Investigating Key Attributes in Experience and Satisfaction of Hotel Customer Using Online Review Data
Abstract
:1. Introduction
2. Literature Review
2.1. Customer Experience and Satisfaction
2.2. Electronic Word of Mouth (eWOM)
2.3. Text Mining and Semantic Network Analysis
3. Methodology
3.1. Data Collection
3.2. Data Analysis
4. Result
4.1. Frequency Analysis
4.2. Semantic Network Analysis
4.3. Factor Analysis
4.4. Linear Regression Analysis
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Siering, M.; Deokar, A.V.; Janze, C. Disentangling consumer recommendations: Explaining and predicting airline recommendations based on online reviews. Decis. Support Syst. 2018, 107, 52–63. [Google Scholar] [CrossRef]
- Kim, W.H. The impact of online reviews on customer satisfaction: An application of the American customer satisfaction index (ACSI). Int. J. Tour. Hosp. Res. 2017, 32, 65–78. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, M.; Rodríguez-Voltes, C.I.; Rodríguez-Voltes, A.C. Gap analysis of the online reputation. Sustainability 2018, 10, 1603. [Google Scholar] [CrossRef]
- Gao, B.; Li, X.; Liu, S.; Fang, D. How power distance affects online hotel ratings: The positive moderating roles of hotel chain and reviewers’ travel experience. Tour. Manag. 2018, 65, 176–186. [Google Scholar] [CrossRef]
- Kim, H.S.; Noh, Y. Elicitation of design factors through big data analysis of online customer reviews for washing machines. J. Mech. Sci. Technol. 2019, 33, 2785–2795. [Google Scholar] [CrossRef]
- Ban, H.J.; Kim, H.S. Understanding customer experience and satisfaction through airline passengers’ online review. Sustainability 2019, 11, 4066. [Google Scholar] [CrossRef]
- Ban, H.J.; Kim, H.S. A study on the TripAdvisor review analysis of restaurant recognition in Busan 1: Especially concerning English reviews. Culi. Sci. Hosp. Res. 2019, 25, 1–11. [Google Scholar]
- Ban, H.J.; Kim, H.S. Semantic network analysis of hotel package through the big data. Culi. Sci. Hosp. Res. 2019, 25, 110–119. [Google Scholar]
- Cheng, B.L.; Gan, C.C.; Imrie, B.C.; Mansori, S. Service recovery, customer satisfaction and customer loyalty: Evidence from Malaysia’s hotel industry. Int. J. Qual. Serv. Sci. 2019, 11, 187–203. [Google Scholar] [CrossRef]
- Nysveen, H.; Oklevik, O.; Pedersen, P.E. Brand satisfaction: Exploring the role of innovativeness, green image and experience in the hotel sector. Int. J. Contemp. Hosp. Manag. 2018, 30, 2908–2924. [Google Scholar] [CrossRef]
- Pizam, A.; Shapoval, V.; Ellis, T. Customer satisfaction and its measurement in hospitality enterprises: A revisit and update. Int. J. Contemp. Hosp. Manag. 2016, 28, 2–35. [Google Scholar] [CrossRef]
- Torres, E.N.; Kline, S. From customer satisfaction to customer delight: Creating a new standard of service for the hotel industry. Int. J. Contemp. Hosp. Manag. 2013, 25, 642–659. [Google Scholar] [CrossRef]
- Dominici, G.; Guzzo, R. Customer satisfaction in the hotel industry: A case study from Sicily. Int. J. Mark. Stud. 2010, 2, 3–12. [Google Scholar] [CrossRef]
- Olorunniwo, F.; Hsu, M.K.; Udo, G.J. Service quality, customer satisfaction, and behavioral intentions in the service factory. J. Serv. Mark. 2006, 20, 59–72. [Google Scholar] [CrossRef]
- Vijayadurai, J. Service quality, customer satisfaction and behavioural intention in hotel industry. J. Mark. Comm. 2008, 3, 14–26. [Google Scholar]
- Gundersen, M.G.; Heide, M.; Olsson, U.H. Hotel guest satisfaction among business travelers: What are the important factors? Cornell Hotel Restaur. Admin. Q. 1996, 37, 72–81. [Google Scholar] [CrossRef]
- Hu, N.; Zhang, T.; Gao, B.; Bose, I. What do hotel customers complain about? Text analysis using structural topic model. Tour. Manag. 2019, 72, 417–426. [Google Scholar] [CrossRef]
- Saura, J.; Reyes-Menendez, A.; Alvarez-Alonso, C. Do online comments affect environmental management? Identifying factors related to environmental management and sustainability of hotels. Sustainability 2018, 10, 3016. [Google Scholar] [CrossRef]
- Belarmino, A.M.; Koh, Y. How E-WOM motivations vary by hotel review website. Int. J. Contemp. Hosp. Manag. 2018, 30, 2730–2751. [Google Scholar] [CrossRef]
- Kim, D.K.; Kim, I.S. An analysis of hotel selection attributes present in online reviews using text mining. J. Tour. Sci. 2017, 41, 109–127. [Google Scholar]
- Saha, G.C.; Theingi. Service quality, satisfaction, and behavioural intentions: A study of low-cost airline carriers in Thailand. Managing Service Quality. Int. J. 2009, 19, 350–372. [Google Scholar]
- Browning, V.; So, K.K.F.; Sparks, B. The influence of online reviews on consumers’ attributions of service quality and control for service standards in hotels. J. Travel Tour. Mark. 2013, 30, 23–40. [Google Scholar] [CrossRef]
- Kotler, P.; Bowen, J.T.; Makens, J.; Baloglu, S. Marketing for Hospitality and Tourism; Pearson: London, UK, 2017. [Google Scholar]
- Knutson, B.J. Frequent travelers: Making them happy and bringing them back. Cornell Hot. Rest. Admin. Quart. 1988, 29, 82–87. [Google Scholar] [CrossRef]
- Verma, V.K.; Chandra, B. Sustainability and customers’ hotel choice behaviour: A choice-based conjoint analysis approach. Environ. Dev. Sustain. 2018, 20, 1347–1363. [Google Scholar] [CrossRef]
- Kim, S.; Kandampully, J.; Bilgihan, A. The influence of eWOM communications: An application of online social network framework. Comput. Hum. Behav. 2018, 80, 243–254. [Google Scholar] [CrossRef]
- Hunt, J.D. Image as a factor in tourism development. J. Travel Res. 1975, 13, 1–7. [Google Scholar] [CrossRef]
- Bhandari, R.S.; Bansal, A. A study of characteristics of e-WoM affecting consumer’s social media opinion behavior. J. Indian Manag. Strateg. 2019, 24, 33–43. [Google Scholar] [CrossRef]
- Klein, L.R. Evaluating the potential of interactive media through a new lens: Search versus experience goods. J. Bus. Res. 1998, 41, 195–203. [Google Scholar] [CrossRef]
- Gaikwad, S.V.; Chaugule, A.; Patil, P. Text mining methods and techniques. Int. J. Comput. Appl. 2014, 85, 42–45. [Google Scholar]
- Hassani, H.; Huang, X.; Silva, E.S.; Ghodsi, M. A review of data mining applications in crime. Stat. Anal. Data Min. ASA Data Sci. J. 2016, 9, 139–154. [Google Scholar] [CrossRef]
- Sirsat, S.R.; Chavan, D.V.; Deshpande, D.S.P. Mining knowledge from text repositories using information extraction: A review. Sadhana 2014, 39, 53–62. [Google Scholar] [CrossRef]
- Joseph, G.; Varghese, V. Analyzing Airbnb customer experience feedback using text mining. In Big Data and Innovation in Tourism, Travel, and Hospitality; Springer: The Gateway, Singapore, 2019. [Google Scholar]
- Kuhzady, S.; Ghasemi, V. Factors influencing g customers’ satisfaction and dissatisfaction with hotels: A text-mining approach. Tour. Anal. 2019, 24, 69–79. [Google Scholar] [CrossRef]
- Berezina, K.; Bilgihan, A.; Cobanoglu, C.; Okumus, F. Understanding satisfied and dissatisfied hotel customers: Text mining of online hotel reviews. J. Hosp. Mark. Manag. 2016, 25, 1–24. [Google Scholar] [CrossRef]
- Philander, K.; Zhong, Y. Twitter sentiment analysis: Capturing sentiment from integrated resort tweets. Int. J. Hosp. Manag. 2016, 55, 16–24. [Google Scholar] [CrossRef]
- Kweon, S.H. A semantic network analysis of 4th industry revolution: News frame for on drone, AI, big data and IoT news. Int. J. Adv. Sci. Tech. 2018, 110, 115–128. [Google Scholar] [CrossRef]
- Shuting, T.; Kim, H.S. Cruising in Asia: What can we dig from online cruiser reviews to understand their experience and satisfaction. Asia Pac. J. Tour. Res. 2019, 24, 514–528. [Google Scholar]
- Kim, Y.J.; Ban, H.J.; Kim, H.S. An exploratory study on the semantic network analysis of Busan tourism: Using Google web and news. Culin. Sci. Hosp. Res. 2019, 25, 126–134. [Google Scholar]
- Lim, S.; Tucker, C.S.; Jablokow, K.; Pursel, B. A semantic network model for measuring engagement and performance in online learning platforms. Comp. App. Eng. Edu. 2018, 26, 1481–1492. [Google Scholar] [CrossRef]
- Zhang, L.; Yun, H.J. Tourism information contents and text networking (focused on formal website of Jeju and Chinese personal blogs). J. Korea Cont. Asso. 2018, 18, 19–30. [Google Scholar]
- Shuting, T.; Kim, H.S. A study of comparison between cruise tours in China and USA through big data analytics. Culin. Sci. Hosp. Res. 2017, 23, 1–10. [Google Scholar] [CrossRef]
- Kim, H.S. A semantic network analysis of big data regarding food exhibition at convention center. Culin. Sci. Hosp. Res. 2017, 23, 257–270. [Google Scholar]
- Bonacich, P. Some unique properties of eigenvector centrality. Soc. Netw. 2007, 29, 555–564. [Google Scholar]
- Lee, Y.J.; Yoon, J.H. Exploring ways to utilize SNS big data in the tourism sector. Int. J. Tour. Hosp. Res. 2014, 28, 5–14. [Google Scholar]
- Neter, J.; Wasserman, W.; Kutner, M.; Nachtsheim, C. Applied Linear Statistical Models, 4th ed.; McGraw-Hill: Chicago, IL, USA, 1996. [Google Scholar]
- Freund, R.J.; Littell, R.C. SAS System for Regression, 3rd ed.; SAS: Cary, NC, USA, 2000. [Google Scholar]
- Gennaioli, N.; Martin, A.; Rossi, S. Banks, government bonds, and default: What do the data say? J. Monet. Econ. 2018, 98, 98–113. [Google Scholar] [CrossRef]
- Lee, J.H. Understanding customer values by analyzing the contents of online hotel reviews. J. Korea Cont. Assoc. 2013, 13, 533–546. [Google Scholar] [CrossRef] [Green Version]
- Han, J.H.; Chung, N. Opportunities of big data applications to develop global marketing strategies: Analyzing hotel guest online reviews. J. Tour. Lie Res. 2017, 7, 233–251. [Google Scholar]
Rank | Brands | No. of Reviews | Rank | Brands | No. of Reviews |
---|---|---|---|---|---|
1 | Tulemar Bungalows and Villas | 181 | 14 | Hotel Amira Istanbul | 332 |
2 | Hotel Belvedere | 230 | 15 | Hotel 41 | 217 |
3 | Viroth’s Hotel | 253 | 16 | Ikos Oceania | 449 |
4 | Kenting Amanda Hotel | 97 | 17 | Mandapa, a Ritz-Carlton Reserve | 466 |
5 | Hotel Alpin Spa Tuxerhof | 113 | 18 | Nayara Springs | 147 |
6 | French Quarter Inn | 339 | 19 | Rosewood Mayakoba | 209 |
7 | The Resort at Pedregal | 487 | 20 | Valle D’incanto Midscale | 77 |
8 | Belmond Palacio Nazarenas | 139 | 21 | Hotel Spadai | 271 |
9 | Kayakapi Premium Caves | 245 | 22 | Constance Prince Maurice | 268 |
10 | Hanoi La Siesta Hotel and Spa | 278 | 23 | O’Gallery Premier Hotel | 377 |
11 | Golden Temple Retreat | 220 | 24 | The Nantucket Hotel and Resort | 188 |
12 | Quinta Jardins do Lago | 170 | 25 | AYADA Maldives | 219 |
13 | The Oberoi Rajvilas | 625 | |||
Total/Average | 6597/263 |
Rank | Word | Freq. | Rank | Word | Freq. | Rank | Word | Freq. |
---|---|---|---|---|---|---|---|---|
1 | staff | 2332 | 34 | people | 168 | 67 | bathroom | 99 |
2 | service | 1709 | 35 | suite | 158 | 68 | price | 98 |
3 | room | 1708 | 36 | garden | 156 | 69 | lake | 97 |
4 | place | 1024 | 37 | quality | 154 | 70 | vacate | 96 |
5 | food | 835 | 38 | detail | 152 | 71 | Quarter | 94 |
6 | locate | 784 | 39 | city | 148 | 72 | street | 94 |
7 | resort | 640 | 40 | Hanoi | 146 | 73 | care | 92 |
8 | stay | 636 | 41 | class | 145 | 74 | part | 90 |
9 | view | 628 | 42 | holiday | 145 | 75 | Ayada | 90 |
10 | breakfast | 534 | 43 | visit | 144 | 76 | reception | 90 |
11 | everything | 496 | 44 | minute | 140 | 77 | walk | 87 |
12 | time | 488 | 45 | airport | 138 | 78 | butler | 87 |
13 | night | 486 | 46 | home | 134 | 79 | Mandapa | 86 |
14 | experience | 479 | 47 | hospitality | 134 | 80 | check | 86 |
15 | restaurant | 451 | 48 | bar | 131 | 81 | kid | 85 |
16 | pool | 407 | 49 | custom | 129 | 82 | distance | 85 |
17 | day | 362 | 50 | amenity | 127 | 83 | manage | 84 |
18 | family | 295 | 51 | guest | 127 | 84 | kind | 83 |
19 | star | 293 | 52 | wife | 127 | 85 | water | 81 |
20 | property | 264 | 53 | everyone | 126 | 86 | thank | 79 |
21 | trip | 245 | 54 | honeymoon | 124 | 87 | concierge | 77 |
22 | year | 242 | 55 | drink | 122 | 88 | heart | 77 |
23 | area | 216 | 56 | town | 120 | 89 | desk | 76 |
24 | world | 214 | 57 | expectation | 120 | 90 | birthday | 76 |
25 | moment | 210 | 58 | attention | 118 | 91 | anniversary | 74 |
26 | weekend | 204 | 59 | husband | 112 | 92 | cave | 73 |
27 | spa | 203 | 60 | level | 110 | 93 | Jaipur | 73 |
28 | villa | 202 | 61 | boutique | 108 | 94 | Istanbul | 72 |
29 | facility | 192 | 62 | accommodate | 105 | 95 | Nantucket | 71 |
30 | arrival | 190 | 63 | friend | 104 | 96 | Amira | 71 |
31 | beach | 179 | 64 | tour | 103 | 97 | notch | 71 |
32 | luxury | 178 | 65 | ground | 101 | 98 | choice | 71 |
33 | dining | 173 | 66 | team | 99 | 99 | Charleston | 70 |
Frequency | Degree | Eigenvector | Frequency | Degree | Eigenvector | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Freq | Rank | Coef. | Rank | Coef. | Rank | Freq | Rank | Coef. | Rank | Coef. | Rank | ||
staff | 2332 | 1 | 0.086 | 1 | 0.469 | 1 | weekend | 204 | 26 | 0.009 | 25 | 0.052 | 25 |
service | 1709 | 2 | 0.063 | 3 | 0.372 | 3 | spa | 203 | 27 | 0.010 | 22 | 0.065 | 20 |
room | 1708 | 3 | 0.070 | 2 | 0.425 | 2 | villa | 202 | 28 | 0.009 | 26 | 0.047 | 33 |
place | 1024 | 4 | 0.029 | 6 | 0.184 | 6 | facility | 192 | 29 | 0.008 | 31 | 0.055 | 24 |
food | 835 | 5 | 0.036 | 4 | 0.240 | 4 | arrival | 190 | 30 | 0.008 | 28 | 0.047 | 34 |
locate | 784 | 6 | 0.031 | 5 | 0.222 | 5 | beach | 179 | 31 | 0.008 | 30 | 0.049 | 29 |
resort | 640 | 7 | 0.024 | 9 | 0.136 | 12 | luxury | 178 | 32 | 0.006 | 42 | 0.034 | 51 |
stay | 636 | 8 | 0.026 | 7 | 0.164 | 8 | dining | 173 | 33 | 0.007 | 32 | 0.048 | 30 |
view | 628 | 9 | 0.025 | 8 | 0.154 | 9 | people | 168 | 34 | 0.007 | 36 | 0.040 | 39 |
breakfast | 534 | 10 | 0.023 | 10 | 0.176 | 7 | suite | 158 | 35 | 0.007 | 34 | 0.043 | 36 |
everything | 496 | 11 | 0.021 | 13 | 0.137 | 11 | garden | 156 | 36 | 0.007 | 37 | 0.044 | 35 |
time | 488 | 12 | 0.021 | 11 | 0.126 | 15 | quality | 154 | 37 | 0.007 | 35 | 0.052 | 26 |
night | 486 | 13 | 0.021 | 12 | 0.132 | 14 | detail | 152 | 38 | 0.007 | 33 | 0.048 | 31 |
experience | 479 | 14 | 0.017 | 16 | 0.105 | 16 | city | 148 | 39 | 0.006 | 45 | 0.038 | 43 |
restaurant | 451 | 15 | 0.020 | 14 | 0.139 | 10 | Hanoi | 146 | 40 | 0.006 | 39 | 0.042 | 37 |
pool | 407 | 16 | 0.020 | 15 | 0.135 | 13 | class | 145 | 41 | 0.006 | 38 | 0.039 | 40 |
day | 362 | 17 | 0.016 | 17 | 0.098 | 17 | holiday | 145 | 42 | 0.005 | 55 | 0.032 | 55 |
family | 295 | 18 | 0.013 | 18 | 0.074 | 19 | visit | 144 | 43 | 0.006 | 41 | 0.036 | 44 |
star | 293 | 19 | 0.012 | 19 | 0.077 | 18 | minute | 140 | 44 | 0.006 | 47 | 0.032 | 56 |
property | 264 | 20 | 0.010 | 20 | 0.061 | 22 | airport | 138 | 45 | 0.006 | 46 | 0.036 | 45 |
trip | 245 | 21 | 0.010 | 21 | 0.063 | 21 | home | 134 | 46 | 0.006 | 49 | 0.034 | 52 |
year | 242 | 22 | 0.009 | 23 | 0.049 | 27 | hospitality | 134 | 47 | 0.005 | 57 | 0.031 | 60 |
area | 216 | 23 | 0.009 | 24 | 0.057 | 23 | bar | 131 | 48 | 0.006 | 40 | 0.042 | 38 |
world | 214 | 24 | 0.008 | 29 | 0.047 | 32 | custom | 129 | 49 | 0.005 | 52 | 0.039 | 41 |
moment | 210 | 25 | 0.008 | 27 | 0.049 | 28 | amenity | 127 | 50 | 0.006 | 48 | 0.039 | 42 |
Extracted Words | Significant Words | |
---|---|---|
Intangible Service | staff/service/food/place/night/everything/experience/day/breakfast/trip/stay/desk/heart/hospitalityquality/tour/choice/home/thank/price/kind/arrival/dining/ground/water/drink/guest/check/reception/manage/care/moment/notch/butler/concierge/part | staff/service/food/experience/breakfast/hospitality/quality/thank/dining/water/drink/guest/care/notch/butler/concierge |
Physical Environment | room/view/resort/pool/restaurant/property/world/team/level/luxury/visit/star/class/cave/facility/boutique/beach/garden/spa/bar/bathroom/amenity/detail/suite/accommodate/attention/lake/custom/area | room/view/resort/pool/restaurant/luxury/facility/garden/cave/boutique/beach/bathroom/bar/spa/suite/amenity/suite/accommodate/lake |
Location | locate/minute/walk/airport/Quarter/Istanbul/distance/street/Nantucket/Ayada/Jaipur/Mandapa/city/Hanoi/Amira/Charleston/town | Locate/minute/walk/airport/Quarter/Istanbul/distance/street/Nantucket/Ayada/Jaipur/Mandapa/city/Hanoi/Amira/Charleston |
Purpose | time/honeymoon/people/weekend/wife/husband/year/vacate/expectation/anniversary/holiday/family/villa/kid/friend/birthday | honeymoon/people/weekend/wife/husband/vacate/expectation/anniversary/holiday/family/kid/friend/birthday |
Words | Factor Loading | Eigen Value | Variance (%) | |
---|---|---|---|---|
Access | Locate | 0.962 | 3.118 | 16.409 |
Town | 0.949 | |||
Amira | 0.940 | |||
Walk | 0.933 | |||
Food and Beverage (F&B) | Food | 0.928 | 2.818 | 14.832 |
Breakfast | 0.912 | |||
Drink | 0.875 | |||
Dining | 0.773 | |||
Purpose | Weekend | 0.817 | 2.306 | 12.135 |
Birthday | 0.815 | |||
Anniversary | 0.685 | |||
Honeymoon | 0.627 | |||
Tangibles | Pool | 0.747 | 2.004 | 10.547 |
Spa | 0.687 | |||
Beach | 0.682 | |||
Restaurant | 0.480 | |||
Bar | 0.475 | |||
Room | 0.437 | |||
Empathy | Staff | 0.844 | 1.858 | 9.778 |
Care | 0.738 | |||
Service | 0.470 | |||
Friend | 0.444 | |||
Total variance (%) = 22.099 | ||||
KMO (Kaiser Meyer Olkin) = 0.657 | ||||
Bartlett chi-square(p) = 113,025.397 (p < 0.001) |
Model | Unstandardized Coef. | Standardized Coef. | t | |
---|---|---|---|---|
B | Std. error | Beta | ||
(Constant) | 4.861 | 0.006 | 773.569 | |
Access (A) | 0.010 | 0.006 | 0.019 | 1.556 |
Food and beverage (FB) | 0.019 | 0.006 | 0.036 | 2.947 ** |
Purpose (P) | 0.015 | 0.006 | 0.029 | 2.377 * |
Tangibles (T) | −0.002 | 0.006 | −0.004 | −0.359 |
Empathy (E) | 0.045 | 0.006 | 0.087 | 7.114 *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban, H.-J.; Choi, H.; Choi, E.-K.; Lee, S.; Kim, H.-S. Investigating Key Attributes in Experience and Satisfaction of Hotel Customer Using Online Review Data. Sustainability 2019, 11, 6570. https://doi.org/10.3390/su11236570
Ban H-J, Choi H, Choi E-K, Lee S, Kim H-S. Investigating Key Attributes in Experience and Satisfaction of Hotel Customer Using Online Review Data. Sustainability. 2019; 11(23):6570. https://doi.org/10.3390/su11236570
Chicago/Turabian StyleBan, Hyun-Jeong, Hayeon Choi, Eun-Kyong Choi, Sanghyeop Lee, and Hak-Seon Kim. 2019. "Investigating Key Attributes in Experience and Satisfaction of Hotel Customer Using Online Review Data" Sustainability 11, no. 23: 6570. https://doi.org/10.3390/su11236570
APA StyleBan, H. -J., Choi, H., Choi, E. -K., Lee, S., & Kim, H. -S. (2019). Investigating Key Attributes in Experience and Satisfaction of Hotel Customer Using Online Review Data. Sustainability, 11(23), 6570. https://doi.org/10.3390/su11236570