Greenhouse Gas Emissions and Blue Water Use of Dutch Diets and Its Association with Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. General Questionnaire
2.3. Description of Study Population
2.4. Dietary Assessment
2.5. Environmental Impact Assessment
2.6. Correlation Environmental Impact Indicators
2.7. Dutch Healthy Diet Index 2015
2.8. Statistical Analysis
3. Results
3.1. Nutritional and Environmental Aspects
3.2. Food Consumption Acording to Age and Gender
3.3. Greenhouse Gas Emissions
3.4. Blue Water Use
3.5. Consumption Moments
3.6. Dutch Healthy Diet Index 2015
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Hallström, E.; Davis, J.; Woodhouse, A.; Sonesson, U. Using dietary quality scores to assess sustainability of food products and human diets: A systematic review. Ecol. Indic. 2018, 93, 219–230. [Google Scholar] [CrossRef]
- Springmann, M.; Wiebe, K.; Mason-D’Croz, D.; Sulser, T.B.; Rayner, M.; Scarborough, P. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: A global modelling analysis with country-level detail. Lancet Planet. Health 2018, 2, e451–e461. [Google Scholar] [CrossRef]
- FAO; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2018. Building Climate Resilience for Food Security and Nutrition; FAO: Rome, Italy, 2018; Licence: CC BY-NC-SA 3.0 IGO. [Google Scholar]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.; Smith, P.; Haines, A. The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: A systematic review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S. Climate change and food systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanham, D.; Comero, S.; Gawlik, B.M.; Bidoglio, G. The water footprint of different diets within European sub-national geographical entities. Nat. Sustain. 2018, 1, 518–525. [Google Scholar] [CrossRef]
- Campbell, B.M.; Beare, D.J.; Bennett, E.M.; Hall-Spencer, J.M.; Ingram, J.S.; Jaramillo, F.; Ortiz, R.; Ramankutty, N.; Sayer, J.A.; Shindell, D. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 2017, 22, 8. [Google Scholar] [CrossRef]
- Springmann, M.; Godfray, H.C.J.; Rayner, M.; Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl. Acad. Sci. USA 2016, 113, 4146–4151. [Google Scholar] [CrossRef] [Green Version]
- Perignon, M.; Vieux, F.; Soler, L.-G.; Masset, G.; Darmon, N. Improving diet sustainability through evolution of food choices: Review of epidemiological studies on the environmental impact of diets. Nutr. Rev. 2017, 75, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Payne, C.L.; Scarborough, P.; Cobiac, L. Do low-carbon-emission diets lead to higher nutritional quality and positive health outcomes? A systematic review of the literature. Public Health Nutr. 2016, 19, 2654–2661. [Google Scholar] [CrossRef]
- Macdiarmid, J.I. Is a healthy diet an environmentally sustainable diet? Proc. Nutr. Soc. 2013, 72, 13–20. [Google Scholar] [CrossRef]
- Hallström, E.; Carlsson-Kanyama, A.; Börjesson, P.; Schenck, R.; Huizen, D. Effect of Dietary Change on Greenhouse Gas Emissions and Land Use Demand—The State of Knowledge in 2014. In Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014), San Francisco, CA, USA, 8–10 Octboter 2014; ACLCA: Vashon, DC, USA, 2015. [Google Scholar]
- Hallström, E.; Röös, E.; Börjesson, P. Sustainable meat consumption: A quantitative analysis of nutritional intake, greenhouse gas emissions and land use from a Swedish perspective. Food Policy 2014, 47, 81–90. [Google Scholar] [CrossRef]
- Vieux, F.; Darmon, N.; Touazi, D.; Soler, L.G. Greenhouse gas emissions of self-selected individual diets in France: Changing the diet structure or consuming less? Ecol. Econ. 2012, 75, 91–101. [Google Scholar] [CrossRef]
- Scarborough, P.; Appleby, P.N.; Mizdrak, A.; Briggs, A.D.; Travis, R.C.; Bradbury, K.E.; Key, T.J. Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Clim. Chang. 2014, 125, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Carlsson-Kanyama, A.; González, A.D. Potential contributions of food consumption patterns to climate change. Am. J. Clin.Nutr. 2009, 89, 1704S–1709S. [Google Scholar] [CrossRef] [Green Version]
- Harris, F.; Moss, C.; Joy, E.J.M.; Quinn, R.; Scheelbeek, P.F.D.; Dangour, A.D.; Green, R. The Water Footprint of Diets: A Global Systematic Review and Meta-analysis. Adv. Nutr. 2019, 8, 1–12. [Google Scholar] [CrossRef]
- Van Rossum, C.T.M.; Buurma-Rethans, E.J.M.; Vennemann, F.B.C.; Beukers, M.; Brants, H.A.M.; De Boer, E.J.; Ocké, M.C. The Diet of the Dutch: Results of the First Two Years of the Dutch National Food Consumption Survey 2012–2016; Environment, N.I.f.P.H.a.t., Ed.; RIVM Letter Report 2016-0082: Bilthoven, The Netherlands, 2016. [Google Scholar]
- Slimani, N.; Ferrari, P.; Ocke, M.C.; Welch, A.; Boeing, H.; Van Liere, M.; Pala, V.; Amiano, P.; Lagiou, A.; Mattisson, I.; et al. Standardization of the 24-hour diet recall calibration method used in the European Prospective Investigation into Cancer and Nutrition (EPIC): General concepts and preliminary results. Eur. J. Clin. Nutr. 2000, 54, 900–917. [Google Scholar] [CrossRef]
- The National Insitute for Public Health and the Environment. NEVO Online Version 2016/5.0. Available online: https://nevo-online.rivm.nl/ (accessed on 1 August 2019).
- De Klein, C.; Novoa, R.S.; Ogle, S.; Smith, K.A.; Rochette, P.; Wirth, T.C.; McConkey, B.G.; Mosier, A.; Rypdal, K.; Walsh, M. N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application. In IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; IPCC: Geneva, Switzerland, 2006; Volume 4, pp. 1–54. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y.J.H.; Sciences, E.S. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. Discuss. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- The National Institute for Public Health and the Environment. LCA Database Food. Available online: https://statline.rivm.nl/#/RIVM/nl/dataset/50060NED/table (accessed on 4 October 2019).
- Huijbregts, M.; Steinmann, Z.; Elshout, P.; Stam, G.; Verones, F.; Vieira, M.; Hollander, A.; Zijp, M.; Van Zelm, R. ReCiPe 2016: A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report I: Characterization; RIVM Offical Report: Bilthoven, The Netherlands, 2016. [Google Scholar]
- Blonk Consultants. Direct Land Use Change Assessment Tool Version 2016.1; Blonk Consultants: Gouda, The Netherlands, 2016. [Google Scholar]
- Looman, M.; Feskens, E.J.; de Rijk, M.; Meijboom, S.; Biesbroek, S.; Temme, E.H.; de Vries, J.; Geelen, A. Development and evaluation of the Dutch Healthy Diet index 2015. Public Health Nutr. 2017, 20, 2289–2299. [Google Scholar] [CrossRef] [PubMed]
- Kromhout, D.; Spaaij, C.; de Goede, J.; Weggemans, R. The 2015 Dutch food-based dietary guidelines. Eur. J. Clin. Nutr. 2016, 70, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Meier, T.; Christen, O. Environmental impacts of dietary recommendations and dietary styles: Germany as an example. Environ. Sci. Technol. 2012, 47, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Temme, E.H.M.; Toxopeus, I.B.; Kramer, G.F.H.; Brosens, M.C.C.; Drijvers, J.M.M.; Tyszler, M.; Ocké, M.C. Greenhouse gas emission of diets in the Netherlands and associations with food, energy and macronutrient intakes. Public Health Nutr. 2015, 18, 2433–2445. [Google Scholar] [CrossRef]
- Biesbroek, S.; Verschuren, W.M.M.; Boer, J.M.A.; van de Kamp, M.E.; Van Der Schouw, Y.T.; Geelen, A.; Looman, M.; Temme, E.H.M. Does a better adherence to dietary guidelines reduce mortality risk and environmental impact in the Dutch sub-cohort of the European Prospective Investigation into Cancer and Nutrition? Br. J. Nutr. 2017, 118, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Macdiarmid, J.I.; Kyle, J.; Horgan, G.W.; Loe, J.; Fyfe, C.; Johnstone, A.; McNeill, G. Sustainable diets for the future: Can we contribute to reducing greenhouse gas emissions by eating a healthy diet? Am. J. Clin. Nutr. 2012, 96, 632–639. [Google Scholar] [CrossRef]
- Scarborough, P.; Allender, S.; Clarke, D.; Wickramasinghe, K.; Rayner, M. Modelling the health impact of environmentally sustainable dietary scenarios in the UK. Eur. J. Clin. Nutr. 2012, 66, 710–715. [Google Scholar] [CrossRef] [Green Version]
- Monsivais, P.; Scarborough, P.; Lloyd, T.; Mizdrak, A.; Luben, R.; Mulligan, A.A.; Wareham, N.J.; Woodcock, J. Greater accordance with the Dietary Approaches to Stop Hypertension dietary pattern is associated with lower diet-related greenhouse gas production but higher dietary costs in the United Kingdom. Am. J. Clin. Nutr. 2015, 102, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Mertens, E.; van’t Veer, P.; Hiddink, G.J.; Steijns, J.M.; Kuijsten, A. Operationalising the health aspects of sustainable diets: A review. Public Health Nutr. 2017, 20, 739–757. [Google Scholar] [CrossRef]
- Authority, E.F.S. General principles for the collection of national food consumption data in the view of a pan-European dietary survey. EFSA J. 2009, 7, 1435. [Google Scholar] [CrossRef]
- Murakami, K.; Livingstone, M.B.E. Greenhouse gas emissions of self-selected diets in the UK and their association with diet quality: Is energy under-reporting a problem? Nutr. J. 2018, 17, 27. [Google Scholar] [CrossRef] [PubMed]
- Mertens, E.; Kuijsten, A.; Geleijnse, J.M.; Boshuizen, H.C.; Feskens, E.J.M.; van’t Veer, P. FFQ versus repeated 24-h recalls for estimating diet-related environmental impact. Nutr. J. 2019, 18, 2. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.; Gibney, E.R.; Hellweg, S. Comparison of Environmental Impact and Nutritional Quality among a European Sample Population–findings from the Food4Me study. Sci. Rep. 2018, 8, 2330. [Google Scholar] [CrossRef] [PubMed]
- Masset, G.; Vieux, F.; Verger, E.O.; Soler, L.-G.; Touazi, D.; Darmon, N. Reducing energy intake and energy density for a sustainable diet: A study based on self-selected diets in French adults. Am. J. Clin. Nutr. 2014, 99, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Macdiarmid, J.I.; Douglas, F.; Campbell, J. Eating like there’s no tomorrow: Public awareness of the environmental impact of food and reluctance to eat less meat as part of a sustainable diet. Appetite 2016, 96, 487–493. [Google Scholar] [CrossRef]
- Clonan, A.; Roberts, K.E.; Holdsworth, M. Socioeconomic and demographic drivers of red and processed meat consumption: Implications for health and environmental sustainability. Proc. Nutr. Soc. 2016, 75, 367–373. [Google Scholar] [CrossRef]
- Hendrie, G.; Baird, D.; Ridoutt, B.; Hadjikakou, M.; Noakes, M. Overconsumption of energy and excessive discretionary food intake inflates dietary greenhouse gas emissions in Australia. Nutrients 2016, 8, 690. [Google Scholar] [CrossRef]
- van de Kamp, M.E.; Seves, S.M.; Temme, E.H.M. Reducing GHG emissions while improving diet quality: Exploring the potential of reduced meat, cheese and alcoholic and soft drinks consumption at specific moments during the day. BMC Public Health 2018, 18, 264. [Google Scholar] [CrossRef]
Total Population (n = 4313) | Children, 1–8 y (n = 1192) | Children, 9–18 y (n = 1043) | Men, 19–79 y (n = 1043) | Women, 19–79 y (n = 1035) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean SD | Mean SD | Mean SD | Mean SD | Mean SD | ||||||
Nutritional aspects | ||||||||||
Quantity | 3053 | 989 | 1682 | 228 | 2393 | 440 | 3427 | 1161 | 3192 | 1127 |
Energy | 2126 | 717 | 1495 | 222 | 2120 | 423 | 2543 | 954 | 1860 | 656 |
Carbohydrates | 236 | 84 | 201 | 30 | 266 | 53 | 270 | 117 | 202 | 84 |
Fat | 84 | 36 | 52 | 11 | 81 | 21 | 102 | 50 | 75 | 34 |
Protein | 79 | 28 | 48 | 8 | 69 | 17 | 95 | 36 | 72 | 26 |
Animal protein | 48 | 22 | 28 | 7 | 41 | 14 | 58 | 30 | 45 | 24 |
Vegetable protein | 30 | 12 | 20 | 4 | 29 | 7 | 37 | 17 | 27 | 13 |
Fiber | 20 | 7 | 14 | 2 | 18 | 4 | 23 | 10 | 18 | 9 |
Environmental impact | ||||||||||
Greenhouse gas emission (kg CO2-eq) | 4.96 | 1.99 | 2.95 | 0.68 | 4.36 | 1.17 | 5.98 | 2.60 | 4.58 | 2.02 |
Blue water use (m3) | 0.14 | 0.08 | 0.07 | 0.02 | 0.10 | 0.04 | 0.16 | 0.11 | 0.15 | 0.11 |
Total Population (n = 4313) | Children, 1–8 y (n = 1192) | Children, 9–18 y (n = 1043) | Men, 19–79 y (n = 1043) | Women, 19–79 y (n = 1035) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Food Group | g | kgCO2eq | m3 | g | kgCO2eq | m3 | g | kgCO2eq | m3 | g | kgCO2eq | m3 | g | kgCO2eq | m3 |
Animal based foods | |||||||||||||||
Meat | 97 | 1.66 | 0.016 | 52 | 0.82 | 0.008 | 93 | 1.52 | 0.015 | 121 | 2.11 | 0.020 | 83 | 1.44 | 0.014 |
Red processed meat | 43 | 0.69 | 0.006 | 31 | 0.44 | 0.004 | 45 | 0.69 | 0.006 | 54 | 0.86 | 0.008 | 36 | 0.58 | 0.005 |
Red unprocessed meat | 32 | 0.74 | 0.007 | 12 | 0.28 | 0.002 | 27 | 0.61 | 0.005 | 43 | 0.98 | 0.009 | 28 | 0.65 | 0.006 |
White processed meat | 5 | 0.04 | 0.001 | 3 | 0.02 | 0.000 | 6 | 0.05 | 0.001 | 5 | 0.04 | 0.001 | 5 | 0.04 | 0.001 |
White unprocessed meat | 17 | 0.19 | 0.003 | 6 | 0.07 | 0.001 | 15 | 0.18 | 0.002 | 20 | 0.23 | 0.003 | 16 | 0.18 | 0.003 |
Dairy | 310 | 0.70 | 0.006 | 368 | 0.78 | 0.007 | 318 | 0.72 | 0.006 | 328 | 0.74 | 0.006 | 276 | 0.64 | 0.006 |
Dairy drinks | 201 | 0.41 | 0.003 | 282 | 0.57 | 0.005 | 227 | 0.48 | 0.004 | 211 | 0.42 | 0.003 | 164 | 0.33 | 0.003 |
Cheese | 33 | 0.38 | 0.003 | 15 | 0.17 | 0.001 | 22 | 0.25 | 0.002 | 40 | 0.47 | 0.004 | 33 | 0.38 | 0.003 |
Fish | 16 | 0.13 | 0.001 | 6 | 0.05 | 0.000 | 7 | 0.06 | 0.001 | 19 | 0.16 | 0.001 | 18 | 0.15 | 0.001 |
Eggs | 13 | 0.05 | 0.001 | 7 | 0.03 | 0.001 | 10 | 0.04 | 0.001 | 15 | 0.07 | 0.002 | 12 | 0.05 | 0.001 |
Plant-based foods | |||||||||||||||
Potatoes and cereals | 266 | 0.40 | 0.010 | 178 | 0.26 | 0.006 | 267 | 0.44 | 0.009 | 323 | 0.48 | 0.012 | 230 | 0.35 | 0.009 |
Vegetables | 131 | 0.23 | 0.010 | 66 | 0.12 | 0.005 | 89 | 0.16 | 0.007 | 142 | 0.25 | 0.011 | 147 | 0.25 | 0.012 |
Fruits (and olives) | 120 | 0.15 | 0.020 | 138 | 0.16 | 0.017 | 94 | 0.12 | 0.013 | 108 | 0.13 | 0.017 | 134 | 0.19 | 0.025 |
Nuts and seeds | 10 | 0.12 | 0.008 | 5 | 0.04 | 0.002 | 7 | 0.09 | 0.003 | 14 | 0.15 | 0.010 | 8 | 0.11 | 0.010 |
Legumes | 5 | 0.01 | 0.000 | 2 | 0.00 | 0.000 | 3 | 0.01 | 0.000 | 5 | 0.01 | 0.000 | 5 | 0.01 | 0.000 |
Beverages | |||||||||||||||
Non-alcoholic beverages | 1708 | 0.47 | 0.043 | 728 | 0.20 | 0.018 | 1261 | 0.39 | 0.031 | 1801 | 0.55 | 0.046 | 1973 | 0.46 | 0.049 |
Soft drinks | 355 | 0.18 | 0.006 | 469 | 0.15 | 0.006 | 654 | 0.30 | 0.012 | 357 | 0.20 | 0.006 | 240 | 0.13 | 0.004 |
Coffee and tea | 708 | 0.20 | 0.017 | 43 | 0.01 | 0.002 | 130 | 0.03 | 0.005 | 814 | 0.24 | 0.016 | 926 | 0.25 | 0.026 |
Fruit and vegetable juice | 55 | 0.07 | 0.019 | 43 | 0.04 | 0.009 | 49 | 0.06 | 0.014 | 65 | 0.08 | 0.023 | 51 | 0.07 | 0.018 |
Water | 589 | 0.02 | 0.001 | 173 | 0.00 | 0.000 | 428 | 0.01 | 0.001 | 566 | 0.02 | 0.001 | 755 | 0.02 | 0.001 |
Alcoholic beverages | 139 | 0.16 | 0.005 | 0 | 0.00 | 0.000 | 28 | 0.02 | 0.000 | 268 | 0.27 | 0.007 | 75 | 0.13 | 0.005 |
Miscellaneous | |||||||||||||||
Sweets and snacks | 92 | 0.30 | 0.008 | 69 | 0.22 | 0.005 | 112 | 0.39 | 0.009 | 105 | 0.34 | 0.009 | 79 | 0.25 | 0.007 |
Fats and oils | 22 | 0.11 | 0.009 | 14 | 0.06 | 0.003 | 19 | 0.09 | 0.005 | 28 | 0.14 | 0.010 | 19 | 0.10 | 0.009 |
Broth, sauces and cond. | 78 | 0.06 | 0.003 | 23 | 0.04 | 0.001 | 54 | 0.05 | 0.002 | 96 | 0.09 | 0.004 | 79 | 0.05 | 0.002 |
Other | 15 | 0.02 | 0.001 | 10 | 0.01 | 0.000 | 9 | 0.01 | 0.000 | 12 | 0.02 | 0.000 | 21 | 0.03 | 0.001 |
Men, 19–79 y (n = 1043) | Women, 19–79 y (n = 1035) | |||
---|---|---|---|---|
Mean | SD | Mean | SD | |
DHD15 score total | 51.8 | 22.4 | 64.2 *** | 23.6 |
DHD15 Components b | ||||
Red meat | 4.2 | 5.5 | 6.2 *** | 5.3 |
Processed meat | 3.2 | 4.9 | 4.3 *** | 5.2 |
Ratio dairy | 4.8 | 4.8 | 5.2 | 4.7 |
Ratio fish | 1.7 | 4.2 | 1.7 | 4.3 |
Ratio grains | 4.7 | 3.8 | 4.6 | 3.9 |
Vegetables | 6.2 | 3.8 | 6.2 | 4,0 |
Fruit | 4.1 | 5.1 | 4.9 ** | 5,0 |
Nuts | 0.8 | 3.1 | 1.1 * | 3.7 |
Legumes | 0.7 | 3.3 | 0.9 | 3.7 |
Sugared beverages and fruit juices | 3.7 | 5.4 | 4.7 *** | 5.5 |
Tea | 3.5 | 5.2 | 6.0 *** | 5.4 |
Alcohol | 6.7 | 5.4 | 8.3 *** | 4.5 |
Ratio fat | 2.2 | 4.6 | 2.4 | 4.9 |
Sodium | 5.2 | 4.6 | 7.8 *** | 3.5 |
GHG Emission | Blue Water Use | |
---|---|---|
Model 1 DHD15 a,b | β | β |
DHD15 score | −0.011 *** | 0.002 *** |
Model 2 DHD15 Components a,b | ||
Red meat | −0.168 *** | −0.001 |
Processed meat | 0.020 * | 0.001 * |
Dairy | 0.023 ** | −0.001 |
Ratio fish | 0.020 * | 0.002 *** |
Ratio grains | −0.025 ** | −0.001 ** |
Vegetables | 0.090 *** | 0.005 *** |
Fruit | 0.022 ** | 0.004 *** |
Nuts | −0.001 | 0.008 *** |
Legumes | −0.015 | 0.001 |
Sugared beverages | −0.000 | −0.003 *** |
Tea | −0.003 | 0.004 *** |
Alcohol | −0.021 ** | −0.002 *** |
Ratio fats | −0.026 ** | 0.001 |
Sodium | 0.003 | 0.002 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vellinga, R.E.; van de Kamp, M.; Toxopeus, I.B.; van Rossum, C.T.M.; de Valk, E.; Biesbroek, S.; Hollander, A.; Temme, E.H.M. Greenhouse Gas Emissions and Blue Water Use of Dutch Diets and Its Association with Health. Sustainability 2019, 11, 6027. https://doi.org/10.3390/su11216027
Vellinga RE, van de Kamp M, Toxopeus IB, van Rossum CTM, de Valk E, Biesbroek S, Hollander A, Temme EHM. Greenhouse Gas Emissions and Blue Water Use of Dutch Diets and Its Association with Health. Sustainability. 2019; 11(21):6027. https://doi.org/10.3390/su11216027
Chicago/Turabian StyleVellinga, Reina E., Mirjam van de Kamp, Ido B. Toxopeus, Caroline T. M. van Rossum, Elias de Valk, Sander Biesbroek, Anne Hollander, and Elisabeth H. M. Temme. 2019. "Greenhouse Gas Emissions and Blue Water Use of Dutch Diets and Its Association with Health" Sustainability 11, no. 21: 6027. https://doi.org/10.3390/su11216027
APA StyleVellinga, R. E., van de Kamp, M., Toxopeus, I. B., van Rossum, C. T. M., de Valk, E., Biesbroek, S., Hollander, A., & Temme, E. H. M. (2019). Greenhouse Gas Emissions and Blue Water Use of Dutch Diets and Its Association with Health. Sustainability, 11(21), 6027. https://doi.org/10.3390/su11216027