Exploring the Spatial Characteristics of Inbound Tourist Flows in China Using Geotagged Photos
Abstract
:1. Introduction
2. Data and Methods
2.1. Data and Processing
2.2. Methodology
2.2.1. Probability of Transfer between Cities
2.2.2. Mining Tourist Travel Patterns
2.2.3. Detecting Tourist Destination City Groups
3. Results
3.1. Spatial Distribution of Geotagged Photos
3.2. Spatial Structure of Inbound Tourist Flows
3.2.1. Overall Spatial Structure of Inbound Tourist Flow
- The strong intra-regional flows form three major and two minor tourist city agglomeration regions. The three major regions are Beijing-Tianjin-Hebei Region, the Yangtze River Delta, and the Pearl River Delta, which represent China’s economically developed urban agglomerations. Higher inbound tourist flows between Diqing-Lijiang-Kunming-Dali in Yunnan Province and Lhasa-Shigatse-Shannan in the Tibet Autonomous Region have created two relatively higher-flow triangles in the central and western regions of China and formed increasingly popular destination agglomeration regions.
- In the eastern region of China, Beijing and Shanghai are the main tourist flow concentration and diffusion cities. In addition, Guangzhou, Shenzhen, Suzhou, and Hangzhou are also important nodes of the inbound tourist flow network in this region. In the central and western regions, the most important tourist flow concentration and diffusion nodes are in the traditional tourism cities like Xi’an and Guilin. Moreover, Chongqing, Chengdu, Yichang, Lijiang, Kunming, and Lhasa are gradually becoming important transfer cities for inbound tourists.
3.2.2. Inbound Tourist Flow between Major Cities
3.2.3. Tourist Flow in Major Urban Agglomerations
3.3. Spatial Pattern of Tourist Movement
3.4. Identifying Groups of Inbound Tourist Destination Cities
4. Discussion
4.1. Distributions and Mechanisms of Tourist Flows
4.2. Scale Effects of Tourist Flows
4.3. Policy Suggestion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mckercher, B.; Lew, A.A. Tourist flows and the spatial distribution of tourists. In A Companion to Tourism; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Boniface, B.; Cooper, C. The Geography of Travel and Tourism; Butterworth-Heinemann: Oxford, UK, 1994; pp. 1–6. [Google Scholar]
- Li, X.; Meng, F.; Uysal, M. Spatial pattern of tourist flows among the Asia-Pacific countries: An examination over a decade. Asia Pac. J. Tour. Res. 2008, 13, 229–243. [Google Scholar] [CrossRef]
- Su, S.; Wan, C.; Hu, Y.; Cai, Z. Characterizing geographical preferences of international tourists and the local influential factors in China using geo-tagged photos on social media. Appl. Geogr. 2016, 73, 26–37. [Google Scholar] [CrossRef]
- Liu, B.; Huang, S.; Fu, H. An application of network analysis on tourist attractions: The case of Xinjiang, China. Tour. Manag. 2017, 58, 132–141. [Google Scholar] [CrossRef]
- Wu, J. Distribution of inbound foreigner tourist flows and its property and structure characters in China. J. Arid Land Res. Environ. 2014, 28, 177–182. [Google Scholar]
- Yang, Y.; Fik, T.; Zhang, J. Modeling sequential tourist flows: Where is the next destination? Ann. Tour. Res. 2013, 43, 297–320. [Google Scholar] [CrossRef]
- Vu, H.Q.; Li, G.; Law, R.; Ye, B.H. Exploring the travel behaviors of inbound tourists to Hong Kong using geotagged photos. Tour. Manag. 2015, 46, 222–232. [Google Scholar] [CrossRef]
- Hu, Y.; Gao, S.; Janowicz, K.; Yu, B.; Li, W.; Prasad, S. Extracting and understanding urban areas of interest using geotagged photos. Comput. Environ. Urban Syst. 2015, 54, 240–254. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, J. Antecedents and consequences of place attachment: A comparison of Chinese and western urban tourists in Hangzhou, China. J. Destin. Mark. Manag. 2016, 5, 86–96. [Google Scholar] [CrossRef]
- Zheng, Y.T.; Zha, Z.J.; Chua, T.S. Mining travel patterns from geo-tagged photos. ACM Trans. Intell. Syst. Technol. 2012, 3, 1–18. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Gao, S.; Gong, L.; Kang, C.; Zhi, Y.; Chi, G.; Shi, L. Social sensing: A new approach to understanding our socioeconomic environments. Ann. Assoc. Am. Geogr. 2015, 105, 512–530. [Google Scholar] [CrossRef]
- García-Palomares, J.C.; Gutierrez, C.; Mínguez, C. Identification of tourist hot spots based on social networks: A comparative analysis of European metropolises using photo-sharing services and GIS. Appl. Geogr. 2015, 63, 408–417. [Google Scholar] [CrossRef]
- Paldino, S.; Bojic, I.; Sobolevsky, S.; Ratti, C.; Gonzalez, M.C. Urban magnetism through the lens of geo-tagged photography. EPJ Data Sci. 2015, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Brabyn, L.; Mark, D.M. Using viewsheds, GIS, and a landscape classification to tag landscape photographs. Appl. Geogr. 2011, 31, 1115–1122. [Google Scholar] [CrossRef]
- Sun, X.; Huang, Z.; Peng, X.; Chen, Y.; Liu, Y. Building a model-based personalised recommendation approach for tourist attractions from geotagged social media data. Int. J. Digit. Earth 2019, 12, 661–678. [Google Scholar] [CrossRef]
- Xia, P.; Zhou, H. A novel popular tourist attraction discovering approach based on geo-tagged social media big data. ISPRS Int. J. Geo-Inf. 2017, 6, 216. [Google Scholar]
- Jiang, K.; Yin, H.; Wang, P.; Yu, N. Learning from contextual information of geo-tagged web photos to rank personalized tourism attractions. Neurocomputing 2013, 119, 17–25. [Google Scholar] [CrossRef]
- Memon, I.; Chen, J.; Majid, A.; Lv, M.; Hussain, I.; Chen, G. Travel recommendation using geo-tagged photos in social media for tourist. Wirel. Pers. Commun. 2015, 80, 1347–1362. [Google Scholar] [CrossRef]
- Sun, Y.; Fan, H.; Bakillah, M.; Zipf, A. Road-based travel recommendation using geo-tagged images. Comput. Environ. Urban Syst. 2015, 53, 110–122. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, C.; Kimmons, B. Detecting tourism destinations using scalable geospatial analysis based on cloud computing platform. Comput. Environ. Urban Syst. 2015, 54, 144–153. [Google Scholar] [CrossRef]
- Wu, X.; Huang, Z.; Peng, X.; Chen, Y.; Liu, Y. Building a spatially-embedded network of tourism hotspots from geotagged social media data. IEEE Access 2018, 6, 21945–21955. [Google Scholar] [CrossRef]
- Orsi, F.; Geneletti, D. Using geotagged photographs and GIS analysis to estimate visitor flows in natural areas. J. Nat. Conserv. 2013, 21, 359–368. [Google Scholar] [CrossRef]
- Chua, A.; Servillo, L.; Marcheggiani, E.; Vande Moere, A. Mapping Cilento: Using geotagged social media data to characterize tourist flows in southern Italy. Tour. Manag. 2016, 57, 295–310. [Google Scholar] [CrossRef]
- Qin, J.; Li, L.; Tang, M.; Sun, Y.; Song, X. Exploring the spatial characteristics of Beijing inbound tourist flow based on geotagged photos. Acta Geogr. Sin. 2018, 73, 1556–1570. [Google Scholar]
- Shao, H.; Zhang, Y.; Li, W. Extraction and analysis of city’s tourism districts based on social media data. Comput. Environ. Urban Syst. 2017, 65, 66–78. [Google Scholar] [CrossRef]
- Yang, Y.; Wong, K.F. Spatial distribution of tourist flows to China’s cities. Tour. Geogr. 2013, 15, 338–363. [Google Scholar] [CrossRef]
- Xia, J.; Zeephongsekul, P.; Arrowsmith, C. Modelling spatio-temporal movement of tourists using finite Markov chains. Math. Comput. Simul. 2009, 79, 1544–1553. [Google Scholar] [CrossRef]
- Wang, Y.F.; Cheng, S.; Hsu, M.H. Incorporating the markov chain concept into fuzzy stochastic prediction of stock indexes. Appl. Soft Comput. 2010, 10, 613–617. [Google Scholar] [CrossRef]
- Qiao, Y.; Si, Z.; Zhang, Y.; Abdesslem, F.B.; Zhang, X.; Yang, J. A hybrid markov-based model for human mobility prediction. Neurocomputing 2018, 278, 99–109. [Google Scholar] [CrossRef]
- Tseng, Y.T.; Kawashima, S.; Kobayashi, S.; Takeuchi, S.; Nakamura, K. Forecasting the seasonal pollen index by using a hidden Markov model combining meteorological and biological factors. Sci. Total Environ. 2019. [Google Scholar] [CrossRef]
- Ali, M.; Deo, R.C.; Downs, N.J.; Maraseni, T. Multi-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-Bat algorithm for rainfall forecasting. Atmos. Res. 2018, 213, 450–464. [Google Scholar] [CrossRef]
- Yun, U. Mining lossless closed frequent patterns with weight constraints. Knowl. Based Syst. 2017, 20, 86–97. [Google Scholar] [CrossRef]
- Lee, A.J.; Chen, Y.A.; Ip, W.C. Mining frequent trajectory patterns in spatial–temporal databases. Inf. Sci. 2009, 179, 2218–2231. [Google Scholar] [CrossRef]
- Shaw, A.A.; Gopalan, N.P. Finding longest frequent trajectory of dynamic objects using association approaches. Intell. Data Anal. 2014, 18, 637–651. [Google Scholar] [CrossRef]
- Lancichinetti, A.; Fortunato, S. Community detection algorithms: A comparative analysis. Phys. Rev. E 2009, 80, 056117. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Arisona, S.M.; Huang, X.; Batty, M.; Schmitt, G. Detecting the dynamics of urban structure through spatial network analysis. Int. J. Geogr. Inf. Sci. 2014, 28, 2178–2199. [Google Scholar] [CrossRef]
- Agrawal, R.; Srikant, R. Fast algorithms for mining association rules. In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB), Santiago, Chile, 12–15 September 1994; pp. 487–499. [Google Scholar]
- Sobolevsky, S.; Campari, R.; Belyi, A.; Ratti, C. General optimization technique for high-quality community detection in complex networks. Phys. Rev. E 2014, 90, 012811. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E. Detecting community structure in networks. Eur. Phys. J. B 2004, 38, 321–330. [Google Scholar] [CrossRef]
- Chen, J.; Yang, S.T.; Li, H.W.; Zhang, B.; Lv, J.R. Research on geographical environment unit division based on the method of natural breaks (jenks). ISPR Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-4/W3, 47–50. [Google Scholar] [CrossRef]
Popularity Rank | City Name | Percentage (%) | Tier |
---|---|---|---|
1 | Beijing | 38.26 | First |
2 | Shanghai | 31.41 | |
3 | Xi’an | 7.39 | |
4 | Guangzhou | 7.04 | |
5 | GuiLin | 6.17 | |
6 | Shenzhen | 5.87 | Second |
7 | Hangzhou | 5.38 | |
8 | Suzhou | 5.00 | |
9 | Chengdu | 4.81 | |
10 | Lijiang | 3.02 | |
11 | Lhasa | 2.83 | |
12 | Chongqing | 2.61 | |
13 | Nanjing | 2.53 | |
14 | Kunming | 2.45 | |
15 | Xiamen | 2.15 | Third |
16 | Dali bai autonomous prefecture | 2.04 | |
17 | Ngawa Tibetan and Qiang autonomous prefecture | 1.93 | |
18 | Diqing Tibetan autonomous prefecture | 1.74 | |
19 | Fuzhou | 1.60 | |
20 | Wuhan | 1.60 |
Rank | Start City | Destination City | Transition Probability | Number of Flow |
---|---|---|---|---|
1 | Beijing | Shanghai | 0.236 | 178 |
2 | Shanghai | Beijing | 0.241 | 163 |
3 | Beijing | Xi’an | 0.129 | 97 |
4 | Suzhou | Shanghai | 0.521 | 85 |
5 | Hangzhou | Shanghai | 0.394 | 69 |
6 | Shanghai | Hangzhou | 0.101 | 68 |
7 | Xi’an | Beijing | 0.257 | 67 |
8 | Shanghai | Suzhou | 0.096 | 65 |
9 | Xi’an | Shanghai | 0.138 | 36 |
10 | Jianxing | Shanghai | 0.614 | 35 |
11 | Shanghai | Nanjing | 0.050 | 34 |
12 | Shanghai | Jiaxing | 0.049 | 33 |
13 | Dali bai autonomous prefecture | Lijiang | 0.400 | 32 |
14 | Guilin | Shanghai | 0.200 | 32 |
15 | Lhasa | Shikatse | 0.307 | 31 |
16 | Lijiang | Diqing Tibetan autonomous prefecture | 0.292 | 31 |
17 | Shanghai | Shenzhen | 0.046 | 31 |
18 | Shanghai | Guilin | 0.044 | 30 |
19 | Nanjing | Shanghai | 0.318 | 28 |
20 | Diqing Tibetan autonomous prefecture | Lijiang | 0.368 | 25 |
City 1 | City 2 | Percentage (%) |
---|---|---|
Beijing | Shanghai | 18.67 |
Shanghai | Beijing | 14.87 |
Xi’an | Beijing | 7.33 |
Suzhou | Shanghai | 6.75 |
Hangzhou | Shanghai | 5.53 |
Shanghai | Xi’an | 5.46 |
Guilin | Beijing | 4.38 |
Guilin | Shanghai | 4.02 |
Chengdu | Beijing | 3.52 |
Chengdu | Shanghai | 3.23 |
Suzhou | Beijing | 2.87 |
Shenzhen | Beijing | 2.80 |
Nanjing | Shanghai | 2.80 |
Shenzhen | Shanghai | 2.66 |
Hangzhou | Beijing | 2.51 |
Chongqing | Shanghai | 2.51 |
Guangzhou | Shanghai | 2.44 |
Chongqing | Beijing | 2.30 |
Guanghzou | Beijing | 2.30 |
Beijing | Tianjin | 2.16 |
City 1 | City 2 | City 3 | Percentage (%) |
---|---|---|---|
Shanghai | Xi’an | Beijing | 3.38 |
Suzhou | Shanghai | Beijing | 2.23 |
Guilin | Shanghai | Beijing | 1.80 |
Hangzhou | Shanghai | Beijing | 1.58 |
Suzhou | Hangzhou | Shanghai | 1.51 |
Guilin | Shanghai | Xi’an | 1.51 |
Chongqin | Shanghai | Beijing | 1.36 |
Chengdu | Shanghai | Beijing | 1.29 |
Shenzhen | Shanghai | Beijing | 1.29 |
Suzhou | Shanghai | Xi’an | 1.29 |
Nanjing | Shanghai | Beijing | 1.15 |
Chongqin | Yichang | Shanghai | 1.15 |
Chengdu | Xi’an | Beijing | 1.08 |
Chongqin | Xi’an | Beijing | 1.08 |
Guilin | Xi’an | Beijing | 1.08 |
Shikatse | Shannan | Lhasa | 1.08 |
Hangzhou | Shanghai | Xi’an | 1.01 |
Chendu | Shanghai | Xi’an | 1.01 |
Chongqing | Shanghai | Xi’an | 1.01 |
Chongqing | Yichang | Beijing | 0.93 |
City 1 | City 2 | City 3 | City 4 | Percentage (%) |
---|---|---|---|---|
Guilin | Shanghai | Xi’an | Beijing | 2.30 |
Chongqing | Yichang | Shanghai | Beijing | 1.44 |
Chongqing | Shanghai | Xi’an | Beijing | 1.72 |
Suzhou | Hangzhou | Shanghai | Beijing | 1.44 |
Suzhou | Shanghai | Xi’an | Beijing | 1.65 |
Hangzhou | Shanghai | Xi’an | Beijing | 1.65 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, J.; Song, C.; Tang, M.; Zhang, Y.; Wang, J. Exploring the Spatial Characteristics of Inbound Tourist Flows in China Using Geotagged Photos. Sustainability 2019, 11, 5822. https://doi.org/10.3390/su11205822
Qin J, Song C, Tang M, Zhang Y, Wang J. Exploring the Spatial Characteristics of Inbound Tourist Flows in China Using Geotagged Photos. Sustainability. 2019; 11(20):5822. https://doi.org/10.3390/su11205822
Chicago/Turabian StyleQin, Jing, Ci Song, Mingdi Tang, Youyin Zhang, and Jinwei Wang. 2019. "Exploring the Spatial Characteristics of Inbound Tourist Flows in China Using Geotagged Photos" Sustainability 11, no. 20: 5822. https://doi.org/10.3390/su11205822
APA StyleQin, J., Song, C., Tang, M., Zhang, Y., & Wang, J. (2019). Exploring the Spatial Characteristics of Inbound Tourist Flows in China Using Geotagged Photos. Sustainability, 11(20), 5822. https://doi.org/10.3390/su11205822