A Vulnerability Assessment of Urban Emergency in Schools of Shanghai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Framework
2.2. Study Site and Sample
2.3. Pluvial Flood Scenarios
2.4. Accessibility Mapping and Vulnerability Assessment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ramos, M.H.; Creutin, J.D.; Leblois, E. Visualization of storm severity. J. Hydrol. 2005, 315, 295–307. [Google Scholar] [CrossRef]
- Mejía, A.I.; Moglen, G.E. Impact of the spatial distribution of imperviousness on the hydrologic response of an urbanizing basin. Hydrol. Process. 2010, 24, 3359–3373. [Google Scholar] [CrossRef]
- Smith, J.A.; Baeck, M.L.; Villarini, G.; Welty, C.; Miller, A.J.; Krajewski, W.F. Analyses of a long-term, high-resolution radar rainfall data set for the Baltimore metropolitan region. Water Resour. Res. 2012, 48, W04504. [Google Scholar] [CrossRef]
- Wright, D.B.; Smith, J.A.; Villarini, G.; Baeck, M.L. Hydroclimatology of flash flooding in Atlanta. Water Resour. Res. 2012, 48, W04524. [Google Scholar] [CrossRef]
- Green, D.; Yu, D.; Pattison, I.; Wilby, R.; Bosher, L.; Patel, R.; Thompson, P.; Trowell, K.; Draycon, J.; Halse, M.; et al. City-scale accessibility of emergency responders operating during flood events. Nat. Hazards Earth. Syst. Sci. 2017, 17, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Coles, D.; Yu, D.; Wilby, R.L.; Green, D.; Herring, Z. Beyond ‘flood hotspots’: Modelling emergency service accessibility during flooding in York, UK. J. Hydrol. 2017, 546, 419–436. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Yu, D.; Lin, N.; Wilby, R.L. Evaluating the cascading impacts of sea level rise and coastal flooding on emergency response spatial accessibility in Lower Manhattan, New York City. J. Hydrol. 2017, 555, 648–658. [Google Scholar] [CrossRef]
- Pitt, M. Learning Lessons from the 2007 Floods; An Independent Review by Sir Michael Pitt; Cabinet Office: London, UK, 2008.
- Naulin, J.P.; Payrastre, O.; Gaume, E. Spatially distributed flood forecasting in flash flood prone areas: Application to road network supervision in Southern France. J. Hydrol. 2013, 486, 88–99. [Google Scholar] [CrossRef] [Green Version]
- Du, J.K.; Qian, L.; Rui, H.Y.; Zuo, T.H.; Zheng, D.P.; Xu, Y.P.; Xu, C.Y. Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai river basin, China. J. Hydrol. 2012, 464–465, 127–139. [Google Scholar] [CrossRef]
- Suriya, S.; Mudgal, B.V. Impact of urbanization on flooding: The thirusoolam sub watershed—A case study. J. Hydrol. 2012, 412, 210–219. [Google Scholar] [CrossRef]
- Zhou, Q.; Mikkelsen, P.S.; Halsnæs, K.; Arnbjerg-Nielsen, K. Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits. J. Hydrol. 2012, 414, 539–549. [Google Scholar] [CrossRef]
- Wu, X.; Yu, D.; Chen, Z.; Wilby, R.L. An evaluation of land surface modification, storm sewer development and rainfall variation on waterlogging risk in Shanghai. Nat. Hazards 2012, 63, 305–323. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Xia, J.; Zhang, Y.Y.; Xiong, L.H.; Shan, H.E.; Wang, L.F.; Zhongbo, Y.U. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci. China Earth Sci. 2017, 60, 652–658. [Google Scholar] [CrossRef]
- Jiang, Y.; Zevenbergen, C.; Ma, Y. Urban pluvial flooding and storm water management: A contemporary review of China’s challenges and “sponge cities” strategy. Environ. Sci. Policy 2018, 80, 132–143. [Google Scholar] [CrossRef]
- UNISDR (United Nations International Strategy for Disaster Reduction). Towards a Culture of Prevention: Disaster Risk Reduction Begins at School—Good Practices and Lessons Learned; Valency, R.A., Lazarte, J., Eds.; UNISDR: Geneva, Switzerland, 2007; Available online: https://www.unisdr.org/files/761_education-good-practices.pdf (accessed on 16 May 2018).
- Sakurai, A.; Bisri, M.B.F.; Oda, T.; Oktari, R.S.; Murayama, Y.; Nizammudin; Affan, M. Exploring minimum essentials for sustainable school disaster preparedness: A case of elementary schools in Banda Aceh City, Indonesia. Int. J. Disaster Risk Reduct. 2018, 29, 73–83. [Google Scholar] [CrossRef]
- Kano, M.; Bourque, L.B. Experiences with and preparedness for emergencies and disasters among public schools in California. NASSP Bull. 2007, 91, 201–218. [Google Scholar] [CrossRef]
- Graham, J.; Shirm, S.; Liggin, R.; Aitken, M.E.; Dick, R. Mass-casualty events at schools: A national preparedness survey. Pediatrics 2006, 117, 8–15. [Google Scholar] [CrossRef]
- Allen, K.; Ball, J.; Helfer, B. Preventing and managing childhood emergencies in schools. J. Sch. Nurs. 1998, 14, 20–24. [Google Scholar]
- Abrunzo, T.; Gerardi, M.; Dietrich, A.; Lampell, M.; Sanford, W.C.; Smith, D.M. The role of emergency physicians in the care of the child in school. Ann. Emerg. Med. 2000, 35, 155–161. [Google Scholar] [CrossRef]
- Jones, S.E.; Brener, N.D.; McManus, T. Prevalence of school policies, programs and facilities that promote a healthy physical school environment. Am. J. Public Health 2003, 93, 1570–1575. [Google Scholar] [CrossRef]
- Bobo, N.; Hallenbeck, P.; Robinson, J. Recommended minimal emergency equipment and resources for schools: National consensus group report. J. Sch. Nurs. 2003, 19, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Brener, N.D.; Pejavara, A.; Barrios, L.C.; Crossett, L.; Lee, S.M.; McKenna, M.; Michael, S.; Wechsler, H. Applying the School Health Index to a nationally representative sample of schools. J. Sch. Health 2006, 76, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, M.; Neighbors, M.; Spears, C.; Byrd, S.; Snarr, J. Emergencies in the school setting: Are public school teachers adequately trained to respond? Prehosp. Disaster Med. 1994, 9, 222–225. [Google Scholar] [CrossRef]
- Sapien, R.E.; Allen, A. Emergency preparation in schools: A snapshot of a rural state. Pediatr. Emerg. Care 2001, 17, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Danielson, J.; Shannon, M. School-Based Emergency Preparedness: A National Analysis and Recommended Protocol; Prepared under Contract No. 290-00-0020; AHRQ Publication No. 09-0013; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2008.
- Boon, H.J.; Pagliano, P.; Brown, L.; Tsey, K. An Assessment of Policies Guiding School Emergency Disaster Management for Students with Disabilities in Australia. J. Policy Pract. Intell. 2012, 9, 17–26. [Google Scholar] [CrossRef]
- Kibble, D.G. A survey of LEA guidance and support for the management of crises in schools. Sch. Leadersh. Manag. 1999, 19, 373–384. [Google Scholar] [CrossRef]
- Shah, A.A.; Ye, J.; Pan, L.; Ullah, R.; Shah, S.I.A.; Fahad, S. Schools’ flood emergency preparedness in Khyber Pakhtunkhwa Province, Pakistan. Int. J. Disaster Risk Sci. 2018, 9, 181–194. [Google Scholar] [CrossRef]
- Wang, J.J. Study on the context of school-based disaster management. Int. J. Disaster Risk Reduct. 2016, 19, 224–234. [Google Scholar] [CrossRef]
- Quan, R.S. Risk assessment of flood disaster in shanghai based on spatial–temporal characteristics analysis from 251 to 2000. Environ. Earth Sci. 2014, 72, 4627–4638. [Google Scholar] [CrossRef]
- Yin, J.; Yu, D.; Wilby, R.L. Modelling the impact of land subsidence on urban pluvial flooding: A case study of downtown Shanghai, China. Sci. Total Environ. 2016, 544, 744–753. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Kwan, M.; Yin, J.; Yu, D.; Wang, J. The potential effect of a 100-year pluvial flood event on metro accessibility and ridership: A case study of central Shanghai, China. Appl. Geogr. 2018, 100, 21–29. [Google Scholar] [CrossRef]
- Pregnolato, M.; Ford, A.; Wilkinson, S.M.; Dawson, R.J. The impact of flooding on road transport: A depth-disruption function. Transport. Res. D Transp. Environ. 2017, 55, 67–81. [Google Scholar] [CrossRef]
- Yin, J.; Yu, D.; Yin, Z.; Liu, M.; He, Q. Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China. J. Hydrol. 2016, 537, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Pons, P.T.; Markovchick, V.J. Eight minutes or less: Does the ambulance response time guideline impact trauma patient outcome? J. Emerg. Med. 2002, 23, 43–48. [Google Scholar] [CrossRef]
Emergency Services | Normal Condition and T1 | Normal Condition and T2 | 100-y Flood and T1 | 100-y Flood and T2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NS | PS | MS | NS | PS | MS | NS | PS | MS | NS | PS | MS | |
FRS within 5 min | 126 (13%) | 77 (16%) | 94 (17%) | 272 (28%) | 165 (34%) | 214 (38%) | 97 (10%) | 55 (11%) | 75 (13%) | 211 (22%) | 125 (26%) | 162 (29%) |
FRS within 10 min | 470 (49%) | 264 (54%) | 333 (59%) | 706 (73%) | 379 (78%) | 449 (79%) | 384 (40%) | 206 (42%) | 265 (47%) | 620 (64%) | 334 (68%) | 399 (70%) |
FRS within 15 min | 718 (74%) | 377 (77%) | 464 (82%) | 859 (89%) | 453 (93%) | 536 (94%) | 634 (66%) | 340 (70%) | 416 (73%) | 779 (81%) | 420 (86%) | 500 (88%) |
FRS out of 15 min | 964 (100%) | 488 (100%) | 568 (100%) | 964 (100%) | 488 (100%) | 568 (100%) | 826 (86%) | 445 (91%) | 525 (92%) | 826 (86%) | 445 (91%) | 525 (92%) |
FRS inaccessible | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 138 (14%) | 43 (9%) | 43 (8%) | 138 (14%) | 43 (9%) | 43 (8%) |
EMS within 8 min | 377 (39%) | 180 (37%) | 251 (44%) | 616 (64%) | 337 (69%) | 413 (73%) | 272 (28%) | 132 (27%) | 182 (32%) | 473 (49%) | 253 (52%) | 330 (58%) |
EMS within 12 min | 647 (67%) | 341 (70%) | 424 (75%) | 856 (89%) | 435 (89%) | 524 (92%) | 483 (50%) | 259 (53%) | 338 (60%) | 717 (74%) | 372 (76%) | 459 (81%) |
EMS within 15 min | 788 (82%) | 412 (84%) | 500 (88%) | 906 (94%) | 464 (95%) | 547 (96%) | 633 (66%) | 335 (69%) | 415 (73%) | 791 (82%) | 413 (85%) | 505 (89%) |
EMS out of 15 min | 964 (100%) | 488 (100%) | 568 (100%) | 964 (100%) | 488 (100%) | 568 (100%) | 825 (86%) | 445 (91%) | 525 (92%) | 825 (86%) | 445 (91%) | 525 (92%) |
EMS inaccessible | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 139 (14%) | 43 (9%) | 43 (8%) | 139 (14%) | 43 (9%) | 43 (8%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Jing, Y.; Yu, D.; Ye, M.; Yang, Y.; Liao, B. A Vulnerability Assessment of Urban Emergency in Schools of Shanghai. Sustainability 2019, 11, 349. https://doi.org/10.3390/su11020349
Yin J, Jing Y, Yu D, Ye M, Yang Y, Liao B. A Vulnerability Assessment of Urban Emergency in Schools of Shanghai. Sustainability. 2019; 11(2):349. https://doi.org/10.3390/su11020349
Chicago/Turabian StyleYin, Jie, Yameng Jing, Dapeng Yu, Mingwu Ye, Yuhan Yang, and Banggu Liao. 2019. "A Vulnerability Assessment of Urban Emergency in Schools of Shanghai" Sustainability 11, no. 2: 349. https://doi.org/10.3390/su11020349
APA StyleYin, J., Jing, Y., Yu, D., Ye, M., Yang, Y., & Liao, B. (2019). A Vulnerability Assessment of Urban Emergency in Schools of Shanghai. Sustainability, 11(2), 349. https://doi.org/10.3390/su11020349