Impacts of Urban Green Landscape Patterns on Land Surface Temperature: Evidence from the Adjacent Area of Olympic Forest Park of Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Area
2.2. Land Surface Temperature
2.3. Land Cover Patterns
2.4. Calculation Method
3. Results
3.1. Land Surface Temperature and Green Space Cover
3.2. Land Surface Temperature and Distance from Forest Park
3.3. Land Surface Temperature and Green Landscape Metric
4. Discussion
4.1. LST and Land Cover Composition
4.2. LST Land Distance to Urban Park
4.3. LST Land Landscape Configurations
4.4. Important Factors in Cooling Effect of Urban Green Space
4.5. Planning Implementation and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Simonds, J.O. Landscape Architecture: A Manual of Site Planning and Design; McGraw-Hill Professional: New York, NY, USA, 2007. [Google Scholar]
- Kong, F.; Yan, W.; Zheng, G.; Yin, H.; Cavan, G.; Zhan, W.; Zhang, N.; Cheng, L. Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agric. For. Meteorol. 2016, 217, 22–34. [Google Scholar] [CrossRef]
- Solecki, W.D.; Rosenzweig, C.; Parshall, L.; Pope, G.; Clark, M.; Cox, J.; Wiencke, M. Mitigation of the heat island effect in urban New Jersey. Glob. Environ. Chang. Part B Environ. Hazards 2005, 6, 39–49. [Google Scholar] [CrossRef]
- Tan, J.; Zheng, Y.; Song, G.; Kalkstein, L.S.; Kalkstein, A.J.; Tang, X. Heat wave impacts on mortality in Shanghai, 1998 and 2003. Int. J. Biometeorol. 2007, 51, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xie, G.D.; Gao, J.X.; Yang, Y. The cooling effect of urban green spaces as a contribution to energy-saving and emission-reduction: A case study in Beijing, China. Build. Environ. 2014, 76, 37–43. [Google Scholar] [CrossRef]
- White, M.A.; Nemani, R.R.; Thornton, P.E.; Running, S.W. Satellite evidence of phenological differences between urbanized and rural areas of the eastern United States deciduous broadleaf forest. Ecosystems 2002, 5, 260–273. [Google Scholar] [CrossRef]
- Akbari, H.; Pomerantz, M.; Taha, H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol. Energy 2001, 70, 295–310. [Google Scholar] [CrossRef]
- Amani-Beni, M.; Zhang, B.; Xie, G.; Xu, J. Impact of urban park’s tree, grass and waterbody on microclimate in hot summer days: A case study of Olympic Park in Beijing, China. Urban For. Urban Green. 2018, 32, 1–6. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Zhao, C.; Fu, G.; Liu, X.; Fu, F. Urban planning indicators, morphology and climate indicators: A case study for a north-south transect of Beijing, China. Build. Environ. 2011, 46, 1174–1183. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Cadenasso, M.L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 2017, 195, 1–12. [Google Scholar] [CrossRef]
- Deletic, A. Sediment transport in urban runoff over grassed areas. J. Hydrol. 2005, 301, 108–122. [Google Scholar] [CrossRef]
- Zhang, B.; Xie, G.; Zhang, C.; Zhang, J. The economic benefits of rainwater-runoff reduction by urban green spaces: A case study in Beijing, China. J. Environ. Manag. 2012, 100, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Kabisch, N. Ecosystem service implementation and governance challenges in urban green space planning-The case of Berlin, Germany. Land Use Policy 2015, 42, 557–567. [Google Scholar] [CrossRef]
- Niemelä, J. Ecology of urban green spaces: The way forward in answering major research questions. Landsc. Urban Plan. 2014, 125, 298–303. [Google Scholar] [CrossRef]
- Oke, T.R.; Crowther, J.M.; Mcnaughton, K.G.; Monteith, J.L.; Gardiner, B. The Micrometeorology of the Urban Forest. Phil. Trans. R. Soc. Lond. B 1989, 335–349. [Google Scholar] [CrossRef]
- Myint, S.W.; Zheng, B.; Talen, E.; Fan, C.; Kaplan, S.; Middel, A.; Smith, M.; Huang, H.; Brazel, A. Does the spatial arrangement of urban landscape matter? examples of urban warming and cooling in phoenix and las vegas. Ecosyst. Health Sustain. 2015, 1, 1–15. [Google Scholar] [CrossRef]
- Connors, J.P.; Galletti, C.S.; Chow, W.T.L. Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc. Ecol. 2013, 28, 271–283. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Ng, E.; Chen, L.; Wang, Y.; Yuan, C. A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Yu, C.; Hien, W.N. Thermal benefits of city parks. Energy Build. 2006, 38, 105–120. [Google Scholar] [CrossRef]
- Hamada, S.; Ohta, T. Seasonal variations in the cooling effect of urban green areas on surrounding urban areas. Urban For. Urban Green. 2010, 9, 15–24. [Google Scholar] [CrossRef]
- Honjo, T.; Takakura, T. Simulation of Thermal Effects of Urban reen Areas on Their Surrounding Areas. Energy Build. 1990, 16, 443–446. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; James, P.; Hutyra, L.R.; He, H.S. Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landsc. Urban Plan. 2014, 128, 35–47. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.Q.; Ouyang, Z.; Qian, Y.; Zhou, W.Q.; Li, W.; Han, L.; Yu, W.; Pickett, S.T.A.; Li, X.; et al. Relationship between land surface temperature and spatial pattern of greenspace: What are the effects of spatial resolution? Landsc. Urban Plan. 2013, 114, 1–8. [Google Scholar] [CrossRef]
- Huang, G.; Zhou, W.; Cadenasso, M.L. Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. J. Environ. Manag. 2011, 92, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Dugord, P.-A.; Lauf, S.; Schuster, C.; Kleinschmit, B. Land use patterns, temperature distribution, and potential heat stress risk—The case study Berlin, Germany. Comput. Environ. Urban Syst. 2014, 48, 86–98. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Yang, C.; He, X.; Yu, L.; Yang, J.; Yan, F.; Bu, K.; Chang, L.; Zhang, S. The cooling effect of urban parks and its monthly variations in a snow climate city. Remote Sens. 2017, 9, 1066. [Google Scholar] [CrossRef]
- Landsat Project Science Office at NASA’s Goddard Space Flight Center. Landsat 7 Science Data Users Handbook; NASA: Washington, DC, USA, 2008; Volume 2008.
- Asgarian, A.; Amiri, B.J.; Sakieh, Y. Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach. Urban Ecosyst. 2015, 18, 209–222. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K. The Gradient Concept of Landscape Structure. Available online: https://www.cambridge.org/core/books/issues-and-perspectives-in-landscape-ecology/gradient-concept-of-landscape-structure/541A6A42FBCB99C9CE046EB915CC1A69 (accessed on 14 January 2019). [CrossRef]
- Tan, C.L.; Wong, N.H.; Tan, P.Y.; Jusuf, S.K.; Chiam, Z.Q. Impact of plant evapotranspiration rate and shrub albedo on temperature reduction in the tropical outdoor environment. Build. Environ. 2015, 94, 206–217. [Google Scholar] [CrossRef]
- Santamouris, M. The role of green spaces, Appropriate materials for the urban environment. In Energy and Climate in the Urban Built Environment; Earthscan: London, UK, 2001; pp. 145–181. [Google Scholar]
- Coutts, A.; Harris, R. A Multi-Scale Assessment of Urban Heating in Melbourne during an Extreme Heat Event: Policy Approaches for Adaptation; Monash University: Monash, Austalia, 2013. [Google Scholar]
- Xie, Q.; Wu, Y.; Zhou, Z.; Wang, Z. Remote sensing study of the impact of vegetation on thermal environment in different contexts. IOP Conf. Ser. Earth Environ. Sci. 2018, 121. [Google Scholar] [CrossRef]
- Nichol, J.E. High-Resolution Surface Temperature Patterns Related to Urban Morphology in a Tropical City: A Satellite-Based Study. J. Appl. Meteorol. 1996, 35, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Onishi, A.; Chen, J.; Imura, H. Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landsc. Urban Plan. 2010, 96, 224–231. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environ. 1998, 33, 115–133. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, T.; Feng, X.; Wang, K. Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing. Int. J. Remote Sens. 2009, 30, 2105–2118. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Miaomiao, X.; Wang, Y. Investigating spatial non-stationary and scale-dependent relationships between urban surface temperature and environmental factors using geographically weighted regression. Environ. Model. Softw. 2010, 25, 1789–1800. [Google Scholar] [CrossRef]
Urban Space Type | Land Cover Type | Characteristics of Land Cover Type |
---|---|---|
Green space | Farmland | Farms, growing crops, paddy fields, etc. |
Waterbody | Rivers (canals), lakes, ponds, etc. | |
Urban green space | Urban parks, urban trees, grasses, gardens, etc. | |
Grey space | Bare land | Lands hard to use, sandy lands, saline-alkali lands, bare lands |
Roof and impervious land | Residential areas, industrial buildings, shopping plazas | |
Road | Roads, traffic lands |
Category | Landscape Indices | Description |
---|---|---|
Configuration | Number of patches (NP) | The number of green patches in study unit |
Largest patch index (LPI) | The proportion of the largest green patch within study unit. | |
Patch density (PD) | The number of green patches per unit area (indicating fragmentation level of landscape and heterogeneity) | |
Shape | Landscape shape index (LSI) | The complexity of landscape structure (indicating the effect of human activities on the pattern of landscape) |
Aggregation index (AI) | Spatial aggregation of green patches within study unit (indicating spatial relationship between green patches) | |
Connectivity | Connectivity (CONNECT) | Connections among green patches |
Type | 2000 | 2005 | 2010 | 2015 | ||||
---|---|---|---|---|---|---|---|---|
Area (km2) | Ratio (%) | Area (km2) | Ratio (%) | Area (km2) | Ratio (%) | Area (km2) | Ratio (%) | |
Grassland | 1.2 | 3.3 | 6.8 | 18.7 | 15.5 | 47.9 | 16.0 | 48.6 |
Forestland | 3.9 | 11.2 | 5.9 | 16.1 | 14.8 | 45.6 | 14.7 | 44.7 |
Waterbody | 6.6 | 18.7 | 1.6 | 4.3 | 2.1 | 6.5 | 2.2 | 6.7 |
Cropland | 23.4 | 66.9 | 22.3 | 60.8 | 0.0 | 0.0 | 0.0 | 0.0 |
LST | PD | CONCT | NP | LPI | AI | DIST | GREEN | LSI | ||
---|---|---|---|---|---|---|---|---|---|---|
LST | PEARSON Correlation | 1 | 0.087 | −098 | 0.133 | −0.450 ** | −0.314 ** | 0.118 | −0.453 ** | 0.082 |
Sig. (2-tailed) | - | 0.280 | 0.224 | 0.097 | 0.000 | 0.000 | 0.138 | 0.000 | 0.310 | |
N | 160 | 160 | 160 | 160 | 160 | 160 | 160 | 160 | 160 |
Landscape index | 2000 | 2005 | 2010 | 2015 | 2000–2015 |
---|---|---|---|---|---|
NP | 39 | 54 | 68 | 100 | 61 |
LSI | 11.71 | 14.96 | 13.31 | 15.59 | 3.88 |
PD | 0.28 | 0.39 | 0.49 | 0.72 | 0.44 |
CONNECT | 1.48 | 1.89 | 1.45 | 0.77 | −0.72 |
AI | 94.55 | 93.37 | 93.89 | 92.00 | −2.54 |
LPI | 11.75 | 21.40 | 9.80 | 3.93 | −7.82 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amani-Beni, M.; Zhang, B.; Xie, G.-D.; Shi, Y. Impacts of Urban Green Landscape Patterns on Land Surface Temperature: Evidence from the Adjacent Area of Olympic Forest Park of Beijing, China. Sustainability 2019, 11, 513. https://doi.org/10.3390/su11020513
Amani-Beni M, Zhang B, Xie G-D, Shi Y. Impacts of Urban Green Landscape Patterns on Land Surface Temperature: Evidence from the Adjacent Area of Olympic Forest Park of Beijing, China. Sustainability. 2019; 11(2):513. https://doi.org/10.3390/su11020513
Chicago/Turabian StyleAmani-Beni, Majid, Biao Zhang, Gao-Di Xie, and Yunting Shi. 2019. "Impacts of Urban Green Landscape Patterns on Land Surface Temperature: Evidence from the Adjacent Area of Olympic Forest Park of Beijing, China" Sustainability 11, no. 2: 513. https://doi.org/10.3390/su11020513
APA StyleAmani-Beni, M., Zhang, B., Xie, G. -D., & Shi, Y. (2019). Impacts of Urban Green Landscape Patterns on Land Surface Temperature: Evidence from the Adjacent Area of Olympic Forest Park of Beijing, China. Sustainability, 11(2), 513. https://doi.org/10.3390/su11020513