Study on Urbanization Level, Urban Primacy and Industrial Water Utilization Efficiency in the Yangtze River Economic Belt
Abstract
:1. Introduction
2. Model Construction
2.1. Undesirable SE–SBM Model
2.2. Tobit Model
3. Empirical Estimation
3.1. Efficiency Estimation of Industrial Water Utilization
3.2. Estimation Results of Tobit Model
4. Results Discussion
4.1. Law of Industrial Water Utilization Efficiency
4.2. Driving Factors of Industrial Water Utilization Efficiency
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ministry of Water Resources of the People′s Republic of China. China Water Resources Bulletin 2017; China Water Resources and Hydropower Publishing House: Beijing, China, 1 April 2017.
- Yangtze River Water Resources Committee of the Ministry of Water Resources. Water Resources Bulletin of the Yangtze River Basin and Southwest Rivers 2017; Yangtze River Publishing House: Wuhan, China, 10 October 2018. [Google Scholar]
- Huang, M.Y.; Yue, W.Z.; He, X. Decoupling Relationship between Urban Expansion and Economic Growth and Its Spatial Heterogeneity in the Yangtze Economic Belt. J. Nat. Resour. 2018, 33, 219–232. [Google Scholar]
- Skoulikaris, C.H.; Filali-Meknassi, Y.; Aureli, A.; Amani, A.; Jiménez-Cisneros, B.E. Information-Communication Technologies as an Integrated Water Resources Management (IWRM) Tool for Sustainable Development. In Integrated River Basin Management for Sustainable Development of Regions; Komatina, D., Ed.; InTech Publications: London, UK, 2018. [Google Scholar]
- Garcia-Valinas, M.A.; Muniz, M.A. Is DEA Useful in the Regulation of Water Utilities? A Dynamic Efficiency Evaluation. Appl. Econ. 2007, 39, 245–252. [Google Scholar] [CrossRef]
- Lei, Y.T.; Huang, Y.P. Analysis of Industrial Water Use Efficiency and Water Saving Potential of Main Industrial Provinces in China Based on SFA: 1999–2013. J. Ind. Technol. Econ. 2015, 3, 49–57. [Google Scholar]
- Li, J.; Ma, X.C. The Utilization Efficiency of Industrial Water under the Dual Constraints of Resource and Environment—An Empirical Study Based on SBM-Undesirable and Meta-frontier Model. J. Nat. Resour. 2014, 29, 920–933. [Google Scholar]
- Gidion, D.K.; Hong, J.; Adams, M.Z.A.; Khoveyni, M. Network DEA models for assessing urban water utility efficiency. Util. Policy 2019, 57, 48–58. [Google Scholar] [CrossRef]
- Wang, Y.S.; Xu, H.; Bian, Y.W. Efficiency Evaluation of Industrial Water Use System: Two-Stage DEA Considering the Disposable Characteristics of Pollutants. Chin. J. Manag. Sci. 2016, 24, 169–176. [Google Scholar]
- Wang, M.; Sun, C.Z.; Wang, X.L. Analysis of the Water-Energy Coupling Efficiency in China: Based on the Three-Stage SBM-DEA Model with Undesirable Outputs. Water 2019, 11, 632. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, B.L.; Li, J.B.; Gu, A.L. Research on the Relationship between Industrial Water Use and Economic Growth in China Based on Kuznets Curve. Resour. Sci. 2017, 39, 1117–1126. [Google Scholar]
- Yao, L.Q.; Xu, J.R.; Zhang, L.N.; Pang, Q.H.; Zhang, C.J. Temporal-spatial Decomposition Computing of Regional Water Intensity for Yangtze River Economic Zone in China based on LMDI Model. Sustain. Comput. Inform. Syst. 2019, 21, 119–128. [Google Scholar] [CrossRef]
- Zhang, F.; Xue, H.F.; Song, X.N.; Wang, H.N. Spatial Spillover Effect Test on Industrial Water Use Efficiency. Stat. Decis. 2018, 9, 130–134. [Google Scholar]
- Kilic, E.; Yucel, N. Determination of Spatial and Temporal Changes in Water Quality at Asi River Using Multivariate Statistical Techniques. Turk. J. Fish. Aquat. Sci. 2019, 19, 727–737. [Google Scholar] [CrossRef]
- Wang, Y. Virtual Water Transfer Calculation among China′s Regional Trade Based on Whole Industry Caliber. China Popul. Resour. Environ. 2016, 26, 107–115. [Google Scholar] [CrossRef] [PubMed]
- White, D.J.; Feng, K.S.; Sun, L.X.; Hubacek, K. A hydro-economic MRIO analysis of the Haihe River Basin′s water footprint and water stress. Ecol. Model. 2015, 318, 157–167. [Google Scholar] [CrossRef]
- Ganoulis, J.; Skoulikaris, C. Impact of Climate Change on Hydropower Generation and Irrigation: A Case Study from Greece. In NATO Science for Peace and Security Series C: Environmental Security; Springer: Dordrecht, The Netherlands, 2011; Volume 3, pp. 87–95. [Google Scholar]
- Hu, B.; Hou, S.B. Temporal and Spatial Differences of Urban Industrial Water Consumption Efficiency in Jing—Jin—Ji region. J. Arid Land Resour. Environ. 2016, 30, 1–7. [Google Scholar]
- Manouseli, D.; Kayaga, S.M.; Kalawsky, R. Evaluating the Effectiveness of Residential Water Efficiency Initiatives in England: Influencing Factors and Policy Implications. Water Resour. Manag. 2019, 33, 2219–2238. [Google Scholar] [CrossRef]
- Zhang, X.D. Spatial Ddifferences and Influencing Factors of Regional Agricultural Water Use Efficiency in Heilongjiang Province, China. Water Sci. Technol. Water Supply 2019, 19, 545–552. [Google Scholar]
- Yao, X.L.; Feng, W.; Zhang, X.L.; Wang, W.X.; Zhang, C.T.; You, S.Q. Measurement and Decomposition of Industrial Green Total Factor Water Efficiency in China. J. Clean. Prod. 2018, 198, 1144–1156. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Yu, H.; Zhang, Y.L.; Zhao, Z.J.; Zhang, Y. The Forecast Analysis on the Effect of Urbanization Process on Resources and Environment. Urban Dev. Stud. 2017, 24, C1–C5. [Google Scholar]
- Kan, D.X.; Lv, L.J. Study on the Nonlinear Influence of Urbanization on Water Resources Utilization: Based on PSTR Model. J. Huazhong Univ. Sci. Technol. 2017, 31, 126–134. [Google Scholar]
- Sun, H.; Bless Kofi, E.; Sun, C.; Kporsu, A.K. Institutional quality, Green Innovation and Energy efficiency. Energy policy 2019, 135, 111002. [Google Scholar] [CrossRef]
- Bao, C.; Chen, X.J. Spatial Econometric Analysis on Influencing Factors of Water Consumption Efficiency in Urbanizing China. J. Geogr. Sci. 2017, 27, 1450–1462. [Google Scholar] [CrossRef]
- Qin, T.; Zhang, H.Q.; Tong, J.P.; Ma, J.F.; Zhi, Y.L. Water resource constraint on urbanization in Yangtze River Economic Belt. China Popul. Resour. Environ. 2018, 28, 39–45. [Google Scholar]
- Ma, H.L.; Jiang, M.D.; Hou, Y.R. Study on Decoupling Effect of Urbanization of the Yangtze River Economic Belt to Industrial Water Use: Based on the Comparative Analysis of the Data of the Period of “11th Five Year Plan” and “12th Five Year Plan”. Resour. Environ. Yangtze Basin 2018, 27, 1683–1692. [Google Scholar]
- Zhang, H.; Zhou, Z.L.; Zheng, J. Efficiency Evaluation of Science and Technology Service Industry in the Yangtze River Delta Urban Agglomeration—Based on Super-Efficient DEA Model and Window Analysis. Sci. Technol. Prog. Policy 2019, 36, 46–53. [Google Scholar]
- Kan, D.X.; Lv, L.J. Study on the Impact of Urbanization on Water Resources Utilization in China—A Perspective based on Water Footprint and Spatial Dynamic Panel Data. Shanghai J. Econ. 2017, 12, 37–46. [Google Scholar]
- Fu, L.N.; Chen, X.H.; Leng, Z.H. Urban Agglomerations Ecoefficiency Analysis Based on Superefficienty DEA Model: Case Study of Chang-Zhu-Tan “3 + 5” Urban Agglomeration. China Popul. Resour. Environ. 2013, 23, 169–175. [Google Scholar]
- Wang, X.Y. A Comparative Study of Irrigation Water Efficiency of Farmers Based on DEA and SFA—by Using Survey Data from Northwest China. Sci. Technol. Prog. Policy 2010, 1, 8–13. [Google Scholar]
- Cecchini, L.; Venanzi, S.; Pierri, A.; Chiorri, M. Environmental Efficiency Analysis and Estimation of CO2 Abatement Costs in Dairy Cattle Farms in Umbria (Italy): A SBM-DEA Model with Undesirable Output. J. Clean. Prod. 2018, 197, 895–907. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Shen, J.Q.; He, W.J. An Empirical Study of Urbanization and Sewage Discharge Based on EKC: Taking Provincial Panel Data in Eastern China for Example. J. Hohai Univ. Philos. Soc. Sci. 2018, 20, 60–66. [Google Scholar]
- Wang, S.Q.; Zhou, L.; Wang, H.; Li, X.C. Water Use Efficiency and Its Influencing Factors in China: Based on the Data Envelopment Analysis (DEA)-Tobit Model. Water 2018, 10, 832. [Google Scholar] [CrossRef]
- Tong, J.P.; Ma, J.F.; Wang, S.; Qin, T.; Wang, Q. Study on Agricultural Water Use Efficiency in the Yangtze River Basin: Based on Super Efficiency DEA and Tobit Model. Resour. Environ. Yangtze Basin 2015, 24, 603–608. [Google Scholar]
- Chen, F.P.; Zhang, H.O.; Wu, Q.T.; Chen, W.L. A Study on Coordinate Development Between Population Urbanization and Land Urbanization in China. Hum. Geogr. 2010, 5, 53–58. [Google Scholar]
- Liu, C.L.; Wang, T.; Guo, Q.B. Factors Aggregating and the Regional Differences among China Urban Agglomerations. Sustainability 2018, 10, 4179. [Google Scholar] [CrossRef]
- Zhou, Y.; Kong, Y.; Sha, J.; Wang, H.K. The Role of Industrial Structure Upgrades in Eco-efficiency Evolution: Spatial Correlation and Spillover Effects. Sci. Total Environ. 2019, 687, 1327–1336. [Google Scholar] [CrossRef]
- Chen, M.; Qiu, J.Q. Research on Water Environment Regulation Based on Environmental Kuznets Curve. J. Jiangxi Univ. Financ. Econ. 2018, 4, 53–59. [Google Scholar]
- Ridzuan, S. Inequality and the environmental Kuznets curve. J. Clean. Prod. 2019, 228, 1472–1481. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, H.W.; Wang, Y.; Wang, C.W. Research on “Pollution First, Treatment Later” in China Based on Environmental Kuznets Curve Theory. Environ. Sci. Manag. 2010, 35, 148–151. [Google Scholar]
- Liu, Y.B.; Wang, G.X. Analysis of “Growing Resistance” of Water and Soil Resources in the Process of Urbanization. Ecol. Econ. 2010, 10, 161–163. [Google Scholar]
- Ding, X.; Tang, N.; He, J. The Threshold Effect of Environmental Regulation, FDI Agglomeration and Water Use Efficiency under Double Control Actions—An Empirical Test Based on Yangtze River Economic Belt. Water 2019, 11, 452. [Google Scholar] [CrossRef]
- Xiong, Y.; Su, M.T.; Zhang, F.M.; Li, J.Z. Study on the Response Relationship between Urbanization and Water Resource Utilization of Changsha-Zhuzhou-Xiangtan Urban Agglomeration. Hum. Geogr. 2018, 6, 69–76. [Google Scholar]
- Deng, X.L.; Che, M.H.; Chen, B.D. Analysis of Environmental Pollution Effect and Influencing Factors of Urbanization in China. Inq. Econ. Issues 2017, 1, 31–37. [Google Scholar]
- Gu, G.T.; Zhu, W.J. Interaction Effects between Technology-Driven Urbanization and Eco-Environment: Evidence from China′s East Zhejiang Region. Sustainability 2019, 11, 836. [Google Scholar] [CrossRef]
- Hou, Y.C.; Han, J.; Jiang, S.S.; He, Y.P.; Jin, S.L. The General Situation and Strategy Orientation of the Citizenization Process of the Migrant Workers. Reform 2011, 5, 5–29. [Google Scholar]
- Liu, H.; Sun, Z. Distortion of Urbanization Motivation and Overcapacity of Manufacturing Industry: An Empirical Analysis Based on China′s Provincial Panel Data 2001–2012. China Ind. Econ. 2014, 11, 5–17. [Google Scholar]
- Qiu, L.F.; Pan, Y.; Zhu, J.X.; Amable, G.S.; Xu, B.G. Integrated Analysis of Urbanization-triggered Land Use Change Trajectory and Implications for Ecological Land Management: A Case Study in Fuyang, China. Sci. Total Environ. 2019, 660, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Li, B.L.; Hu, X.P. Forming and Evolvement of Land Urbanization Bubble: A Researches Based on Financial Supportive Excess Hypothesis. Econ. Surv. 2016, 33, 155–160. [Google Scholar]
- Guo, X.F.; Chen, T.L. Research on Promoting Green Urbanization through Rural Revitalization. Mod. Econ. Res. 2019, 9, 114–117. [Google Scholar]
- Qin, T.; Zhang, H.Q.; Tong, J.P.; Ma, J.F. Analysis on Threshold Effects and Dynamic Mechanism of Water Consumption Growth in the Process of Urbanization. China Popul. Resour. Environ. 2017, 27, 45–53. [Google Scholar]
- Arfanuzzaman, M.; Dahiya, B. Sustainable Urbanization in Southeast Asia and beyond Challenges of Population growth, Land Use Change, and Environmental Health. Growth Chang. 2019, 50, 725–744. [Google Scholar] [CrossRef]
- Li, X.Q.; Jiang, B.; Chu, N.C. Coupling and Coordination Analysis of Land Intensive Utilization and New Urbanization in Urban Agglomerations: A Case Study of Three Big City Agglomerations in China. Resour. Environ. Yangtze River Basin 2017, 26, 983–991. [Google Scholar]
- Zhang, H.Q.; Li, Y.; Li, J.; Zhang, C.J. Analysis of the Influencing of Multi-Dimensional Urbanization on Industrial Wastewater Discharge. J. Ind. Technol. Econ. 2019, 9, 58–66. [Google Scholar]
- Wei, H.K. Polarization Trend and Optimization of Size Distribution in China′s Urbanization Process. China Ind. Econ. 2014, 3, 18–30. [Google Scholar]
- Saravanan, V.S.; Idenal, M.A.; Saiyed, S.; Saxena, D.; Gerke, S. Urbanization and Human Health in Urban India: Institutional Analysis of Water-borne Diseases in Ahmedabad. Health Policy Plan. 2016, 31, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.F.; Liao, S.H. Green Innovation or Pollution Transfer: Literature Review of Environmental Regulation Effect and Prospect of Cooperative Emission Reduction Theory. World Geogr. Stud. 2017, 26, 126–133. [Google Scholar]
- Yuan, F.; Wei, Y.D.; Gao, J.L.; Chen, W. Water Crisis, Environmental Regulations and Location Dynamics of Pollution-intensive Industries in China: A Study of the Taihu Lake Watershed. J. Clean. Prod. 2019, 216, 311–322. [Google Scholar] [CrossRef]
- Xu, C.S.; Zhou, Z.P. The Spatial Spillover Effects of Urban Primacy on Different Industries. J. Guizhou Univ. Financ. Econ. 2014, 4, 70–74. [Google Scholar]
- Chen, L.; Zhu, X.G. Regional Disequilibrium and Dynamic Evolution of China′s Urbanization:Evidence from the Gini Coefficient and Kernel Density Estimation. Stat. Inf. Forum 2017, 32, 76–84. [Google Scholar]
- Zhou, Z.P.; Xu, C.S. Leading or Balanced—A Spatial Econometric Analysis on Urban Primacy and Economic Growth. Econ. Surv. 2014, 31, 20–25. [Google Scholar]
- Chen, Z. Empirical Study Theoretical and Evidence on the Optimal Scale of Urban Primacy Ratio. Stat. Decis. 2017, 5, 126–129. [Google Scholar]
- Carvalho, J.M.S.; Costa, R.V.; Marnoto, S.; Vieira, J.C.; Sousa, C.A.A. Resource-based view of city quality: Scales development and validation. Growth Chang. 2019, 50, 856–879. [Google Scholar] [CrossRef]
- Shi, D.Y.; Li, X.B.; Duan, L.L. Does New Urbanization Improve the Quality of Ecological Civilization in Western China? Explor. Econ. Issues 2018, 7, 164–173. [Google Scholar]
- Wu, D. Analysis of the Relationship between Industrial Structure and Water Resources in Beijing-Tianjin-Hebei Region and Construction of Two-way Optimization Model. China Popul. Resour. Environ. 2018, 28, 158–166. [Google Scholar]
- Wang, W.Y.; Zeng, W.H. Optimizing the Regional Industrial Structure Based on the Environmental Carrying Capacity: An Inexact Fuzzy Multi-Objective Programming Model. Sustainability 2013, 5, 5391–5415. [Google Scholar] [CrossRef]
- Ma, J.; Yan, B.S. Research on the Relation between Economic Development and Water Use Efficiency Based on Environmental Kuznets Theory: Evidence from Panel Data of 31 Provinces in China from 2002 to 2013. Audit Econ. Res. 2016, 4, 121–128. [Google Scholar]
- Zhao, X.L.; Fan, X.H.; Liang, J.C. Kuznets Type Relationship between Water Use and Economic Growth in China. J. Clean. Prod. 2017, 168, 1091–1100. [Google Scholar] [CrossRef]
- Jin, W.; Mao, G.X. The Threshold Effect of FDI and Environmental Regulation on Industrial Water Use Efficiency. Int. Bus. 2018, 2, 100–112. [Google Scholar]
- Sun, H.; Clottey, S.A.; Geng, Y.; Fang, K.; Amissah, J.C.K. Trade Openness and Carbon Emission: Evidence from Belt and Road Countries. Sustainability 2019, 11, 2682. [Google Scholar] [CrossRef]
- Rezza, A.A. FDI and pollution havens: Evidence from the Norwegian manufacturing sector. Ecol. Econ. 2013, 90, 140–149. [Google Scholar] [CrossRef]
- Hou, W.L.; Fang, L.; Liu, S. Do Pollution Havens Exist in China? An Empirical Research on Environmental Regulation and Transfer of Pollution Intensive Industries. Econ. Rev. 2013, 4, 65–72. [Google Scholar]
- Zhang, F.; Song, X.N.; Xue, H.F.; Dong, H.Z. Decoupling Relation and Dynamic Response of Environmental Regulation, Technological Progress and Industrial Water Intensity. China Popul. Resour. Environ. 2017, 27, 193–201. [Google Scholar]
- Jin, W.; Zhang, H.Q.; Liu, S.S.; Zhang, H.B. Technological innovation, environmental regulation, and green total factor efficiency of industrial water resources. J. Clean. Prod. 2019, 211, 61–69. [Google Scholar] [CrossRef]
Province | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anhui | 0.25 | 0.21 | 0.20 | 0.21 | 0.20 | 0.23 | 0.28 | 0.30 | 0.33 | 0.36 | 0.34 | 0.43 | 0.55 |
Chongqing | 0.38 | 0.36 | 0.36 | 0.35 | 0.39 | 0.44 | 0.52 | 0.60 | 0.58 | 0.60 | 0.69 | 0.83 | 1.13 |
Guizhou | 1.16 | 1.03 | 1.04 | 1.09 | 0.87 | 0.75 | 1.01 | 0.90 | 1.03 | 0.85 | 0.83 | 1.04 | 1.03 |
Hubei | 0.26 | 0.26 | 0.24 | 0.26 | 0.26 | 0.28 | 0.33 | 0.40 | 0.49 | 0.52 | 0.54 | 0.80 | 1.02 |
Hunan | 0.27 | 0.27 | 0.26 | 0.27 | 0.26 | 0.29 | 0.33 | 0.36 | 0.41 | 0.48 | 0.49 | 0.64 | 1.06 |
Jiangsu | 0.23 | 0.30 | 0.35 | 0.41 | 0.42 | 0.50 | 0.60 | 0.64 | 0.67 | 0.70 | 0.71 | 0.81 | 1.12 |
Jiangxi | 0.30 | 0.29 | 0.26 | 0.24 | 0.26 | 0.28 | 0.34 | 0.34 | 0.35 | 0.37 | 0.36 | 0.36 | 0.45 |
Sichuan | 0.26 | 0.26 | 0.26 | 0.29 | 0.29 | 0.35 | 0.47 | 0.61 | 0.67 | 0.81 | 0.61 | 0.75 | 0.80 |
Shanghai | 0.49 | 0.52 | 0.53 | 0.53 | 0.51 | 0.60 | 0.63 | 0.65 | 0.65 | 0.71 | 0.74 | 0.84 | 1.13 |
Yunnan | 0.34 | 0.36 | 0.34 | 0.36 | 0.34 | 0.35 | 0.33 | 0.34 | 0.45 | 0.50 | 0.54 | 0.60 | 0.88 |
Zhejiang | 0.33 | 0.35 | 0.41 | 0.49 | 0.51 | 0.59 | 1.02 | 0.75 | 0.72 | 0.74 | 0.77 | 0.91 | 1.05 |
mean value | 0.39 | 0.38 | 0.39 | 0.41 | 0.39 | 0.42 | 0.53 | 0.54 | 0.58 | 0.60 | 0.60 | 0.73 | 0.93 |
CV | 0.69 | 0.60 | 0.61 | 0.61 | 0.48 | 0.39 | 0.50 | 0.37 | 0.35 | 0.28 | 0.27 | 0.28 | 0.26 |
Variable | Regression Coefficient | Standard Deviation | T Statistic | P Value | Regression Coefficient | Standard Deviation | Z Statistic | P Value |
---|---|---|---|---|---|---|---|---|
type | Tobit Regression of Mixed Panel | Tobit regression of Random Panel | ||||||
Constant | −0.0487 | 0.2996 | −0.16 | 0.871 | 0.3211 | 0.2851 | 1.13 | 0.260 |
Population Urbanization | −1.8904 | 0.6072 | −3.11 | 0.002 | −0.9267 | 0.5799 | −1.60 | 0.110 |
Land Urbanization | −1.5912 | 1.1725 | −1.36 | 0.177 | −4.4141 | 1.6832 | −2.62 | 0.009 |
Urban Primacy | −0.3210 | 0.1092 | −2.94 | 0.004 | −0.3174 | 0.1012 | −3.14 | 0.002 |
Crossing Terms | 0.7143 | 0.2515 | 2.84 | 0.005 | 0.7447 | 0.1999 | 3.72 | 0.000 |
Industrial Structure | 2.7282 | 0.3749 | 7.28 | 0.000 | 0.7715 | 0.3466 | 2.23 | 0.026 |
Development Level | 0.00006 | 0.00001 | 5.32 | 0.000 | 0.00005 | 0.00001 | 3.58 | 0.000 |
Technological Innovation | −0.0744 | 0.0227 | −3.28 | 0.001 | −0.0044 | 0.0242 | −0.18 | 0.854 |
Environmental Regulation | 19.0467 | 13.1952 | 1.44 | 0.151 | 6.2209 | 7.6012 | 0.82 | 0.413 |
Foreign Investment | 0.0528 | 0.0519 | 1.02 | 0.311 | 0.1857 | 0.1099 | 1.69 | 0.091 |
/sigma | 0.1634 | 0.0112 | ||||||
/sigma_u | 0.1775 | 0.0413 | 4.30 | 0.000 | ||||
/sigma_e | 0.1047 | 0.0064 | 16.16 | 0.000 | ||||
LR | 87.22 | 0.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Fu, Z.; Jia, H. Study on Urbanization Level, Urban Primacy and Industrial Water Utilization Efficiency in the Yangtze River Economic Belt. Sustainability 2019, 11, 6571. https://doi.org/10.3390/su11236571
Ding X, Fu Z, Jia H. Study on Urbanization Level, Urban Primacy and Industrial Water Utilization Efficiency in the Yangtze River Economic Belt. Sustainability. 2019; 11(23):6571. https://doi.org/10.3390/su11236571
Chicago/Turabian StyleDing, Xuhui, Zhu Fu, and Hongwen Jia. 2019. "Study on Urbanization Level, Urban Primacy and Industrial Water Utilization Efficiency in the Yangtze River Economic Belt" Sustainability 11, no. 23: 6571. https://doi.org/10.3390/su11236571
APA StyleDing, X., Fu, Z., & Jia, H. (2019). Study on Urbanization Level, Urban Primacy and Industrial Water Utilization Efficiency in the Yangtze River Economic Belt. Sustainability, 11(23), 6571. https://doi.org/10.3390/su11236571