Mapping Cropland Abandonment in Mountainous Areas Using an Annual Land-Use Trajectory Approach
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Methods
3.1. A Framework for Identifying Abandoned Cropland
3.2. The Technique Flow for Mapping Abandoned Cropland
3.3. Mapping Land Use Using the CART Model
3.4. Detecting Land Use Trajectory from 2012 to 2017
3.5. Assessing the Accuracy of the Cropland Abandonment
4. Results
4.1. Land Use Patterns in Zhongduo in 2012
4.2. Distribution of Different Types of Cropland
4.3. The Cropland Abandonment Rate
4.4. Timing of Cropland Abandonment
5. Discussion
5.1. Land Quality of Abandoned Cropland
5.2. Changes in Spontaneous Cropland Abandonment Rate with Variations of Influence Factors
5.3. Stability of Cropland Abandonment
5.4. Positives and Weaknesses of the Research
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Shi, T.; Li, X.; Xin, L.; Xu, X. The spatial distribution of farmland abandonment and its influential factors at the township level: A case study in the mountainous area of China. Land Use Policy 2018, 70, 510–520. [Google Scholar] [CrossRef]
- Queiroz, C.; Beilin, R.; Folke, C.; Lindborg, R. Farmland abandonment: Threat or opportunity for biodiversity conservation? A global review. Front. Ecol. Environ. 2014, 12, 288–296. [Google Scholar] [CrossRef]
- Xu, F.; Ho, H.C.; Chi, G.; Wang, Z. Abandoned rural residential land: Using machine learning techniques to identify rural residential land vulnerable to be abandoned in mountainous areas. Habitat Int. 2019, 84, 43–56. [Google Scholar] [CrossRef]
- Shi, T.; Li, X.; Xin, L.; Xu, X. Analysis of Farmland Abandonment at Parcel Level: A Case Study in the Mountainous Area of China. Sustainability 2016, 8, 988. [Google Scholar] [CrossRef]
- Zambon, I.; Ferrara, A.; Salvia, R.; Mosconi, M.E.; Fici, L.; Turco, R.; Salvati, L. Rural Districts between Urbanization and Land Abandonment: Undermining Long-Term Changes in Mediterranean Landscapes. Sustainability 2018, 10, 1159. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Song, W.; Zhai, L. Land abandonment under rural restructuring in China explained from a cost-benefit perspective. J. Rural Stud. 2016, 47, 524–532. [Google Scholar] [CrossRef]
- Hao, P.; Tang, S. Floating or settling down: the effect of rural landholdings on the settlement intention of rural migrants in urban China. Environ. Plan. A Econ. Space 2015, 47, 1979–1999. [Google Scholar] [CrossRef]
- Löw, F.; Prishchepov, A.; Waldner, F.; Dubovyk, O.; Akramkhanov, A.; Biradar, C.; Lamers, J. Mapping Cropland abandonment in the Aral Sea Basin with MODIS time series. Remote Sens. 2018, 10, 159. [Google Scholar] [CrossRef]
- Rudel, T.K.; Schneider, L.; Uriarte, M.; Turner, B.L.; DeFries, R.; Lawrence, D.; Geoghegan, J.; Hecht, S.; Ickowitz, A.; Lambin, E.F.; et al. Agricultural intensification and changes in cultivated areas, 1970–2005. Proc. Natl. Acad. Sci. USA 2009, 106, 20675. [Google Scholar] [CrossRef]
- Navarro, L.M.; Pereira, H.M. Rewilding Abandoned Landscapes in Europe. Ecosystems 2012, 15, 900–912. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Xie, H.; Lv, T.; Yao, G. Determinants of cultivated land recuperation in ecologically damaged areas in China. Land Use Policy 2019, 81, 160–166. [Google Scholar] [CrossRef]
- Xie, H.; Wang, W.; Zhang, X. Evolutionary game and simulation of management strategies of fallow cultivated land: A case study in Hunan province, China. Land Use Policy 2018, 71, 86–97. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Lana-Renault, N. Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region—A review. Agric. Ecosyst. Environ. 2011, 140, 317–338. [Google Scholar] [CrossRef]
- Corbelle-Rico, E.; Crecente-Maseda, R.; Santé-Riveira, I. Multi-scale assessment and spatial modelling of agricultural land abandonment in a European peripheral region: Galicia (Spain), 1956–2004. Land Use Policy 2012, 29, 493–501. [Google Scholar] [CrossRef]
- Zakkak, S.; Kakalis, E.; Radović, A.; Halley, J.M.; Kati, V. The impact of forest encroachment after agricultural land abandonment on passerine bird communities: The case of Greece. J. Nat. Conserv. 2014, 22, 157–165. [Google Scholar] [CrossRef]
- Juan, J.E.R.; Díaz, R. Evolution of land abandonment in the eastern region of murcia. Bol. Asoc. Geogr. Esp. 2016, 71, 457–462. [Google Scholar]
- Zhang, Y.; Li, X.; Song, W. Determinants of cropland abandonment at the parcel, household and village levels in mountain areas of China: A multi-level analysis. Land Use Policy 2014, 41, 186–192. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Xin, L. Extent and distribution of cropland abandonment in Chinese mountainous areas. Resour. Sci. 2017, 39, 1801–1811. [Google Scholar]
- Zhang, X.; Zhao, C.; Dong, J.; Ge, Q. Spatio-temporal pattern of cropland abandonment in China from 1992 to 2017: A Meta-analysis. Acta Geogr. Sin. 2019, 74, 411–420. [Google Scholar]
- Khanal, N.R.; Watanabe, T. Abandonment of Agricultural Land and Its Consequences. Mt. Res. Dev. 2006, 26, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Kuntz, A.K.; Beaudry, F.; Porter, L.K. Farmers’ Perceptions of Agricultural Land Abandonment in Rural Western New York State. Land 2018, 7, 128. [Google Scholar] [CrossRef]
- Wang, T.; Kazak, J.; Han, Q.; De Vries, B. A framework for path-dependent industrial land transition analysis using vector data. Eur. Plan. Stud. 2019, 27, 1391–1412. [Google Scholar] [CrossRef]
- Dara, A.; Baumann, M.; Kuemmerle, T.; Pflugmacher, D.; Rabe, A.; Griffiths, P.; Hölzel, N.; Kamp, J.; Freitag, M.; Hostert, P. Mapping the timing of cropland abandonment and recultivation in northern Kazakhstan using annual Landsat time series. Remote Sens. Environ. 2018, 213, 49–60. [Google Scholar] [CrossRef]
- Schierhorn, F.; Müller, D.; Beringer, T.; Prishchepov, A.V.; Kuemmerle, T.; Balmann, A. Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Glob. Biogeochem. Cycles 2013, 27, 1175–1185. [Google Scholar] [CrossRef]
- Yin, H.; Prishchepov, A.V.; Kuemmerle, T.; Bleyhl, B.; Buchner, J.; Radeloff, V.C. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. 2018, 210, 12–24. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Müller, D.; Dubinin, M.; Baumann, M.; Radeloff, V.C. Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy 2013, 30, 873–884. [Google Scholar] [CrossRef] [Green Version]
- Prishchepov, A.V.; Radeloff, V.C.; Dubinin, M.; Alcantara, C. The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ. 2012, 126, 195–209. [Google Scholar] [CrossRef]
- Klein Goldewijk, K.; Beusen, A.; Doelman, J.; Stehfest, E. New anthropogenic land use estimates for the Holocene; HYDE 3.2. Earth Syst. Sci. Data 2016, 9, 927–953. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, C. Historical cropland expansion and abandonment in the continental U.S. during 1850 to 2016. Glob. Ecol. Biogeogr. 2018, 27, 322–333. [Google Scholar] [CrossRef]
- Alonso-Sarría, F.; Martínez-Hernández, C.; Romero-Díaz, A.; Cánovas-García, F.; Gomariz-Castillo, F. Main Environmental Features Leading to Recent Land Abandonment in Murcia Region (Southeast Spain). Land Degrad. Dev. 2016, 27, 654–670. [Google Scholar] [CrossRef]
- Golosov, V.; Yermolaev, O.; Rysin, I.; Vanmaercke, M.; Medvedeva, R.; Zaytseva, M. Mapping and spatial-temporal assessment of gully density in the Middle Volga region, Russia. Earth Surf. Process. Landf. 2018, 43, 2818–2834. [Google Scholar] [CrossRef]
- Poyatos, R.; Latron, J.; Llorens, P. Land Use and Land Cover Change After Agricultural Abandonment: The Case of a Mediterranean Mountain Area (Catalan Pre-Pyrenees). Mt. Res. Dev. 2003, 23, 362–368. [Google Scholar] [CrossRef]
- Incze, J.; Novák, T.J. Identification of extent, topographic characteristics and land abandonment process of vineyard terraces in the Tokaj-Hegyalja wine region between 1784 and 2010. J. Maps 2016, 12, 507–513. [Google Scholar] [CrossRef]
- Kolecka, N. Height of Successional Vegetation Indicates Moment of Agricultural Land Abandonment. Remote Sens. 2018, 10, 1568. [Google Scholar] [CrossRef]
- Cervera, T.; Pino, J.; Marull, J.; Padró, R.; Tello, E. Understanding the long-term dynamics of forest transition: From deforestation to afforestation in a Mediterranean landscape (Catalonia, 1868–2005). Land Use Policy 2019, 80, 318–331. [Google Scholar] [CrossRef]
- Alcantara, C.; Kuemmerle, T.; Prishchepov, A.V.; Radeloff, V.C. Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sens. Environ. 2012, 124, 334–347. [Google Scholar] [CrossRef]
- Shao, J.a.; Zhang, S.; Li, X. Farmland marginalization in the mountainous areas: Characteristics, influencing factors and policy implications. J. Geogr. Sci. 2015, 25, 701–722. [Google Scholar] [CrossRef]
- Terres, J.-M.; Scacchiafichi, L.N.; Wania, A.; Ambar, M.; Anguiano, E.; Buckwell, A.; Coppola, A.; Gocht, A.; Källström, H.N.; Pointereau, P.; et al. Farmland abandonment in Europe: Identification of drivers and indicators, and development of a composite indicator of risk. Land Use Policy 2015, 49, 20–34. [Google Scholar] [CrossRef]
- Keenleyside, C.; Tucker, G.; McConville, A. Farmland Abandonment in the EU: An Assessment of Trends and Prospects. Available online: https://ieep.eu/uploads/articles/attachments/60c46694-1aa7-454e-828a-c41ead9452ef/Farmland_abandonment_in_the_EU_-_assessment_of_trends_and_prospects_-_FINAL_15-11-2010_.pdf?v=63664509740 (accessed on 1 June 2019).
- Malavasi, M.; Carranza, M.; Moravec, D.; Cutini, M. Reforestation dynamics after land abandonment: A trajectory analysis in Mediterranean mountain landscapes. Reg. Environ. Chang. 2018, 18, 2459–2469. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, C.; Zhang, J.; Liang, C. Landsat8 and hj-1b sea surface temperature monitoring reliability and consistency studies. Geospat. Inf. 2017, 15, 67–70. [Google Scholar]
- Gu, J.; Pei, L. Retrieval of Chlorophyll Content and Temperature in Taihu Based on Landsat 8-OLI /TIRS and HJ-1B. Geomat. Spat. Inf. Technol. 2017, 40, 146–151. [Google Scholar]
- Beijing Qianfan Digital Cloud Technology Co., Ltd. Available online: http://b2b.huangye88.com/qiye2136492/company_detail.html (accessed on 5 June 2019).
- Brown, V.K.; Southwood, T.R.E. Secondary succession: Patterns and strategies. In Proceedings of Colonization, Succession and Stability: The 26th Symposium of the British Ecological Society; Gray, A.J., Crawley, M.J., Edwards, P.J., Eds.; Blackwell Science Inc.: Oxford, UK, 1987; pp. 315–337. [Google Scholar]
- Nguyen, H.; Hölzel, N.; Völker, A.; Kamp, J. Patterns and Determinants of Post-Soviet Cropland Abandonment in the Western Siberian Grain Belt. Remote Sens. 2018, 10, 1973. [Google Scholar] [CrossRef]
- Romero-Díaz, A.; Ruiz-Sinoga, J.D.; Robledano-Aymerich, F.; Brevik, E.C.; Cerdà, A. Ecosystem responses to land abandonment in Western Mediterranean Mountains. CATENA 2017, 149, 824–835. [Google Scholar] [CrossRef] [Green Version]
- Smaliychuk, A.; Müller, D.; Prishchepov, A.V.; Levers, C.; Kruhlov, I.; Kuemmerle, T. Recultivation of abandoned agricultural lands in Ukraine: Patterns and drivers. Glob. Environ. Chang. 2016, 38, 70–81. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.; Xu, X.; Liu, T.; Duan, Y.; Zhao, Y. Spatial and temporal variations in surface soil moisture and vegetation cover in the Loess Plateau from 2000 to 2015. Ecol. Indic. 2018, 95, 320–330. [Google Scholar] [CrossRef]
- Li, G.; Sun, S.; Han, J.; Yan, J.; Liu, W.; Wei, Y.; Lu, N.; Sun, Y. Impacts of Chinese Grain for Green program and climate change on vegetation in the Loess Plateau during 1982–2015. Sci. Total Environ. 2019, 660, 177–187. [Google Scholar] [CrossRef]
- Ye, L.; Fang, L.; Shi, Z.; Deng, L.; Tan, W. Spatio-temporal dynamics of soil moisture driven by ‘Grain for Green’ program on the Loess Plateau, China. Agric. Ecosyst. Environ. 2019, 269, 204–214. [Google Scholar] [CrossRef]
- Jiang, X.S.; Lan, Z.P.; Zhang, B.; Ma, K.; Hu, H.Z. Fixed monitoring of soil erosion in newly established cash crop tree plantations and rehabilitated bamboo forests. J. Beijing For. Univ. 2010, 32, 169–174. [Google Scholar]
- Shi, T.; Xu, X. Extraction and validation of abandoned farmland parcel in typical counties of Chongqing. Trans. Chin. Soc. Agric. Eng. 2016, 32, 261–267. [Google Scholar]
- Dharumarajan, S.; Lalitha, M.; Natarajan, A.; Naidu, L.G.K.; Balasubramanian, R.; Hegde, R.; Vasundhara, R.; Anil Kumar, K.S.; Singh, S.K. Biophysical and socio-economic causes for increasing fallow land in Tamil Nadu. Soil Use Manag. 2017, 33, 487–498. [Google Scholar] [CrossRef]
- Ghosh, S.M.; Saraf, S.; Behera, M.D.; Biradar, C. Estimating Agricultural Crop Types and Fallow Lands Using Multi Temporal Sentinel-2A Imageries. Proc. Natl. Acad. Sci. USA India Sect. A Phys. Sci. 2017, 87, 769–779. [Google Scholar] [CrossRef]
- Sun, M.; Gao, Z.-Q.; Ren, A.-X.; Deng, Y.; Zhao, W.-F.; Zhao, H.-M.; Yang, Z.-P.; He, L.-H.; Zong, Y.-Z. Contribution of Subsoiling in Fallow Period and Nitrogen Fertilizer to the Soil-water Balance and Grain Yield of Dry-land Wheat. Int. J. Agric. Biol. 2015, 17, 175–180. [Google Scholar]
- Hayes, T.; Usami, S.; Jacobucci, R.; McArdle, J.J. Using Classification and Regression Trees (CART) and random forests to analyze attrition: Results from two simulations. Psychol. Aging 2015, 30, 911–929. [Google Scholar] [CrossRef] [PubMed]
- Gholoobi, M.; Kumar, L. Using object-based hierarchical classification to extract land use land cover classes from high-resolution satellite imagery in a complex urban area. J. Appl. Remote Sens. 2015, 9, 096052. [Google Scholar] [CrossRef]
- Breiman, L. Classification and Regression Trees. Routledge 2017. [Google Scholar] [CrossRef]
- Rutkowski, L.; Jaworski, M.; Pietruczuk, L.; Duda, P. The CART decision tree for mining data streams. Inf. Sci. 2014, 266, 1–15. [Google Scholar] [CrossRef]
- Timofeev, R. Classification and regression trees (CART) theory and applications. Master’s Thesis, Humboldt University, Berlin, Germany, 2004. [Google Scholar]
- Jin, Y.; Liu, X.; Chen, Y.; Liang, X. Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: A case study of central Shandong. Int. J. Remote Sens. 2018, 39, 8703–8723. [Google Scholar] [CrossRef]
- Zhang, C.; Sargent, I.; Pan, X.; Li, H.; Gardiner, A.; Hare, J.; Atkinson, P.M. Joint Deep Learning for land cover and land use classification. Remote Sens. Environ. 2019, 221, 173–187. [Google Scholar] [CrossRef]
- Acharya, T.; Yang, I.; Lee, D. Land cover classification using a KOMPSAT-3A multi-spectral satellite image. Appl. Sci. 2016, 6, 371. [Google Scholar] [CrossRef]
- Yan, J.; Yang, Z.; Li, Z.; Li, X.; Xin, L.; Sun, L. Drivers of cropland abandonment in mountainous areas: A household decision model on farming scale in Southwest China. Land Use Policy 2016, 57, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Díaz, G.I.; Nahuelhual, L.; Echeverría, C.; Marín, S. Drivers of land abandonment in Southern Chile and implications for landscape planning. Landsc. Urban Plan. 2011, 99, 207–217. [Google Scholar] [CrossRef]
- Pazúr, R.; Lieskovský, J.; Feranec, J.; Oťaheľ, J. Spatial determinants of abandonment of large-scale arable lands and managed grasslands in Slovakia during the periods of post-socialist transition and European Union accession. Appl. Geogr. 2014, 54, 118–128. [Google Scholar] [CrossRef]
- Feng, Z.; Yang, Y.; Zhang, Y.; Zhang, P.; Li, Y. Grain-for-green policy and its impacts on grain supply in West China. Land Use Policy 2005, 22, 301–312. [Google Scholar] [CrossRef]
- Zhou, H.; Van Rompaey, A.; Wang, J.A. Detecting the impact of the “Grain for Green” program on the mean annual vegetation cover in the Shaanxi province, China using SPOT-VGT NDVI data. Land Use Policy 2009, 26, 954–960. [Google Scholar] [CrossRef]
- Estel, S.; Kuemmerle, T.; Alcántara, C.; Levers, C.; Prishchepov, A.; Hostert, P. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens. Environ. 2015, 163, 312–325. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Schierhorn, F.; Prishchepov, A.V.; Müller, D.; Kuemmerle, T. Drivers, constraints and trade-offs associated with recultivating abandoned cropland in Russia, Ukraine and Kazakhstan. Glob. Environ. Chang. 2016, 37, 1–15. [Google Scholar] [CrossRef]
- Oecd. OECD Review of Agricultural Policies: Kazakhstan 2013; Oecd Publishing: Paris, France, 2013. [Google Scholar]
- Larsson, S.; Nilsson, C. A remote sensing methodology to assess the costs of preparing abandoned farmland for energy crop cultivation in northern Sweden. Biomass Bioenergy 2005, 28, 1–6. [Google Scholar] [CrossRef]
Landsat 8 OLI | HJ-1B | ||||
---|---|---|---|---|---|
Band | Wavelength/μm | Resolution/m | Band | Wavelength/μm | Resolution/m |
Band 1 | 0.433–0.453 | 30 | Band 1 | 0.43–0.52 | 30 |
Band 2 | 0.450–0.515 | 30 | Band 2 | 0.52–0.60 | 30 |
Band 3 | 0.525–0.600 | 30 | Band 3 | 0.63–0.69 | 30 |
Band 4 | 0.630–0.680 | 30 | Band 4 | 0.76–0.90 | 30 |
Band 5 | 0.845–0.885 | 30 | Band 5 | 0.75–1.10 | 150 |
Band 6 | 1.560–1.660 | 30 | Band 6 | 1.55–1.75 | 75 |
Band 7 | 2.100–2.300 | 30 | Band 7 | 3.05–3.90 | 90 |
Band 8 | 0.500–0.680 | 15 | Band 8 | 10.5–12.5 | 300 |
Band 9 | 1.360–1.390 | 30 | |||
Band 10 | 10.60–11.19 | 100 | |||
Band 11 | 11.50–12.51 | 100 |
Scene ID | Acquisition Date | Resolution/m | Data Source |
---|---|---|---|
HJ1B-CCD1-8-80-20121001-L20000861676 | 2012/10/01 | 30 | HJ-1B |
LC81260402013297LGN00 | 2013/10/24 | 30 | LANDSAT8 |
LC81260402014204LGN00 | 2014/07/23 | 30 | LANDSAT8 |
LC81260402015287LGN00 | 2015/10/14 | 30 | LANDSAT8 |
LC81270402016169LGN00 | 2016/06/17 | 30 | LANDSAT8 |
LC81260402017132LGN00 | 2017/05/12 | 30 | LANDSAT8 |
Primary Class | Subclass | Definition |
---|---|---|
Stable cropland | Cropland in continuous cultivation throughout the research period. | |
Abandoned cropland | Cropland that has been abandoned for at least successive two years. | |
Spontaneous abandoned cropland | Cropland that has been spontaneously abandoned by farmers. The main vegetation grown in abandoned land is weeds or other grasses within the research period. | |
Induced abandoned cropland | Cropland that has been abandoned due to the Grain-for-Green policy. The main vegetation grown in abandoned land are shrubs or trees within the research period. | |
Fallowed cropland | Cropland where cultivation has ceased for one year. | |
Lost cropland | Cropland that has been encroached by the expansion of built-up areas, such as settlement and roads. |
Land Use | 1 | 2 | 3 | 4 | 5 | 6 | Total | CE | UA |
---|---|---|---|---|---|---|---|---|---|
1 | 77 | 0 | 0 | 5 | 0 | 15 | 97 | 20.6 | 79.4 |
2 | 0 | 550 | 0 | 6 | 17 | 2 | 575 | 4.3 | 95.7 |
3 | 0 | 0 | 21 | 0 | 0 | 0 | 21 | 0.0 | 100.0 |
4 | 2 | 0 | 0 | 262 | 6 | 0 | 270 | 3.0 | 97.0 |
5 | 0 | 21 | 0 | 8 | 150 | 1 | 180 | 16.7 | 83.3 |
6 | 0 | 0 | 0 | 0 | 0 | 7 | 7 | 0.0 | 100.0 |
Total | 79 | 571 | 21 | 281 | 173 | 25 | 1150 | ||
OE | 2.5 | 3.7 | 0.0 | 6.8 | 13.3 | 72.0 | |||
PA | 97.5 | 96.3 | 100.0 | 93.2 | 86.7 | 28.0 | 92.78 |
Type | Elevation (m) | Slope (°) | Distance to Rural Settlement (m) |
---|---|---|---|
Spontaneous abandonment | 820.64 | 18.5 | 225.08 |
Induced abandonment | 826.29 | 19.76 | 229.37 |
Fallowed cropland | 806.01 | 15.8 | 205.29 |
Stable cropland | 776.76 | 12.7 | 185.68 |
Lost cropland | 740.67 | 9.96 | 132.38 |
Type | Elevation (m) | Slope (°) | Distance to Rural Settlement (m) |
---|---|---|---|
Non-abandonment | 793.12 | 14.75 | 198.41 |
2 years | 799.77 | 17.22 | 207.95 |
3 years | 815.36 | 17.85 | 231.20 |
4 years | 822.35 | 18.55 | 225.22 |
5 years | 836.44 | 19.84 | 229.79 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W. Mapping Cropland Abandonment in Mountainous Areas Using an Annual Land-Use Trajectory Approach. Sustainability 2019, 11, 5951. https://doi.org/10.3390/su11215951
Song W. Mapping Cropland Abandonment in Mountainous Areas Using an Annual Land-Use Trajectory Approach. Sustainability. 2019; 11(21):5951. https://doi.org/10.3390/su11215951
Chicago/Turabian StyleSong, Wei. 2019. "Mapping Cropland Abandonment in Mountainous Areas Using an Annual Land-Use Trajectory Approach" Sustainability 11, no. 21: 5951. https://doi.org/10.3390/su11215951
APA StyleSong, W. (2019). Mapping Cropland Abandonment in Mountainous Areas Using an Annual Land-Use Trajectory Approach. Sustainability, 11(21), 5951. https://doi.org/10.3390/su11215951