Multi-Criteria Decision-Making Approach for Selecting Wind Energy Power Plant Locations
Abstract
:1. Introduction
2. Selection of Wind Power Plant Locations: the MCDM Approach
3. Application of the MCDM Approach
4. Sensitivity Analysis
5. Discussion and Conclusions
- If the management wants to set equal criteria weights, WPPL3 is the best choice, and WPPL4 and WPPL5 are the worst choices.
- However, if the management wants to give a high preference to wind density and speed, or if the concern is for environmental issues over all other criteria, the order of site choices is found to be WPPL3, WPPL1, WPPL5, WPPL2, and WPPL4.
- Similarly, when the same management wants to give a high and equal preference to wind density and speed and has an objective to minimize the costs related to technology and power distribution, the wind energy power plant locations order of preference is found to be WPPL3, WPPL2, WPPL5, WPPL4, and WPPL1.
- The presented visual PROMETHEE approach is preferable because it establishes a preference of a wind energy power plant location over other locations and is unbiased in the decision-making process.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, C.; Zhuang, T.; Zhou, S.; Xiao, Y.; Hu, G. Passive vibration control of a semi-submersible floating offshore wind turbine. Appl. Sci. 2017, 7, 509. [Google Scholar] [CrossRef]
- United Nations; Department of Economic and Social Affairs. World Urbanization Prospects; United Nations: New York, NY, USA, 2015; Available online: http://esa.un.org/unpd/wup/Publications/Files/WUP2014-Report.pdf (accessed on 10 January 2018).
- OECD. Green Growth Studies: Energy; OECD Publishing: Paris, France, 2011. [Google Scholar]
- Pérez-Andreu, V.; Aparicio-Fernández, C.; Martínez-Ibernón, A.; Vivancos, J.-L. Impact of climate change on heating and cooling energy demand in a residential building in a mediterranean climate. Energy 2018, 165, 63–74. [Google Scholar] [CrossRef]
- BBC. Reasons for Increase in Demand for Energy. 2019. Available online: https://www.bbc.co.uk/bitesize/guides/zpmmmp3/revision/2 (accessed on 10 October 2019).
- Liu, Z. Supply and demand of global energy and electricity. In Global Energy Interconnection; Liu, Z., Ed.; Academic Press: Boston, MA, USA, 2015; pp. 101–182. [Google Scholar]
- Wang, B.; Cot, L.D.; Adolphe, L.; Geoffroy, S.; Sun, S. Cross indicator analysis between wind energy potential and urban morphology. Renew. Energy 2017, 113, 989–1006. [Google Scholar] [CrossRef]
- United Nations Framework. Kyoto Protocol; United Nations: New York, NY, USA, 1998. [Google Scholar]
- Blinc, R.; Zidans, A.; Šlaus, I. Sustainable development and global security. Energy 2007, 32, 883–890. [Google Scholar] [CrossRef]
- Peña, J.I.; Rodríguez, R. Are eu’s climate and energy package 20-20-20 targets achievable and compatible? Evidence from the impact of renewables on electricity prices. Energy 2019, 183, 477–486. [Google Scholar] [CrossRef]
- Lee, A.H.I.; Chen, H.H.; Kang, H.-Y. Multi-criteria decision making on strategic selection of wind farms. Renew. Energy 2009, 34, 120–126. [Google Scholar] [CrossRef]
- Serri, L.; Lembo, E.; Airoldi, D.; Gelli, C.; Beccarello, M. Wind energy plants repowering potential in italy: Technical-economic assessment. Renew. Energy 2018, 115, 382–390. [Google Scholar] [CrossRef]
- Chong, W.; Gwani, M.; Tan, C.; Muzammil, W.; Poh, S.; Wong, K. Design and testing of a novel building integrated cross axis wind turbine. Appl. Sci. 2017, 7, 251. [Google Scholar] [CrossRef]
- Aydin, N.Y.; Kentel, E.; Sebnem Duzgun, H. Gis-based site selection methodology for hybrid renewable energy systems: A case study from western turkey. Energy Convers. Manag. 2013, 70, 90–106. [Google Scholar] [CrossRef]
- Han, C.; Nagamune, R. Position control of an offshore wind turbine with a semi-submersible floating platform using the aerodynamic force. In Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, BC, Canada, 15–18 May 2016. [Google Scholar]
- Dai, K.; Bergot, A.; Liang, C.; Xiang, W.-N.; Huang, Z. Environmental issues associated with wind energy—A review. Renew. Energy 2015, 75, 911–921. [Google Scholar] [CrossRef]
- Lima, F.; Ferreira, P.; Vieira, F. Strategic impact management of wind power projects. Renew. Sustain. Energy Rev. 2013, 25, 277–290. [Google Scholar] [CrossRef] [Green Version]
- Schomer, P.; Pamidighantam, P. A critical analysis of: Wind turbine health impact study: Report of independent expert panel. Proc. Meet. Acoust. 2013, 20, 040008. [Google Scholar] [CrossRef]
- Lau, L.C.; Lee, K.T.; Mohamed, A.R. Global warming mitigation and renewable energy policy development from the kyoto protocol to the copenhagen accord—A comment. Renew. Sustain. Energy Rev. 2012, 16, 5280–5284. [Google Scholar] [CrossRef]
- Houghton, T.; Bell, K.R.W.; Doquet, M. Offshore transmission for wind: Comparing the economic benefits of different offshore network configurations. Renew. Energy 2016, 94, 268–279. [Google Scholar] [CrossRef] [Green Version]
- Danish Energy Agency (DEA). The Danish Energy Model: Innovative, Efficient and Sustainable; DEA: Copenhagen, Denmark, 2016; Available online: https://ens.dk/sites/ens.dk/files/Globalcooperation/the_danish_energy_model.pdf (accessed on 15 July 2019).
- World Wind Energy Association (WWEA). WWEA Quarterly Bulleting Issue 1–206: Community Wind Special. 2016. Available online: http://www.wwindea.org/wwea_bulletin_issue_1_2016/ (accessed on 10 January 2018).
- Global Wind Energy Council (GWEC). Global Wind Market to Reach 841 Gigawatts in 2022, Predicts GWEC. 2018. Available online: http://www.gwec.net/wp-content/uploads/2012/06/Annual-Installed-Capacity-by-Region-2008-2016.jpg (accessed on 10 July 2019).
- Graves, L. Saudi Arabia Looks Past Oil and Pushes Ahead with Wind Energy Ambitions. 2017. Available online: https://www.thenational.ae/business/energy/saudi-arabia-looks-past-oil-and-pushes-ahead-with-wind-energy-ambitions-1.609330 (accessed on 12 January 2018).
- Shaahid, S.M.; Al-Hadhrami, L.M.; Rahman, M.K. Potential of establishment of wind farms in western province of Saudi Arabia. Energy Procedia 2014, 52, 497–505. [Google Scholar] [CrossRef]
- Alawaji, S.H.; Eugenio, N.N.; Elani, U.A. Wind energy resource assessment in Saudi Arabia: Part ii: Data collection and analysis. Renew. Energy 1996, 9, 818–821. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Abbadi, N.M. Wind shear coefficients and energy yield for Dhahran, Saudi Arabia. Renew. Energy 2007, 32, 738–749. [Google Scholar] [CrossRef]
- Eltamaly, A.M.; Farh, H.M. Wind energy assessment for five locations in Saudi Arabia. J. Renew. Sustain. Energy 2012, 4, 022702. [Google Scholar] [CrossRef]
- Tagle, F.; Castruccio, S.; Crippa, P.; Genton, M.G. Assessing potential wind energy resources in Saudi Arabia with a skew-t distribution. arXiv 2017, arXiv:1703.04312. Available online: https://repository.kaust.edu.sa/bitstream/handle/10754/626467/1703.04312v1.pdf?sequence=2 (accessed on 25 June 2019).
- Baseer, M.A.; Meyer, J.P.; Alam, M.M.; Rehman, S. Wind speed and power characteristics for Jubail industrial city, Saudi Arabia. Renew. Sustain. Energy Rev. 2015, 52, 1193–1204. [Google Scholar] [CrossRef] [Green Version]
- Konneh, A.D.; Howlader, O.H.; Shigenobu, R.; Senjyu, T.; Chakraborty, S.; Krishna, N. A multi-criteria decision maker for grid-connected hybrid renewable energy systems selection using multi-objective particle swarm optimization. Sustainability 2019, 11, 1188. [Google Scholar] [CrossRef]
- Erdin, C.; Akbaş, E.H. A comparative analysis of fuzzy topsis and geographic information systems (gis) for the location selection of shopping malls: A case study from turkey. Sustainability 2019, 11, 3837. [Google Scholar] [CrossRef]
- Deepa, N.; Srinivasan, K.; Chang, C.Y.; Bashir, A.K. An efficient ensemble vtopes multi-criteria decision-making model for sustainable sugarcane farms. Sustainability 2019, 11, 4288. [Google Scholar] [CrossRef]
- Ioannou, K.; Kosmatopoulos, L.; Zaimes, G.N.; Tsantopoulos, G. Geoinformatics as a tool for the application of energy policy. Int. J. Sustain. Agric. Manag. Inform. 2018, 4, 4–22. [Google Scholar]
- Ioannou, K.; Tsantopoulos, G.; Arabatzis, G.; Andreopoulou, Z.; Zafeiriou, E. A spatial decision support system framework for the evaluation of biomass energy production locations: Case study in the regional unit of drama, Greece. Sustainability 2018, 10, 531. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Yousefi, H.; Mohammadi, M. Multi-criteria decision support system for wind farm site selection using GIS. Sustain. Energy Technol. Assess. 2016, 13, 38–50. [Google Scholar] [CrossRef]
- Rodman, L.C.; Meentemeyer, R.K. A geographic analysis of wind turbine placement in northern California. Energy Policy 2006, 34, 2137–2149. [Google Scholar] [CrossRef]
- San Cristóbal, J.R. Multi-criteria decision-making in the selection of a renewable energy project in Spain: The vikor method. Renew. Energy 2011, 36, 498–502. [Google Scholar] [CrossRef]
- Goumas, M.G.; Lygerou, V.A.; Papayannakis, L.E. Computational methods for planning and evaluating geothermal energy projects. Energy Policy 1999, 27, 147–154. [Google Scholar] [CrossRef]
- Goumas, M.; Lygerou, V. An extension of the promethee method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects. Eur. J. Oper. Res. 2000, 123, 606–613. [Google Scholar] [CrossRef]
- Haralambopoulos, D.A.; Polatidis, H. Renewable energy projects: Structuring a multi-criteria group decision-making framework. Renew. Energy 2003, 28, 961–973. [Google Scholar] [CrossRef]
- Mladineo, N.; Margeta, J.; Brans, J.P.; Mareschal, B. Multicriteria ranking of alternative locations for small scale hydro plants. Eur. J. Oper. Res. 1987, 31, 215–222. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.L.; Arabatzis, G.; Tsialis, P.; Ioannou, K. Electricity consumption and res plants in Greece: Typologies of regional units. Renew. Energy 2018, 127, 134–144. [Google Scholar] [CrossRef]
- Alkaradaghi, K.; Ali, S.S.; Al-Ansari, N.; Laue, J.; Chabuk, A. Landfill site selection using MCDM methods and GIS in the sulaimaniyah governorate, Iraq. Sustainability 2019, 11, 4350. [Google Scholar] [CrossRef]
- Gavériaux, L.; Laverrière, G.; Wang, T.; Maslov, N.; Claramunt, C. GIS-based multi-criteria analysis for offshore wind turbine deployment in Hong Kong. Ann. GIS 2019, 25, 207–218. [Google Scholar] [CrossRef]
- Erdin, C.; Ozkaya, G. Turkey’s 2023 energy strategies and investment opportunities for renewable energy sources: Site selection based on electre. Sustainability 2019, 11, 2136. [Google Scholar] [CrossRef]
- Konstantinos, I.; Georgios, T.; Garyfalos, A. A decision support system methodology for selecting wind farm installation locations using AHP and TOPSIS: Case study in eastern Macedonia and Thrace region, Greece. Energy Policy 2019, 132, 232–246. [Google Scholar] [CrossRef]
- European Commission. Key Performance Indicators for the European Wind Industrial Initiative; Strategic Energy Technologies Information System (SETIS): Brussels, Belgium, 2011; Available online: https://setis.ec.europa.eu/system/files/Key_Performance_Indicators_Wind.pdf (accessed on 20 July 2019).
- Gonzalez, E.; Nanos, E.M.; Seyr, H.; Valldecabres, L.; Yürüşen, N.Y.; Smolka, U.; Muskulus, M.; Melero, J.J. Key performance indicators for wind farm operation and maintenance. Energy Procedia 2017, 137, 559–570. [Google Scholar] [CrossRef]
- Al-Awami, A.T.; Sortomme, E.; El-Sharkawi, M.A. Optimizing economic/environmental dispatch with wind and thermal units. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; pp. 1–6. [Google Scholar]
- Strazzera, E.; Mura, M.; Contu, D. Combining choice experiments with psychometric scales to assess the social acceptability of wind energy projects: A latent class approach. Energy Policy 2012, 48, 334–347. [Google Scholar] [CrossRef]
- Heydarian-Forushani, E.; Golshan, M.E.H.; Moghaddam, M.P.; Shafie-khah, M.; Catalão, J.P.S. Robust scheduling of variable wind generation by coordination of bulk energy storages and demand response. Energy Convers. Manag. 2015, 106, 941–950. [Google Scholar] [CrossRef]
- Alsyouf, I. Wind energy system reliability and maintainability, and operation and maintenance strategies. In Wind Energy Systems; Sørensen, J.D., Sørensen, J.N., Eds.; Woodhead Publishing: Cambridge, UK, 2011; pp. 303–328. [Google Scholar]
- Wu, Y.; Zhang, B.; Wu, C.; Zhang, T.; Liu, F. Optimal site selection for parabolic trough concentrating solar power plant using extended promethee method: A case in china. Renew. Energy 2019, 143, 1910–1927. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, X.-B.; Yang, J.-B.; Chen, Y.-W.; Wu, J. Evidential reasoning approach with multiple kinds of attributes and entropy-based weight assignment. Knowl.-Based Syst. 2019, 163, 358–375. [Google Scholar] [CrossRef]
- Belton, V.; Stewart, T. Multiple Criteria Decision Analysis: An Integrated Approach; Kluwer Academic Publishers, Springer: New York, NY, USA, 2002; pp. XIX, 372. [Google Scholar]
- Varho, V.; Rikkonen, P.; Rasi, S. Futures of distributed small-scale renewable energy in Finland—A Delphi study of the opportunities and obstacles up to 2025. Technol. Forecast. Soc. Chang. 2016, 104, 30–37. [Google Scholar] [CrossRef]
- Siksnelyte, I.; Zavadskas, K.E.; Streimikiene, D.; Sharma, D. An overview of multi-criteria decision-making methods in dealing with sustainable energy development issues. Energies 2018, 11, 2754. [Google Scholar] [CrossRef]
Evaluation Criterion (j)→ Alternative WPPL (i)↓ | 1 | 2 | … | n |
---|---|---|---|---|
1 | X11 | X12 | … | X1n |
2 | X21 | X22 | … | X2n |
. | . | . | … | . |
. a | . Xa1 | . Xa2 | … … | . Xan |
. | . | . | … | . |
b | Xb1 | Xb2 | … | Xbn |
. | . | . | … | . |
m | Xm1 | Xm2 | … | Xmn |
Criterion Weight → | W1 | W2 | … | Wn |
Criteria | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alternative Wind-Energy Power Plant Locations🡫 | Average Wind Speed | Average Wind Power Density | Environmental Issues | Acceptability | Power Demand | Type of Terrain | Geological Suitability | Technology Cost | Tip-Speed Ratio | Security and Safety Threats | Natural/Unnatural Events | Proximity to Electric Power Supply | Transportation Facility | Power Grid Loss | Supply Cost | Development Scheme for Region | Cultural Environmental Concerns |
Criteria Codes 🡪 | C01 | C02 | C03 | C04 | C05 | C06 | C07 | C08 | C09 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 |
Measurement Scale 🡪 | m/s | W/m2 | Impact | 5-point | 5-point | 5-point | 5-point | 5-point | 5-point | Impact | Impact | km | 5-point | Impact | Impact | 5-point | Impact |
Criteria Weights Wj 🡪 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
WPPL1 | 4 | 500 | h# | 5 | 5 | 4 | 5 | 3 | 3 | vl | l | 9.5 | 3 | m | m | 5 | 3 |
WPPL2 | 7 | 650 | m | 2 | 3 | 2 | 3 | 3 | 3 | vh | h | 49 | 4 | m | vl | 3 | 2 |
WPPL3 | 6 | 620 | vh | 5 | 2 | 4 | 5 | 3 | 3 | m | l | 19.8 | 5 | vh | m | 5 | 4 |
WPPL4 | 6.4 | 540 | h | 2 | 4 | 1 | 3 | 3 | 3 | m | h | 31.4 | 3 | h | l | 4 | 3 |
WPPL5 | 5 | 410 | l | 4 | 1 | 3 | 2 | 3 | 3 | m | h | 25.5 | 3 | l | vl | 3 | 4 |
Criteria | Subjective Weights | Objective Weights Set 3 (Entropy) | ||
---|---|---|---|---|
Codes (Refer to Table 2) | Preference Function | Set 1 (Equal Weights) | Set 2 (Expert Survey) | |
C01 | V-shape | 0.058824 | 0.07874 | 0.055382 |
C02 | V-shape | 0.058824 | 0.07874 | 0.055335 |
C03 | V-shape | 0.058824 | 0.068898 | 0.052863 |
C04 | L-shape | 0.058824 | 0.055118 | 0.07033 |
C05 | L-shape | 0.058824 | 0.068898 | 0.052806 |
C06 | L-shape | 0.058824 | 0.059055 | 0.060281 |
C07 | L-shape | 0.058824 | 0.055118 | 0.057649 |
C08 | L-shape | 0.058824 | 0.059055 | 0.052806 |
C09 | V-shape | 0.058824 | 0.059055 | 0.052806 |
C10 | L-shape | 0.058824 | 0.047244 | 0.049216 |
C11 | L-shape | 0.058824 | 0.049213 | 0.077748 |
C12 | V-shape | 0.058824 | 0.047244 | 0.04911 |
C13 | L-shape | 0.058824 | 0.047244 | 0.068237 |
C14 | L-shape | 0.058824 | 0.057087 | 0.050231 |
C15 | L-shape | 0.058824 | 0.068898 | 0.068237 |
C16 | L-shape | 0.058824 | 0.050197 | 0.068237 |
C17 | L-shape | 0.058824 | 0.050197 | 0.058727 |
Alternative Wind Energy Power Plant Locations (WPPL)🡫 | Set 1 Equal Weights | Set 2 Experts Survey Subjective Weights | Set 3 Entropy Weights Objective Weights | ||||||
---|---|---|---|---|---|---|---|---|---|
Φ | Φ+ | Φ− | Φ | Φ+ | Φ− | Φ | Φ+ | Φ− | |
WPPL1 | −0.0013 | 0.3162 | 0.3175 | −0.0431 | 0.3019 | 0.345 | 0.0257 | 0.3228 | 0.2971 |
WPPL2 | −0.0156 | 0.2859 | 0.3015 | 0.0361 | 0.3168 | 0.2808 | −0.0369 | 0.2675 | 0.3043 |
WPPL3 | 0.0774 | 0.3617 | 0.2842 | 0.0593 | 0.3554 | 0.2960 | 0.1199 | 0.3799 | 0.2599 |
WPPL4 | −0.0484 | 0.2215 | 0.2699 | −0.0321 | 0.2367 | 0.2688 | −0.0789 | 0.1978 | 0.2767 |
WPPL5 | −0.0121 | 0.2881 | 0.3002 | −0.0202 | 0.2948 | 0.3150 | −0.0298 | 0.269 | 0.2988 |
Rank of Alternatives | |||
---|---|---|---|
Weights Assigned to Criteria Opted for Evaluation of Wind Power Plant Location | |||
Alternatives↓ | Set 1 Equal Weights | Set 2 Subjective Weights | Set 3 Objective Weights |
WPPL1 | 2 | 5 | 2 |
WPPL2 | 4 | 2 | 4 |
WPPL3 | 1 | 1 | 1 |
WPPL4 | 5 | 4 | 5 |
WPPL5 | 3 | 3 | 3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, A.U.; Abidi, M.H.; Umer, U.; Usmani, Y.S. Multi-Criteria Decision-Making Approach for Selecting Wind Energy Power Plant Locations. Sustainability 2019, 11, 6112. https://doi.org/10.3390/su11216112
Rehman AU, Abidi MH, Umer U, Usmani YS. Multi-Criteria Decision-Making Approach for Selecting Wind Energy Power Plant Locations. Sustainability. 2019; 11(21):6112. https://doi.org/10.3390/su11216112
Chicago/Turabian StyleRehman, Ateekh Ur, Mustufa Haider Abidi, Usama Umer, and Yusuf Siraj Usmani. 2019. "Multi-Criteria Decision-Making Approach for Selecting Wind Energy Power Plant Locations" Sustainability 11, no. 21: 6112. https://doi.org/10.3390/su11216112
APA StyleRehman, A. U., Abidi, M. H., Umer, U., & Usmani, Y. S. (2019). Multi-Criteria Decision-Making Approach for Selecting Wind Energy Power Plant Locations. Sustainability, 11(21), 6112. https://doi.org/10.3390/su11216112