 0.96378 | −0.48645 |
OG | 9 | 5 | −0.00005 | −0.00046 | −0.01491 | −0.01064 | −0.02112 | 0.97636 | −0.72365 |
FIN | 7 | 8 | −0.00121 | −0.00177 | −0.04797 | −0.04258 | −0.02272 | 0.91899 | −0.62991 |
HC | 2 | 7 | −0.00026 | −0.00080 | −0.01882 | −0.01494 | 0.01355 | 0.96263 | −0.48997 |
I | 6 | 4 | 0.00007 | −0.00035 | −0.01056 | −0.00627 | 0.00340 | 0.98708 | −0.58413 |
TEC | 4 | 3 | 0.00007 | −0.00034 | −0.00944 | −0.00455 | 0.00772 | 0.99028 | −0.53487 |
TEL | 5 | 9 | −0.00081 | −0.00144 | −0.03690 | −0.03910 | −0.02594 | 0.91654 | −0.56936 |
UT | 10 | 10 | −0.00149 | −0.00184 | −0.05416 | −0.05043 | −0.04222 | 0.87518 | −0.74971 |
Post-Crisis Sub-Period | MPPM Rank | OMEGA Rank | JENSEN | TREYNOR | SHARPE | SORTINO | COND. SHARPE | OMEGA | MPPM |
---|---|---|---|---|---|---|---|---|---|
Conventional | |||||||||
DJM | 0 | 0.00076 | 0.03746 | 0.05214 | 0.11169 | 1.10831 | 0.00855 | ||
BM | 10 | 10 | −0.00311 | −0.00170 | −0.09505 | −0.09938 | −0.04931 | 0.80660 | −0.16724 |
CG | 4 | 3 | 0.00075 | 0.00170 | 0.07536 | 0.11346 | 0.12319 | 1.23440 | 0.04018 |
CS | 2 | 2 | 0.00133 | 0.00232 | 0.10614 | 0.15819 | 0.18125 | 1.33822 | 0.07963 |
OG | 9 | 9 | −0.00242 | −0.00111 | −0.06283 | −0.06290 | −0.01349 | 0.87452 | −0.14582 |
FIN | 6 | 6 | −0.00033 | 0.00046 | 0.02444 | 0.03135 | 0.09246 | 1.06371 | −0.00348 |
HC | 1 | 1 | 0.00210 | 0.00359 | 0.15324 | 0.22117 | 0.23748 | 1.49683 | 0.11578 |
I | 5 | 5 | −0.00007 | 0.00069 | 0.03569 | 0.04665 | 0.11270 | 1.09566 | 0.00583 |
TEC | 3 | 4 | 0.00080 | 0.00155 | 0.07735 | 0.10056 | 0.16674 | 1.20089 | 0.04195 |
TEL | 7 | 7 | −0.00029 | 0.00037 | 0.01611 | 0.02325 | 0.05503 | 1.04381 | −0.01943 |
UT | 8 | 8 | −0.00065 | −0.00019 | −0.00782 | −0.00943 | 0.05601 | 0.98205 | −0.03700 |
Islamic | |||||||||
DJM | 0 | 0.00089 | 0.04413 | 0.06139 | 0.12149 | 1.13006 | 0.01109 | ||
BM | 10 | 9 | −0.00315 | −0.00161 | −0.08938 | −0.09298 | −0.05546 | 0.81814 | −0.16698 |
CG | 3 | 3 | 0.00078 | 0.00194 | 0.08278 | 0.12614 | 0.14347 | 1.26684 | 0.04619 |
CS | 2 | 2 | 0.00158 | 0.00292 | 0.12766 | 0.19042 | 0.18241 | 1.40207 | 0.09375 |
OG | 9 | 8 | −0.00237 | −0.00093 | −0.05261 | −0.05288 | −0.00719 | 0.89376 | −0.14340 |
FIN | 5 | 4 | 0.00064 | 0.00185 | 0.07494 | 0.10324 | 0.08337 | 1.20680 | 0.03587 |
HC | 1 | 1 | 0.00192 | 0.00352 | 0.14884 | 0.21512 | 0.21382 | 1.47469 | 0.11033 |
I | 6 | 6 | −0.00017 | 0.00073 | 0.03765 | 0.04884 | 0.11333 | 1.09949 | 0.00981 |
TEC | 4 | 5 | 0.00066 | 0.00152 | 0.07695 | 0.09975 | 0.16407 | 1.20104 | 0.04192 |
TEL | 7 | 7 | −0.00076 | −0.00024 | −0.00980 | −0.01195 | 0.01849 | 0.97759 | −0.03006 |
UT | 8 | 10 | −0.00217 | −0.00203 | −0.08673 | −0.09824 | −0.06315 | 0.81269 | −0.10478 |
Panel A: MPPM Statistic | ||||
Full Sample | Pre-Crisis | Crisis | Post-Crisis | |
Mean (µ): Anova F—test (H0: µM = µF) | 0.0023 | 0.1172 | 0.1754 | 0.0013 |
Median (M): Kruskal-Wallis (tie-adj.) test (H0: MM = MF) | 0.0011 | 0.0011 | 0.1822 | 0.1304 |
Variance (σ2): Levene’s test (H0: σ2M = σ2F) | 0.6707 | 0.6844 | 0.0035 | 0.3187 |
Panel B: Omega Ratio | ||||
Full Sample | Pre-Crisis | Crisis | Post-Crisis | |
Mean (µ): Anova F—test (H0: µM = µF) | 0.2491 | 0.0642 | 0.6721 | 0.0015 |
Median (M): Kruskal-Wallis (tie-adj.) test (H0: MM = MF) | 0.3115 | 0.3892 | 0.6737 | 0.0528 |
Variance (σ2): Levene’s test (H0: σ2M = σ2F) | 0.3076 | 0.9819 | 0.8661 | 0.3249 |
Panel A: Conventional Sector Portfolios | ||||
Full Sample | Pre-Crisis | Crisis | Post-Crisis | |
DJCM | −0.001 | 0 | −0.005 | 0 |
BM | −0.002 | 0 | −0.006 | −0.003 |
CG | 0 | 0 | −0.002 | 0.001 |
CS | 0 | 0 | −0.004 | 0.002 |
OG | −0.002 | 0 | −0.007 | −0.003 |
FIN | −0.002 | 0 | −0.010 | −0.001 |
HC | 0 | 0.001 | −0.003 | 0.002 |
I | −0.001 | 0 | −0.004 | 0 |
TEC | −0.002 | −0.003 | −0.003 | 0.001 |
TEL | −0.001 | −0.001 | −0.004 | 0 |
UT | −0.001 | 0.001 | −0.004 | −0.001 |
Panel B: Islamic Sector Portfolios | ||||
Full Sample | Pre-Crisis | Crisis | Post-Crisis | |
DJIM | 0 | 0 | −0.004 | 0 |
BM | −0.002 | 0 | −0.006 | −0.003 |
CG | 0 | 0 | −0.002 | 0.001 |
CS | 0 | 0 | −0.003 | 0.002 |
OG | −0.002 | 0 | −0.007 | −0.003 |
FIN | −0.002 | −0.002 | −0.006 | 0.001 |
HC | 0 | 0.001 | −0.003 | 0.002 |
I | −0.001 | 0 | −0.004 | 0 |
TEC | −0.002 | −0.003 | −0.003 | 0.001 |
TEL | −0.001 | 0 | −0.003 | 0 |
UT | −0.001 | 0 | −0.006 | −0.002 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, M.d.l.O.; Jareño, F.; El Haddouti, C. Sector Portfolio Performance Comparison between Islamic and Conventional Stock Markets. Sustainability 2019, 11, 4618. https://doi.org/10.3390/su11174618
González MdlO, Jareño F, El Haddouti C. Sector Portfolio Performance Comparison between Islamic and Conventional Stock Markets. Sustainability. 2019; 11(17):4618. https://doi.org/10.3390/su11174618
Chicago/Turabian StyleGonzález, María de la O, Francisco Jareño, and Camalea El Haddouti. 2019. "Sector Portfolio Performance Comparison between Islamic and Conventional Stock Markets" Sustainability 11, no. 17: 4618. https://doi.org/10.3390/su11174618
APA StyleGonzález, M. d. l. O., Jareño, F., & El Haddouti, C. (2019). Sector Portfolio Performance Comparison between Islamic and Conventional Stock Markets. Sustainability, 11(17), 4618. https://doi.org/10.3390/su11174618