Measuring Sustainability Performance with Multi Criteria Model: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection
2.2. Sustainability Performance
2.2.1. Sensitivity Test
2.2.2. Principal Component Analysis
2.2.3. Multiple Linear Regression
3. Results and Discussions: Case Study
3.1. Dimension, Themes, Indicators
3.2. PROMETHEE Analysis
3.3. Sensitivity Test
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahi, P.; Searcy, C. Assessing sustainability in the supply chain: A triple bottom line approach. Appl. Math. Model. 2015, 39, 2882–2896. [Google Scholar] [CrossRef]
- Panagiotakopoulos, P.; Espinosa, A.; Walker, J. Integrated sustainability management for organizations. Kybernetes 2015, 44, 984–1004. [Google Scholar] [CrossRef] [Green Version]
- Fahimnia, B.; Jabbarzadeh, A. Marrying supply chain sustainability and resilience: A match made in heaven. Transp. Res. Part E Logist. Transp. Rev. 2016, 91, 306–324. [Google Scholar] [CrossRef]
- Kirchoff, J.; Omar, A.; Fugate, B. A Behavioral Theory of Sustainable Supply Chain Management Decision Making in Non-Exemplar Firms. J. Supply Chain. Manag. 2015, 52. [Google Scholar] [CrossRef]
- Afful-Dadzie, A.; Afful-Dadzie, E.; Turkson, C. A TOPSIS Extension Framework for Re-Conceptualizing Sustainability Measurement. Kybernetes 2016, 45. [Google Scholar] [CrossRef]
- Demartini, M.; Orlandi, I.; Tonelli, F.; Anguitta, D. A Manufacturing Value Modeling Methodology (MVMM): A Value Mapping and Assessment Framework for Sustainable Manufacturing. In Sustainable Design and Manufacturing 2017; Campana, G., Howlett, R.J., Setchi, R., Cimatti, B., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 98–108. [Google Scholar]
- Tebaldi, L.; Bigliardi, B.; Bottani, E. Sustainable Supply Chain and Innovation: A Review of the Recent Literature. Sustainability 2018, 10, 3946. [Google Scholar] [CrossRef]
- Gong, R.; Xue, J.; Zhao, L.; Zolotova, O.; Ji, X.; Xu, Y. A Bibliometric Analysis of Green Supply Chain Management Based on the Web of Science (WOS) Platform. Sustainability 2019, 11, 3459. [Google Scholar] [CrossRef]
- Brandenburg, M.; Govindan, K.; Sarkis, J.; Seuring, S. Quantitative models for sustainable supply chain management: Developments and directions. Eur. J. Oper. Res. 2014, 233, 299–312. [Google Scholar] [CrossRef]
- Mura, M.; Longo, M.; Micheli, P.; Bolzani, D. The Evolution of Sustainability Measurement Research. Int. J. Manag. Rev. 2018, 20, 661–695. [Google Scholar] [CrossRef]
- Brandenburg, M. A hybrid approach to configure eco-efficient supply chains under consideration of performance and risk aspects. Omega 2017, 70, 58–76. [Google Scholar] [CrossRef]
- Mattiussi, A.; Rosano, M.; Simeoni, P. A decision support system for sustainable energy supply combining multi-objective and multi-attribute analysis: An Australian case study. Decis. Support Syst. 2014, 57, 150–159. [Google Scholar] [CrossRef]
- Marttunen, M.; Lienert, J.; Belton, V. Structuring problems for Multi-Criteria Decision Analysis in practice: A literature review of method combinations. Eur. J. Oper. Res. 2017, 263, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Leksono, E.B.; Suparno, S.; Vanany, I. Integration of a Balanced Scorecard, DEMATEL, and ANP for Measuring the Performance of a Sustainable Healthcare Supply Chain. Sustainability 2019, 11, 3626. [Google Scholar] [CrossRef]
- Wu, K.J.; Chen, Q.; Qi, Y.; Jiang, X.; Gao, S.; Tseng, M.L. Sustainable Development Performance for Small and Medium Enterprises Using a Fuzzy Synthetic Method-DEMATEL. Sustainability 2019, 11, 4119. [Google Scholar] [CrossRef]
- Behzadian, M.; Kazemzadeh, R.; Albadvi, A.; Aghdasi, M. PROMETHEE: A comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 2010, 200, 198–215. [Google Scholar] [CrossRef]
- Cinelli, M.; Coles, S.R.; Kirwan, K. Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecol. Indic. 2014, 46, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Vivas, R.; Sant’Anna, A.; Esquerre, K.; Freires, F. Integrated method combining analytical and mathematical models for the evaluation and optimization of sustainable supply chains: A Brazilian case study. Comput. Ind. Eng. 2019, 105670. [Google Scholar] [CrossRef]
- D’Eusanio, M.; Zamagni, A.; Petti, L. Social sustainability and supply chain management: Methods and tools. J. Clean. Prod. 2019, 235, 178–189. [Google Scholar] [CrossRef]
- Hutchins, M.J.; Sutherland, J.W. An exploration of measures of social sustainability and their application to supply chain decisions. J. Clean. Prod. 2008, 16, 1688–1698. [Google Scholar] [CrossRef]
- Christopher Frey, H.; Patil, S.R. Identification and Review of Sensitivity Analysis Methods. Risk Anal. 2002, 22, 553–578. [Google Scholar] [CrossRef]
- Rencher, A.C. Methods of Multivariate Analysis, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2002. [Google Scholar]
- Marcondes, D.; Ângelo Sant’Anna. Principal component regression-based control charts for monitoring count data. Int. J. Adv. Manuf. Technol. 2015, 85. [Google Scholar] [CrossRef]
- Christensen, R. Plane Answers to Complex Questions, The Theory of Linear Models, 4th ed.; Springer: Berlin, Germay, 2011. [Google Scholar] [CrossRef]
Dimension | Theme by GRI | Indicators |
---|---|---|
Economic | Economic performance | X = Net Debt (millions) |
Economic | Economic performance | X = Volume of Production (boed) |
Economic | Economic performance | X = Net Margin |
Economic | Economic performance | X = Sales Revenue (millions) |
Economic | Economic performance | X = Total Investments (millions) |
Environmental | Biodiversity | X = Protected Areas (un) |
Environmental | Effluents | X = Oil Leaks (m) |
Environmental | Waste | X = Hazardous Waste (thousand tons) |
Environmental | Energy | X = Energy Consumption(Tj) |
Environmental | Water | X = Water Consumption (millions m) |
Environmental | Emissions | X = CO Emissions (ton) |
Environmental/Social | Local communities | X = Social-environmental Projects (un) |
Social | Diversity | X = Female Employees (%) |
Social | Diversity | X = Black Employees(%) |
Social | Equality | X = Female Heads(%) |
Social | Equality | X = Black Bosses(%) |
Social | Equality | X = Wage Relation (min max) |
Social | Health and safety at Work | X = Rate of Fatal Accidents |
Social | Health and safety at Work | X = Number of Accidents (un) |
Social | Job | X = Total Job (un) |
Criteria | Max/Min | Preference Fn | -Q | -P |
---|---|---|---|---|
X | Min | V-Shape | na | 238,519.30 |
X | Max | V-Shape | na | 175.07 |
X | Max | V-Shape | na | 0.25 |
X | Max | V-Shape | na | 112,185.10 |
X | Max | Linear | 9480 | 24.50 |
X | Max | Linear | 394.620 | 874.43 |
X | Min | Linear | 174.060 | 411.51 |
X | Min | Linear | 25.530 | 59.72 |
X | Min | Linear | 171,956.900 | 451,237.10 |
X | Min | Linear | 9.480 | 24.05 |
X | Min | Linear | 7.210 | 19.52 |
X | Max | Linear | 166.330 | 426.14 |
X | Max | Linear | 0.030 | 0.25 |
X | Max | Linear | 0.030 | 0.25 |
X | Max | Linear | 0.030 | 0.25 |
X | Max | Linear | 0.030 | 0.25 |
X | Min | V-Shape | na | 9.90 |
X | Min | Linear | 0.025 | 0.25 |
X | Min | V-Shape | na | 5062.90 |
X | Max | Linear | 64,052.400 | 141,584.70 |
Year | Phi+ | Phi− | Phi |
---|---|---|---|
2011 | 0.3100 | 0.2058 | 0.1042 |
2010 | 0.3194 | 0.2423 | 0.0770 |
2013 | 0.2565 | 0.2038 | 0.0528 |
2009 | 0.3279 | 0.2815 | 0.0464 |
2012 | 0.2444 | 0.2240 | 0.0204 |
2014 | 0.2354 | 0.2688 | −0.0334 |
2017 | 0.2675 | 0.3105 | −0.0430 |
2016 | 0.2497 | 0.3260 | −0.0762 |
2015 | 0.2151 | 0.3633 | −0.1482 |
Year | Phi 20 Indicators | Phi 17 Indicators | Phi 15 Indicators |
---|---|---|---|
2011 | 0.1042 | 0.0834 | 0.0920 |
2010 | 0.0770 | 0.0621 | 0.0284 |
2013 | 0.0528 | 0.0720 | 0.0204 |
2009 | 0.0464 | 0.0409 | 0.0070 |
2012 | 0.0204 | −0.0148 | 0.0645 |
2014 | −0.0334 | −0.0362 | −0.0559 |
2017 | −0.0430 | −0.0267 | −0.0226 |
2016 | −0.0762 | −0.0721 | −0.0330 |
2015 | −0.1482 | −0.1086 | −0.1009 |
Year | Phi 33% all | Phi Equal Weights | Phi 50%, 35%, 15% |
---|---|---|---|
2011 | 0.1042 | 0.1100 | 0.0955 |
2010 | 0.0770 | 0.0676 | 0.0892 |
2013 | 0.0528 | 0.0449 | 0.0577 |
2009 | 0.0464 | 0.0693 | −0.0030 |
2012 | 0.0204 | 0.0109 | 0.0304 |
2014 | −0.0334 | −0.0405 | −0.0307 |
2017 | −0.0430 | −0.0350 | −0.0437 |
2016 | −0.0762 | −0.0732 | −0.0617 |
2015 | −0.1482 | −0.1540 | −0.1337 |
Year | S. Revenue | Net Debt | Net Margin | Vol of Prod | T. Invest. | Energy | Oil Leaks | Emissions | Haz. Waste |
---|---|---|---|---|---|---|---|---|---|
2009 | −0.8090 | 0.5937 | 0.7500 | −0.6487 | −0.5000 | 0.5768 | 0.0771 | 0.4090 | −0.3696 |
2010 | −0.5911 | 0.6392 | 1.0000 | −0.4045 | 0.2500 | 0.3638 | −0.9313 | 0.2842 | −0.4389 |
2011 | −0.2816 | 0.4707 | 0.5000 | −0.2037 | −0.2500 | 0.4358 | 0.1081 | 0.4740 | −0.4735 |
2012 | 0.0915 | 0.2829 | 0.1250 | −0.3359 | 0.5000 | −0.0873 | −0.2853 | 0.0152 | −0.3804 |
2013 | 0.3163 | −0.0620 | 0.1250 | −0.5874 | 1.0000 | −0.2835 | 0.1387 | −0.2677 | −0.3767 |
2014 | 0.5901 | −0.3475 | −0.7500 | 0.1047 | 0.7500 | −0.4438 | 0.2060 | −0.5809 | −0.1352 |
2015 | 0.4655 | −0.7460 | −1.0000 | 0.7135 | 0 | −0.4438 | 0.2038 | −0.4628 | 0.4242 |
2016 | 0.1036 | −0.4898 | −0.5000 | 0.7242 | −0.7500 | −0.0051 | 0.2288 | 0.0811 | 0.8750 |
2017 | 0.1147 | −0.3412 | −0.2500 | 0.6378 | −1.0000 | −0.1129 | 0.2542 | 0.0558 | 0.8750 |
Year | P. Areas | Projects | Water | Fem. Emplo. | B. Emplo. | Fem. Heads | B Bosses | W. Relation | Rate F. Accid | N of Accid. | T. Jobs |
---|---|---|---|---|---|---|---|---|---|---|---|
2009 | −0.2893 | −0.2346 | 0.5022 | −0.0268 | −1.0000 | −0.3138 | 0.8304 | 0.2580 | 0.7500 | 0.4970 | 0.3343 |
2010 | −0.2893 | 0.5394 | 0.1917 | −0.0121 | −0.5606 | −0.4232 | 0.1543 | 0.5500 | 0.2121 | 0.4842 | 0.3340 |
2011 | −0.2893 | 0.7834 | 0.0849 | 0.0146 | −0.1836 | −0.0500 | 0.1286 | 0.7168 | −0.6122 | 0.4510 | 0.3750 |
2012 | −0.2809 | 0.1376 | −0.0009 | 0.0371 | 0.0389 | 0.1023 | 0.1120 | 0.6989 | −0.1863 | −0.7864 | 0.4200 |
2013 | −0.2358 | 0.2819 | −0.0077 | −0.0068 | 0.1252 | 0.1518 | 0.1466 | −0.3903 | 1.0000 | −0.5932 | 0.4241 |
2014 | −0.0311 | 0.0875 | −0.4928 | 0.0038 | 0.1837 | 0.1270 | 0.0914 | −0.3443 | 0.2037 | −0.3579 | 0.3334 |
2015 | −0.0655 | 0.1549 | −0.7678 | 0.1006 | 0.3168 | 0.1394 | 0.1543 | −0.4963 | −0.9832 | −0.0668 | −0.7200 |
2016 | 0.8055 | −0.7746 | 0.0609 | −0.0570 | 0.5044 | 0.1270 | −0.6552 | −0.4963 | −0.5963 | 0.0995 | −0.7500 |
2017 | 0.6756 | −0.9754 | 0.4293 | −0.0533 | 0.5751 | 0.1394 | −0.9624 | −0.4963 | 0.2121 | 0.2728 | −0.7500 |
Component | Variance | Proportion | Cumulative Proportion |
---|---|---|---|
1 | 11.396 | 0.518 | 0.518 |
2 | 5.743 | 0.261 | 0.779 |
3 | 2.095 | 0.095 | 0.874 |
4 | 1.222 | 0.056 | 0.930 |
5 | 0.827 | 0.038 | 0.967 |
6 | 0.411 | 0.019 | 0.986 |
7 | 0.195 | 0.009 | 0.995 |
8 | 0.111 | 0.005 | 1.000 |
Years | Phi | Oil Price (USD) | Exchange Rate (Real/USD) |
---|---|---|---|
2009 | 0.0464 | 61.67 | 2.00 |
2010 | 0.0770 | 79.50 | 1.76 |
2011 | 0.1042 | 111.26 | 1.68 |
2012 | 0.0204 | 111.67 | 1.96 |
2013 | 0.0528 | 108.66 | 2.16 |
2014 | −0.0334 | 98.90 | 2.35 |
2015 | −0.1482 | 52.50 | 3.33 |
2016 | −0.0762 | 46.00 | 3.49 |
2017 | −0.0430 | 53.00 | 3.19 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas, R.; Sant’anna, Â.; Esquerre, K.; Freires, F. Measuring Sustainability Performance with Multi Criteria Model: A Case Study. Sustainability 2019, 11, 6113. https://doi.org/10.3390/su11216113
Vivas R, Sant’anna Â, Esquerre K, Freires F. Measuring Sustainability Performance with Multi Criteria Model: A Case Study. Sustainability. 2019; 11(21):6113. https://doi.org/10.3390/su11216113
Chicago/Turabian StyleVivas, Renato, Ângelo Sant’anna, Karla Esquerre, and Francisco Freires. 2019. "Measuring Sustainability Performance with Multi Criteria Model: A Case Study" Sustainability 11, no. 21: 6113. https://doi.org/10.3390/su11216113
APA StyleVivas, R., Sant’anna, Â., Esquerre, K., & Freires, F. (2019). Measuring Sustainability Performance with Multi Criteria Model: A Case Study. Sustainability, 11(21), 6113. https://doi.org/10.3390/su11216113