Structure Disentanglement and Effect Analysis of the Arid Riverscape Social-Ecological System Using a Network Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Ecological Network Construction
2.3.2. Social Network Construction
- (1)
- What agencies and organizations related to water management work in our study area and what are their responsibilities and functions?In the symposiums which was organized by HRBR (S1), representatives of agencies and organizations undertaking work in the basin stated their management objectives and functions. All the agencies and organizations were defined as social nodes. The list of the management agencies and their functions can be found in Table S1.
- (2)
- What’s the jurisdiction of agencies and organizations and which landscape they work in?Representatives provided this information during symposiums and interviews, based on which, edges between social and ecological nodes (SE edges) were established. For example, representatives of Zhangye Land Bureau (ZhLB) answered this question and said that they worked in the farmland in midstream (E1), the link between ZhLB and E1 was then established and “1” was set to the corresponding position in the adjacency matrix. For organizations who do not work in resource and landscapes, such as Governments (S8, S9), we suppose that there is no linked ecological node.
- (3)
- Are they affiliated or in collaboration with other agencies and how productive do they perceive the management and collaboration to be?We conducted interviews with representatives of agencies (organizations) to ask them this question. If there is an affiliation or interorganizational collaboration between any two agencies, a link (edge) will be established between them (SS edges) and “1” will be set to the corresponding position in the adjacency matrix. Otherwise, no link will be established between them and “0” will be set.
2.3.3. The Multiple SE Network Construction
2.4. Measuring Network Structures
3. Results
3.1. Evolution of the Ecological and Social Networks
3.2. The Matching Degree of the Ecological and Social Systems
3.3. Effects of the SES Structure Change
4. Discussion
4.1. High-Level Authority Improved the Basin SES Fit Which Promoted the Sustainable Management of the River Basin
4.2. Cross-Boundary Management Restricted to Only the River Has Exacerbated Local Environmental Pressures
4.3. Implications for Sustainable Basin Governance
4.4. Comparisons With Other Commons Governance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hand, B.K.; Flint, C.G.; Frissell, C.A.; Muhlfeld, C.C.; Devlin, S.P.; Kennedy, B.P.; Crabtree, R.L.; McKee, W.A.; Luikart, G.; Stanford, J.A. A social-ecological perspective for riverscape management in the Columbia River Basin. Front. Ecol. Environ. 2018, 16, S23–S33. [Google Scholar] [CrossRef]
- Dunham, J.B.; Angermeier, P.L.; Crausbay, S.D.; Cravens, A.E.; Gosnell, H.; McEvoy, J.; Moritz, M.A.; Raheem, N.; Sanford, T. Rivers are social–Ecological systems: Time to integrate human dimensions into riverscape ecology and management. Wiley Interdiscip. Rev. Water 2018, 5, e1291. [Google Scholar] [CrossRef]
- Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Cambridge University Press: Cambridge, UK, 1990; p. 280. [Google Scholar]
- Turner, M.G. Landscape Ecology: The Effect of Pattern on Process. Annu. Rev Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Nagendra, H.; Munroe, D.K.; Southworth, J. From pattern to process: Landscape fragmentation and the analysis of land use/land cover change. Agric. Ecosyst. Environ. 2004, 101, 111–115. [Google Scholar] [CrossRef]
- Opdam, P.; Luque, S.; Nassauer, J.; Verburg, P.H.; Wu, J. How can landscape ecology contribute to sustainability science? Landsc. Ecol. 2018, 33, 1–7. [Google Scholar] [CrossRef] [Green Version]
- White, P.S. Pattern, process, and natural disturbance in vegetation. Bot. Rev. 1979, 45, 229–299. [Google Scholar] [CrossRef]
- Stallins, J.A.; Parker, A.J. The Influence of Complex Systems Interactions on Barrier Island Dune Vegetation Pattern and Process. Ann. Assoc. Am. Geogr. 2003, 93, 13–29. [Google Scholar] [CrossRef]
- Liu, J.; Gao, G.; Wang, S.; Jiao, L.; Wu, X.; Fu, B. The effects of vegetation on runoff and soil loss: Multidimensional structure analysis and scale characteristics. J. Geogr. Sci. 2018, 28, 59–78. [Google Scholar] [CrossRef]
- Dallimer, M.; Strange, N. Why socio-political borders and boundaries matter in conservation. Trends Ecol. Evol. 2015, 30, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M.L.; Lynham, J.; Kalberg, K.; Leung, P. Social networks and environmental outcomes. Proc. Natl. Acad. Sci. USA 2016, 113, 6466–6471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayles, J.S.; Baggio, J.A. Social–ecological network analysis of scale mismatches in estuary watershed restoration. Proc. Natl. Acad. Sci. USA 2017, 114, E1776–E1785. [Google Scholar] [CrossRef] [PubMed]
- Bodin, Ö.; Crona, B.; Thyresson, M.; Golz, A.-L.; Tengö, M. Conservation Success as a Function of Good Alignment of Social and Ecological Structures and Processes. Conserv. Boil. 2014, 28, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Crona, B.; Bodin, Ö. What you know is who you know?—Communication patterns among resource extractors as a prerequisite for co-management. Ecol. Soc. 2006, 11, 7. Available online: http://www.ecologyandsociety.org/vol11/iss2/art7/ (accessed on 13 September 2019). [CrossRef]
- Bodin, Ö.; Tengö, M. Disentangling intangible social–ecological systems. Glob. Environ. Chang. 2012, 22, 430–439. [Google Scholar] [CrossRef]
- Baggio, J.A.; BurnSilver, S.B.; Arenas, A.; Magdanz, J.S.; Kofinas, G.P.; De Domenico, M. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion. Proc. Natl. Acad. Sci. USA 2016, 113, 13708–13713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, A.P. Forest landscapes as social-ecological systems and implications for management. Landsc. Urban Plan. 2018, 177, 138–147. [Google Scholar] [CrossRef]
- Lubell, M.; Jasny, L.; Hastings, A. Network Governance for Invasive Species Management. Conserv. Lett. 2017, 10, 699–707. [Google Scholar] [CrossRef]
- Janssen, M.A.; Bodin, Ö.; Anderies, J.M.; Elmqvist, T.; Ernstson, H.; McAllister, R.R.J.; Olsson, P.; Ryan, P. Toward a Network Perspective of the Study of Resilience in Social-Ecological Systems. Ecol. Soc. 2006, 11, 15. [Google Scholar] [CrossRef]
- Bodin, Ö.; Alexander, S.M.; Baggio, J.; Barnes, M.L.; Berardo, R.; Cumming, G.S.; Dee, L.E.; Fischer, A.P.; Fischer, M.; Garcia, M.M.; et al. Improving network approaches to the study of complex social–Ecological interdependencies. Nat. Sustain. 2019, 2, 551–559. [Google Scholar] [CrossRef]
- Cheng, G.; Li, X.; Zhao, W.; Xu, Z.; Feng, Q.; Xiao, S.; Xiao, H. Integrated study of the water–ecosystem–Economy in the Heihe River Basin. Natl. Sci. Rev. 2014, 1, 413–428. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, Y.; Li, S.; Wu, B. Downstream ecosystem responses to middle reach regulation of river discharge in the Heihe River Basin, China. Hydrol. Earth Syst. Sci. 2016, 20, 4469–4481. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Chen, Y.; Ren, L.; Lü, H.; Zhao, W.; Yuan, F.; Xu, M. Ecosystem restoration and conservation in the arid inland river basins of Northwest China: Problems and strategies. Ecol. Eng. 2016, 94, 629–637. [Google Scholar] [CrossRef]
- Xiao, S.C.; Xiao, H.L.; Mi, L.; Li, L. Scientific Assessment on Ecological Effects of National Integrated Management Project in Heihe River Basin. Bull. Chin. Acad. Sci. 2017, 32, 45–54. [Google Scholar] [CrossRef]
- Qi, S.Z.; Luo, F. Water environmental degradation of the Heihe River Basin in arid northwestern China. Environ. Monit. Assess. 2005, 108, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Cheng, G.D.; Endo, K.N. Towards sustainable development of the environmentally degraded River Heihe basin, China. Hydrol. Sci. J. 2001, 46, 647–658. [Google Scholar] [CrossRef]
- Cui, Y. The Development from the rule of Distribution to the Plan of Allocation of Water Between Upper Reaches and Lower Reaches of Heihe River. J. Hexi Univ. 2005, 21, 33–37. [Google Scholar] [CrossRef]
- Ao, F.; Yu, J.; Wang, P.; Zhang, Y. Changing Characteristics and Influencing Causes of Groundwater Level in the Lower Reaches of the Heihe River. J. Nat. Resour. 2012, 27, 686–696. (In Chinese) [Google Scholar]
- Barnes, M.L.; Bodin, Ö.; Guerrero, A.M.; McAllister, R.R.J.; Alexander, S.M.; Robins, G. The social structural foundations of adaptation and transformation in social-ecological systems. Ecol. Soc. 2017, 22. [Google Scholar] [CrossRef]
- Zheng, Y. Heihe Plan Science Data Center 2014. Available online: http://dx.doi.org/10.3972/heihe.070.2014.db (accessed on 13 September 2019).
- Wu, B.; Zheng, Y.; Tian, Y.; Wu, X.; Yao, Y.; Han, F.; Liu, J.; Zheng, C. Systematic assessment of the uncertainty in integrated surface water-groundwater modeling based on the probabilistic collocation method. Water Resour. Res. 2014, 50, 5848–5865. [Google Scholar] [CrossRef]
- Wasserman, S. Social Network Analysis: Methods and Applications; Cambridge university press: Cambridge, UK, 1994; Volume 24, pp. 219–220. [Google Scholar]
- Barrat, A.; Barthelemy, M.; Pastor-Satorras, R.; Vespignani, A. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 2004, 101, 3747–3752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandes, U. A faster algorithm for betweenness centrality. J. Math. Sociol. 2001, 25, 163–177. [Google Scholar] [CrossRef]
- Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandes, U.; Delling, D.; Gaertler, M.; Gorke, R.; Hoefer, M.; Nikoloski, Z.; Wagner, D. On Modularity Clustering. IEEE Trans. Knowl. Data Eng. 2008, 20, 172–188. [Google Scholar] [CrossRef]
- Bodin, Ö.; Robins, G.; McAllister, R.; Guerrero, A.; Crona, B.; Tengö, M.; Lubell, M. Theorizing benefits and constraints in collaborative environmental governance: A transdisciplinary social-ecological network approach for empirical investigations. Ecol. Soc. 2016, 21, 40. [Google Scholar] [CrossRef]
- Cumming, G.S.; Cumming, D.H.M.; Redman, C.L. Scale Mismatches in Social-Ecological Systems: Causes, Consequences, and Solutions. Ecol. Soc. 2006, 11, 14. [Google Scholar] [CrossRef]
- Folke, C.; Pritchard, J.L.; Berkes, F.; Colding, J.; Svedin, U. The Problem of Fit between Ecosystems and Institutions: Ten Years Later. Ecol. Soc. 2007, 12, 30. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Fu, B.; Gao, G.; Shen, Q. Ecological effects and potential risks of the water diversion project in the Heihe River Basin. Sci. Total Environ. 2017, 619, 794–803. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fu, B.; Bodin, Ö.; Liu, J.; Zhang, M.; Li, X. Alignment of social and ecological structures increased the ability of river management. Sci. Bull. 2019, 64, 1318–1324. [Google Scholar] [CrossRef] [Green Version]
- McCluney, K.E.; Poff, N.L.; A Palmer, M.; Thorp, J.H.; Poole, G.C.; Williams, B.S.; Williams, M.R.; Baron, J.S.; Mc Cluney, K. Riverine macrosystems ecology: Sensitivity, resistance, and resilience of whole river basins with human alterations. Front. Ecol. Environ. 2014, 12, 48–58. [Google Scholar] [CrossRef]
- Scarlett, L.; McKinney, M. Connecting people and places: The emerging role of network governance in large landscape conservation. Front. Ecol. Environ. 2016, 14, 116–125. [Google Scholar] [CrossRef]
- Barnes, M.L.; Bodin, Ö.; McClanahan, T.R.; Kittinger, J.N.; Hoey, A.S.; Gaoue, O.G.; Graham, N.A.J. Social-ecological alignment and ecological conditions in coral reefs. Nat. Commun. 2019, 10, 2039. [Google Scholar] [CrossRef] [PubMed]
- Enqvist, J.P.; Tengö, M.; Bodin, Ö. Are bottom-up approaches good for promoting social–Ecological fit in urban landscapes? Ambio 2019, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Baur, I.; Binder, C.R. Adapting to Socioeconomic Developments by Changing Rules in the Governance of Common Property Pastures in the Swiss Alps. Ecol. Soc. 2013, 18. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, A.; Bodin, Ö.; McAllister, R.; Wilson, K. Achieving social-ecological fit through bottom-up collaborative governance: An empirical investigation. Ecol. Soc. 2015, 20. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Wang, S.; Fu, B.; Wei, X.; Wang, C.; Song, S.; Wei, F. Structure Disentanglement and Effect Analysis of the Arid Riverscape Social-Ecological System Using a Network Approach. Sustainability 2019, 11, 5159. https://doi.org/10.3390/su11195159
Zhang M, Wang S, Fu B, Wei X, Wang C, Song S, Wei F. Structure Disentanglement and Effect Analysis of the Arid Riverscape Social-Ecological System Using a Network Approach. Sustainability. 2019; 11(19):5159. https://doi.org/10.3390/su11195159
Chicago/Turabian StyleZhang, Mengmeng, Shuai Wang, Bojie Fu, Xiaohua Wei, Cong Wang, Shuang Song, and Fangli Wei. 2019. "Structure Disentanglement and Effect Analysis of the Arid Riverscape Social-Ecological System Using a Network Approach" Sustainability 11, no. 19: 5159. https://doi.org/10.3390/su11195159
APA StyleZhang, M., Wang, S., Fu, B., Wei, X., Wang, C., Song, S., & Wei, F. (2019). Structure Disentanglement and Effect Analysis of the Arid Riverscape Social-Ecological System Using a Network Approach. Sustainability, 11(19), 5159. https://doi.org/10.3390/su11195159