The Sustainable Cultivation of Mexican Nontoxic Jatropha Curcas to Produce Biodiesel and Food in Marginal Rural Lands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Plant Material
2.2. Nontoxicity Test
2.3. Growth and Plants Survival
2.4. Seed, Biomass and Oil Production
2.5. Statistical Analysis
2.6. Endosperm and Oil Characterization
2.7. Soil Analysis
3. Results and discussion
3.1. Growth and Survival of Non-Toxic Ecotypes
3.2. Yield in the Production of Seeds, Biomass and Oil Content
3.3. Oil Physicochemical Properties
3.4. Endosperm Chemical Properties
3.5. Changes in the Chemical Properties of the Soil
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lim, B.Y.; Shamsudin, R.; Baharudin, B.T.; Yunus, R. A Review of Processing and Machinery for Jatropha curcas L. Fruits and Seeds in Biodiesel Production: Harvesting, Shelling, Pretreatment and Storage. Renew. Sustain. Energy Rev. 2015, 52, 991–1002. [Google Scholar] [CrossRef]
- Navarro-Pineda, F.S.; Baz-Rodríguez, S.A.; Handler, R.; Sacramento-Rivero, J.C. Advances on the Processing of Jatropha curcas towards a Whole-Crop Biorefinery. Renew. Sustain. Energy Rev. 2016, 54, 247–269. [Google Scholar] [CrossRef]
- Achten, W.M.; Verchot, L.; Franken, Y.J.; Mathijs, E.; Singh, V.P.; Aerts, R.; Muys, B. Jatropha Bio-Diesel Production and Use. Biomass Bioenergy 2008, 32, 1063–1084. [Google Scholar] [CrossRef]
- Fini, A.; Bellasio, C.; Pollastri, S.; Tattini, M.; Ferrini, F. Water Relations, Growth, and Leaf Gas Exchange as Affected by Water Stress in Jatropha curcas. J. Arid Environ. 2013, 89, 21–29. [Google Scholar] [CrossRef]
- Ong, H.C.; Mahlia, T.M.; Masjuki, H.H.; Norhasyima, R.S. Comparison of Palm Oil, Jatropha curcas and Calophyllum inophyllum for Biodiesel: A Review. Renew. Sustain. Energy Rev. 2011, 15, 3501–3515. [Google Scholar] [CrossRef]
- Wani, S.P.; Chander, G.; Sahrawat, K.L.; Srinivasa, R.C.; Raghvendra, G.; Susanna, P.; Pavani, M. Carbon Sequestration and Land Rehabilitation through Jatropha curcas (L.) Plantation in Degraded Lands. Agric. Ecosyst. Environ. 2012, 161, 112–120. [Google Scholar] [CrossRef]
- Reubens, B.; Achten, W.M.; Maes, W.H.; Danjon, F.; Aerts, R.; Poesen, J.; Muys, B. More than Biofuel? Jatropha Curcas Root System Symmetry and Potential for Soil Erosion Control. J. Arid Environ. 2011, 75, 201–205. [Google Scholar] [CrossRef]
- Mantri, V.A.; Parmar, D.R.; Rao, P.N.; Ghosh, A. Observations on Ecosystem Services in Jatropha curcas Plantations Established in Degraded Lands in India. Int. J. Environ. Stud. 2014, 71, 209–214. [Google Scholar] [CrossRef]
- Borman, G.D.; Von Maltitz, G.P.; Tiwari, S.; Scholes, M.C. Modelling the Economic Returns to Labour for Jatropha Cultivation in Southern Africa and India at Different Local Fuel Prices. Biomass Bioenergy 2013, 59, 70–83. [Google Scholar] [CrossRef]
- Dawa, A.; Klemola, T.; Saloniemi, I.; Niemelä, P.; Vuorisalo, T. Energy for Sustainable Development Factors Affecting Genetic and Seed Yield Variability of Jatropha curcas (L.) across the Globe: A Review. Energy Sustain. Dev. 2017, 42, 170–182. [Google Scholar] [CrossRef]
- Singh, K.; Singh, B.; Verma, S.K.; Patra, D.D. Jatropha curcas: A Ten Year Story from Hope to Despair. Renew. Sustain. Energy Rev. 2014, 35, 356–360. [Google Scholar] [CrossRef]
- Rivero, J.C.; Eastmond-Spencer, A.; García, J.B.; Navarro-Pineda, F.S. A Three-Dimensional Sustainability Evaluation of Jatropha Plantations in Yucatan, Mexico. Sustainablity 2016, 8, 1316. [Google Scholar] [CrossRef]
- Wang, Z.; Calderon, M.M.; Lu, Y. Lifecycle Assessment of the Economic, Environmental and Energy Performance of Jatropha curcas L. Biodiesel in China. Biomass Bioenergy 2011, 35, 2893–2902. [Google Scholar] [CrossRef]
- Jabłoński, S.J.; Kułażyński, M.; Sikora, I.; Łukaszewicz, M. The Influence of Different Pretreatment Methods on Biogas Production from Jatropha curcas Oil Cake. J. Environ. Manag. 2017, 203, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Manurung, R.; Wever, D.Z.; Wildschut, J.; Venderbosch, R.H.; Hidayat, H.; van Dam, J.E.; Leijenhorst, E.J.; Broekhuis, A.A.; Heeres, H.J. Valorisation of Jatropha curcas L. Plant Parts: Nut Shell Conversion to Fast Pyrolysis Oil. Food Bioprod. Process. 2009, 87, 187–196. [Google Scholar] [CrossRef]
- Naik, D.V.; Kumar, R.; Tripathi, D.; Singh, R.; Kanaujia, P.K. Co-Pyrolysis of Jatropha Curcas Seed Cake and Bituminous Coal: Product Pattern Analysis. J. Anal. Appl. Pyrolysis 2016, 121, 360–368. [Google Scholar] [CrossRef]
- Wever, D.A.; Heeres, H.J.; Broekhuis, A.A. Characterization of Physic Nut (Jatropha curcas L.) Shells. Biomass Bioenergy 2012, 37, 177–187. [Google Scholar] [CrossRef]
- León-Villanueva, A.; Huerta-Ocampo, J.A.; Barrera-Pacheco, A.; Medina-Godoy, S.; Barba de la Rosa, A.P. Proteomic Analysis of Non-Toxic Jatropha curcas Byproduct Cake: Fractionation and Identification of the Major Components. Ind. Crops Prod. 2018, 111, 694–704. [Google Scholar] [CrossRef]
- Makkar, H.P.; Becker, K. Jatropha Curcas, a Promising Crop for the Generation of Biodiesel and Value-Added Coproducts. Eur. J. Lipid Sci. Technol. 2009, 111, 773–787. [Google Scholar] [CrossRef]
- Sánchez-Arreola, E.; Martin-Torres, G.; Lozada-Ramírez, J.D.; Hernández, L.R.; Bandala-González, E.R.; Bach, H. Biodiesel Production and de-Oiled Seed Cake Nutritional Values of a Mexican Edible Jatropha Curcas. Renew. Energy 2015, 76, 143–147. [Google Scholar] [CrossRef]
- Martínez-Díaz, Y.; González-Rodríguez, A.; Delgado-Lamas, G.; Espinosa-García, F.J. Geographic Structure of Chemical Variation in Wild Populations of the Fuel Crop Jatropha curcas L. in Mexico. Ind. Crops Prod. 2015, 74, 63–68. [Google Scholar] [CrossRef]
- He, W.; King, A.J.; Khan, M.A.; Cuevas, J.A.; Ramiaramanana, D.; Graham, I.A. Analysis of Seed Phorbol-Ester and Curcin Content Together with Genetic Diversity in Multiple Provenances of Jatropha curcas L. from Madagascar and Mexico. Plant Physiol. Biochem. 2011, 49, 1183–1190. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Herrera, J.; Martíne Ayala, A.; Makkar, H.; Francis, G.; Becker, K. Agroclimatic Conditions, Chemical and Nutritional Characterization of Different Provenances of Jatropha curcas L. from Mexico. Eur. J. Sci. Res. 2010, 39, 396–407. [Google Scholar]
- Aregheore, E.M.; Makkar, H.P.; Becker, K. Assessment of Lectin Activit Y in a Toxic and a Non-Toxic Variety of Jatropha curcas Using Latex Agglutination and Haemagglutination Methods and Inactivation of Lectin by Heat Treatments. J. Sci. Food Agric. 1998, 77, 349–352. [Google Scholar] [CrossRef]
- Goel, G.; Makkar, H.P.; Francis, G.; Becker, K. Phorbol Esters: Structure, Biological Activity, and Toxicity in Animals. Int. J. Toxicol. 2007, 26, 279–288. [Google Scholar] [CrossRef]
- Saetae, D.; Suntornsuk, W. Toxic Compound, Anti-Nutritional Factors and Functional Properties of Protein Isolated from Detoxified Jatropha curcas Seed Cake. Int. J. Mol. Sci. 2011, 12, 66–77. [Google Scholar] [CrossRef]
- Kumar, V.; Makkar, H.P.; Amselgruber, W.; Becker, K. Physiological, Haematological and Histopathological Responses in Common Carp (Cyprinus carpio L.) Fingerlings Fed with Differently Detoxified Jatropha curcas Kernel Meal. Food Chem. Toxicol. 2010, 48, 2063–2072. [Google Scholar] [CrossRef]
- Makkar, H.P. State-of-the-Art on Detoxification of Jatropha curcas Products Aimed for Use as Animal and Fish Feed: A Review. Anim. Feed Sci. Technol. 2016, 222, 87–99. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, H. Comparative Evaluation of Jatropha curcas L. Seed Meals Obtained by Different Methods of Defatting on Toxic, Antinutritional and Nutritive Factors. J. Food Sci. Technol. 2014, 51, 1126–1132. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, H.; Niu, L.; Wang, X.; Lu, X. Evaluation of Detoxification Methods on Toxic and Antinutritional Composition and Nutritional Quality of Proteins in Jatropha curcas Meal. J. Agric. Food Chem. 2011, 59, 4040–4044. [Google Scholar] [CrossRef]
- Pecina-Quintero, V.; Anaya-López, J.L.; Zamarripa-Colmenero, A.; Núñez-Colín, C.A.; Montes-García, N.; Solís-Bonilla, J.L.; Jiménez-Becerril, M.F. Genetic Structure of Jatropha curcas L. in Mexico and Probable Centre of Origin. Biomass Bioenergy 2014, 60, 147–155. [Google Scholar] [CrossRef]
- Makkar, H.P.; Becker, K.; Schmook, B. Edible Provenances of Jatropha curcas from Quintana Roo State of Mexico and Effect of Roasting on Antinutrient and Toxic Factors in Seeds. Plant Foods Hum. Nutr. 1998, 52, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Herrera, J.; Siddhuraju, P.; Francis, G.; Dávila-Ortíz, G.; Becker, K. Chemical Composition, Toxic/antimetabolic Constituents, and Effects of Different Treatments on Their Levels, in Four Provenances of Jatropha curcas L. from Mexico. Food Chem. 2006, 96, 80–89. [Google Scholar] [CrossRef]
- Oliveira, P.B.; Lima, P.M.; Campeche, A.; Mendonça, S.; Laviola, B.G.; McManus, C.; Louvandini, H. Growth and Carcass Characteristics of Santa Inês Lambs Fed Diet Supplemented with Physic Nut Meal Free of Phorbol Ester. Small Rumin. Res. 2013, 114, 20–25. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, A.S.; Kumari, S.; Reddy, M.P. Biotechnological Approaches for the Genetic Improvement of Jatropha curcas L.: A Biodiesel Plant. Ind. Crops Prod. 2015, 76, 817–828. [Google Scholar] [CrossRef]
- Laviola, B.G.; Rodrigues, E.V.; Teodoro, P.E.; Peixoto, L.A.; Bhering, L.L. Biometric and Biotechnology Strategies in Jatropha Genetic Breeding for Biodiesel Production. Renew. Sustain. Energy Rev. 2017, 76, 894–904. [Google Scholar] [CrossRef]
- Senger, E.; Martin, M.; Dongmeza, E.; Montes, J.M. Genetic Variation and Genotype by Environment Interaction in Jatropha curcas L. Germplasm Evaluated in Different Environments of Cameroon. Biomass Bioenergy 2016, 91, 12–18. [Google Scholar] [CrossRef]
- Haas, W.; Sterk, H.; Mittelbach, M. Novel 12-Deoxy-16-Hydroxyphorbol Diesters Isolated from the Seed Oil of Jatropha curcas. J. Nat. Prod. 2002, 65, 1434–1440. [Google Scholar] [CrossRef]
- Islas, J.M.; Manzini, F.L.; Martinez, E.; Pérez, M.J.; Toledo, I.I. Base de Datos de Parametros Biofísicos de 15 Ecotipos de Jatropha Curcas de la Plantación Experimental de Miacatlán, Morelos; Número de Registro de la Base de Datos: 03-2013-020113160600-01; Registro Público Del Derecho de Autor: Puebla, México, 2013.
- Singh, B.; Singh, K.; Rejeshwar Rao, G.; Chikara, J.; Kumar, D.; Mishra, D.K.; Saikia, S.P.; Pathre, U.V.; Raghuvanshi, N.; Rahi, T.S.; et al. Agro-Technology of Jatropha curcas for Diverse Environmental Conditions in India. Biomass Bioenergy 2013, 48, 191–202. [Google Scholar] [CrossRef]
- Naresh, B.; Reddy, M.S.; Vijayalakshmi, P.; Reddy, V.; Devi, P. Physico-Chemical Screening of Accessions of Jatropha curcas for Biodiesel Production. Biomass Bioenergy 2012, 40, 155–161. [Google Scholar] [CrossRef]
- Coutinho, D.J.; Barbosa, M.O.; de Souza, R.J.; da Silva, A.S.; da Silva, S.I.; de Oliveira, A.F. Biodiesel Potential of the Seed Oils from Some Brazilian Native Euphorbiaceae Species. Renew. Energy 2016, 91, 275–281. [Google Scholar] [CrossRef]
- Helwani, Z.; Aziz, N.; Kim, J.; Othman, M.R. Improving the Yield of Jatropha Curcas’s FAME through Sol-Gel Derived Meso-Porous Hydrotalcites. Renew. Energy 2016, 86, 68–74. [Google Scholar] [CrossRef]
- Kamel, D.A.; Farag, H.A.; Amin, N.K.; Zatout, A.A.; Ali, R.M. Smart Utilization of Jatropha (Jatropha curcas Linnaeus) Seeds for Biodiesel Production: Optimization and Mechanism. Ind. Crops Prod. 2018, 111, 407–413. [Google Scholar] [CrossRef]
- Dharma, S.; Masjuki, H.H.; Ong, H.C.; Sebayang, A.H.; Silitonga, A.S.; Kusumo, F.; Mahlia, T.M. Optimization of Biodiesel Production Process for Mixed Jatropha curcas-Ceiba Pentandra Biodiesel Using Response Surface Methodology. Energy Convers. Manag. 2016, 115, 178–190. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, M.P. Kinetics of Acid Base Catalyzed Transesterification of Jatropha curcas Oil. Bioresour. Technol. 2010, 101, 7701–7706. [Google Scholar] [CrossRef]
- Kaushik, N.; Bhardwaj, D. Screening of Jatropha curcas Germplasm for Oil Content and Fatty Acid Composition. Biomass Bioenergy 2013, 58, 210–218. [Google Scholar] [CrossRef]
- Pedro, I.; Andrade, D.S.; Vinícius, M.; Diego, A. Fatty Acid Composition of Jatropha curcas Seeds under Different Agronomical Conditions by Means of 1H HR-MAS NMR. Biomass Bioenergy 2017, 101, 30–34. [Google Scholar] [CrossRef]
- Makkar, H.P.; Becker, K.; Sporer, F.; Wink, M. Studies on Nutritive Potential and Toxic Constituents of Different Provenances of Jatropha curcas. J. Agric. Food Chem. 1997, 45, 3152–3157. [Google Scholar] [CrossRef]
- Marrufo-Estrada, D.M.; Segura-Campos, M.R.; Chel-Guerrero, L.A.; Betancur-Ancona, D.A. Defatted Jatropha curcas Flour and Protein Isolate as Materials for Protein Hydrolysates with Biological Activity. Food Chem. 2013, 138, 77–83. [Google Scholar] [CrossRef]
Ecotypes | Origin States | Phorbol Ester Content 1 (mg mL−1) |
---|---|---|
E1M | Morelos | Not-detected |
E2M | Morelos | Not-detected |
E3M | Morelos | Not-detected |
E4M | Morelos | Not-detected |
E5M | Morelos | Not-detected |
E6O | Oaxaca | 1.5 |
E7O | Oaxaca | 0.9 |
E8O | Oaxaca | 1.3 |
E9C | Michoacán | 0.6 |
Ecotypes | Fruit Yield | Seed wt 2 (% of Fruit) | Pericarp wt 2 (% of Fruit) | Seed Yield | Pericarp Yield | Endosperm Yield | Tegument Yield | Total Residual Biomass 3 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kg/Plant | kg ha −1 | kg/Plant | Kg ha−1 | kg/ha | Endosperm wt (% of Seed) | Kg ha−1 | Tegument wt (% of Seed) | kg ha−1 | kg ha−1 | ||||||||||||||
E1M | 0.75 1 | + | 0.26 | A | 946 | 65.3 | 34.7 | + | 4.9 | 0.49 | 618 | 329 | 60.5 | + | 0.5 | A | 376 | 39.2 | + | 0.6 | B | 243 | 571 |
- | - | - | - | ||||||||||||||||||||
E2M | 0.81 1 | + | 0.39 | A | 1021 | 68.5 | 31.5 | + | 2.9 | 0.56 | 700 | 322 | 58.8 | + | 1.0 | AB | 411 | 41.5 | + | 0.9 | AB | 290 | 612 |
- | - | - | - | ||||||||||||||||||||
E3M | 0.24 | + | 0.06 | B | 303 | 70.3 | 29.7 | + | 1.2 | 0.17 | 213 | 90 | 55.5 | + | 4.3 | B | 118 | 44.5 | + | 4.3 | A | 95 | 185 |
- | - | - | - | ||||||||||||||||||||
E4M | 0.10 | + | 0.01 | B | 120 | 64.1 | 35.9 | + | 3.7 | 0.06 | 74 | 43 | 58.3 | + | 2.7 | AB | 43 | 41.9 | + | 2.7 | AB | 31 | 74 |
- | - | - | - | ||||||||||||||||||||
E5M | 0.37 | + | 0.08 | B | 459 | 69.4 | 30.6 | + | 0.7 | 0.25 | 318 | 140 | 58.3 | + | 1.1 | AB | 185 | 41.9 | + | 1.2 | AB | 133 | 274 |
- | - | - | - |
Ecotypes | Oil Yield 1 | Endosperm Cake Yield | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
% Oil in Endosperm | % Oil in Seed | kg ha−1 | % Endosperm with Oil Removed | kg ha−1 | |||||||
E1M | 52.2 | 31.5 | + | 2.5 | A | 196 | 47.8 | + | 2.5 | B | 180 |
- | - | ||||||||||
E2M | 46.5 | 27.3 | + | 1.5 | B | 191 | 53.5 | + | 1.5 | A | 220 |
- | - | ||||||||||
E3M | 51.6 | 28.6 | + | 3.8 | AB | 61 | 48.4 | + | 3.8 | B | 57 |
- | - | ||||||||||
E4M | 50.4 | 29.4 | + | 1.7 | AB | 22 | 49.6 | + | 1.7 | A | 21 |
- | - | ||||||||||
E5M | 44.8 | 26.1 | + | 1.1 | B | 83 | 55.2 | + | 1.1 | A | 102 |
- | - |
Physicohemical Property | E1M | E2M | |||
---|---|---|---|---|---|
Oil | Density at 15 °C (g cm−13) | 0.919 | 0.918 | ||
Specific gravity at 15 °C | 0.919 | 0.919 | |||
Viscosity at 40 °C (cSt) | 31.88 | 31.66 | |||
Calorific value (MJ kg−1) | 39.45 | 39.47 | |||
% fatty acid content | Myristic | C14:0 | 0.217 | 0.226 | |
Palmitic | C16:0 | 10.216 | 11.215 | ||
Palmitoleic | C16:1 | 0.415 | 0.582 | ||
Stearic | C18:0 | 8.951 | 7.497 | ||
Oleic | C18:1 | 42.174 | 40.169 | ||
Linoleic | C18:2 | 36.763 | 39.359 | ||
Linolenic | C18:3 | 0.318 | 0.243 | ||
Others | 1.362 | 0.711 | |||
Total saturated | 19.725 | 19.474 | |||
Total unsaturated | 80.127 | 80.352 | |||
Endosperm | Crude protein 1 (%) | 21.7 | 26.0 | ||
lipid 2 (%) | 60.9 | 63.3 | |||
ash 3 (%) | 3.0 | 2.9 | |||
Crude fiber 4 (%) | 10.7 | 4 | |||
Dietary fiber 2 (%) | 36.3 | 34.2 | |||
Gross energy 5 (MJ kg−1) | 27.3 | 28.7 |
Physical and Chemical Properties | 2008 | 2018 | |
---|---|---|---|
Texture | Sand (%) | 25 | 18 |
Silt (%) | 23 | 25 | |
Clay (%) | 52 | 57 | |
pH | 7.6 | 7.9 | |
EC (dS/m) | 0.5 | 0.4 | |
OM (%) | 2.8 | 3.5 | |
N av (mg/kg) | 6.0 | 9.1 | |
P av (mg/kg) | 7.0 | 10.7 | |
K av (mg/kg) | 216.0 | 364.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez, G.; Islas, J.; Guevara, M.; Suárez, R. The Sustainable Cultivation of Mexican Nontoxic Jatropha Curcas to Produce Biodiesel and Food in Marginal Rural Lands. Sustainability 2019, 11, 5823. https://doi.org/10.3390/su11205823
Pérez G, Islas J, Guevara M, Suárez R. The Sustainable Cultivation of Mexican Nontoxic Jatropha Curcas to Produce Biodiesel and Food in Marginal Rural Lands. Sustainability. 2019; 11(20):5823. https://doi.org/10.3390/su11205823
Chicago/Turabian StylePérez, Guadalupe, Jorge Islas, Mirna Guevara, and Raúl Suárez. 2019. "The Sustainable Cultivation of Mexican Nontoxic Jatropha Curcas to Produce Biodiesel and Food in Marginal Rural Lands" Sustainability 11, no. 20: 5823. https://doi.org/10.3390/su11205823
APA StylePérez, G., Islas, J., Guevara, M., & Suárez, R. (2019). The Sustainable Cultivation of Mexican Nontoxic Jatropha Curcas to Produce Biodiesel and Food in Marginal Rural Lands. Sustainability, 11(20), 5823. https://doi.org/10.3390/su11205823