An Environmental Impact Calculator for 24-h Diet Recalls
Abstract
:1. Introduction
2. Methods
2.1. Dietary Recall Data
2.2. Environmental Impact Factors
3. Results
3.1. The Multi-Factor Dietary Impact on the Environment Tool (miDIET)
3.2. Environmental Impact Estimations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Report IPCC, 2014: Climate Change 2014: Synthesis. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team; Pachauri, R.K.; Meyer, L.A. (Eds.) IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- AQUASTAT Water Uses FAO 2016. Available online: http://www.fao.org/nr/water/aquastat/water_use/index.stm (accessed on 5 October 2019).
- Sources of Eutrophication WRI 2017. Available online: https://www.wri.org/our-work/project/eutrophication-and-hypoxia/sources-eutrophication (accessed on 5 October 2019).
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelletier, N.L.; Ayer, N.W.; Tyedmers, P.H.; Kruse, S.A.; Flysjo, A.; Robillard, G.; Ziegler, F.; Scholz, A.J.; Sonesson, U. Impact categories for life cycle assessment research of seafood production systems: Review and prospectus. Int. J. LCA 2007, 12, 414–421. [Google Scholar] [CrossRef]
- Roy, P.; Nei, D.; Orikasa, T.; Xu, Q.; Okadome, H.; Nakamura, N.; Shiina, T. A review of life cycle assessment (LCA) on some food products. J. Food Eng. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- de Vries, M.; de Boer, I.J.M. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Nijdam, D.; Rood, T.; Westhoek, H. The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 2012, 37, 760–770. [Google Scholar] [CrossRef]
- Shewmake, S.; Okrent, A.; Thabrew, L.; Vandenbergh, M. Predicting consumer demand responses to carbon labels. Ecol. Econ. 2015, 119, 168–180. [Google Scholar] [CrossRef]
- Clune, S.; Crossin, E.; Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 2017, 140, 766–783. [Google Scholar] [CrossRef] [Green Version]
- Risku-Norja, H. From Environmental Concerns towards Sustainable Food Provisioning. Material Flow and Food Consumption Scenario Studies on Sustainability of Agri-Food Systems. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 2 April 2011. [Google Scholar]
- Berners-Lee, M.; Hoolohan, C.; Cammack, H.; Hewitt, C.N. The relative greenhouse gas impacts of realistic dietary choices. Energy Policy 2012, 43, 184–190. [Google Scholar] [CrossRef]
- Hallström, E.; Carlsson-Kanyama, A.; Börjesson, P. Environmental impact of dietary change: A systematic review. J. Clean. Prod. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Heller, M.C.; Willits-Smith, A.; Meyer, R.; Keoleian, G.A.; Rose, G. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Envrion. Res. Lett. 2018, 13, 044044. [Google Scholar] [CrossRef] [PubMed]
- DATAFIELD. Center for Sustainable Systems, University of Michigan. Available online: http://css.umich.edu/page/datafield (accessed on 10 December 2019).
- Mertens, E.; Kaptijn, G.; Kuijsten, A.; van Zanten, H.; Geleijnse, J.M.; van’t Veer, P. SHARP-Indicators Database towards a public database for environmental sustainability. Data Brief 2019, 27. [Google Scholar] [CrossRef] [PubMed]
- ASA24 Home Page. Epidemiology and Genomics Research Program. National Cancer Institute Division of Cancer Control and Population Sciences. Available online: https://epi.grants.cancer.gov/asa24/ (accessed on 10 December 2019).
- Shim, J.S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36. [Google Scholar] [CrossRef]
- Subar, A.F.; Kirkpatrick, S.I.; Mittl, B.; Zimmerman, T.P.; Thompson, F.E.; Bingley, C.; Potischman, N. The Automated Self-Administered 24 h Dietary Recall (ASA24): A resource for researchers, clinicians and educators from the National Cancer Institute. J. Acad. Nutr. Diet. 2012, 112, 1134–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Department of Agriculture, Agricultural Research Service. USDA Food and Nutrient Database for Dietary Studies 2013–2014; Food Surveys Research Group Home Page. Available online: http://www.ars.usda.gov/nea/bhnrc/fsrg (accessed on 10 December 2019).
- Kirkpatrick, S.I.; Subar, A.F.; Douglass, D.; Zimmerman, T.P.; Thompson, F.E.; Kahle, L.L.; George, S.M.; Dodd, K.W.; Potischman, N. Performance of the Automated Self-Administered 24 h recall relative to a measure of true intakes and to an interviewer-administered 24 h recall. Am. J. Clin. Nutr. 2014, 100, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Diep, C.S.; Hingle, M.; Chen, T.A.; Dadabhoy, H.R.; Beltran, A.; Baranowski, J.; Baranowski, T. The automated self-administered 24 h dietary recall for children, 2012 version, for youth aged 9 to 11 years: A validation study. J. Acad. Nutr. Diet. 2015, 115, 1591–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Small World Consulting. 2010. The Greenhouse Gas Footprint of Booths. Available online: http://www.booths.co.uk/wpcontent/themes/booths/images/Booths%20GHG%20Report%202012%20Final.pdf (accessed on 28 October 2019).
- Rose, D.; Heller, M.C.; Willits-Smith, A.M.; Meyer, R.J. Carbon footprint of self-selected US diets: Nutritional, demographic, and behavioral correlates. Am. J. Clin. Nutr. 2019, 109, 526–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Sustainable diets and biodiversity: Direction and solutions for policy, research and action. In Proceedings of the International Scientific Symposium: Biodiversity and Sustainable Diets United Against Hunger, Rome, Italy, 3–5 November 2010. [Google Scholar]
Impact Category | Unit (per kg of Food) |
---|---|
Land use | m2 |
Greenhouse gas emissions | kg CO2eq, IPCC 2013 includes feedbacks |
Greenhouse gas emissions | kg CO2eq, IPCC 2007 |
Acidifying emissions | g SO2eq, CML2 Baseline |
Eutrophication emissions | g PO43−eq, CML2 Baseline |
Freshwater withdrawal | L |
Stress-weighted water withdrawal | L |
Parameter | Result |
---|---|
Food groups in Poore and Nemecek 2018 | 43 |
Foods listed in FNDDS | 8538 |
Matches (#) between FNDDS and Poore and Nemecek 2018 | 2866 |
Matches (%) between FNDDS and Poore and Nemecek 2018 | 33.6% |
Foods (#) in NHANES 2015–2016 (Day 1 of 2) | 121,482 |
Foods (#) in NHANES 2015–2016 (Day 1 of 2) matched with environmental impact data | 41,928 |
Foods (%) in NHANES 2015–2016 (Day 1 of 2) matched with environmental impact data | 34.5% |
Calories (%) in NHANES 2015–2016 (Day 1 of 2) matched with environmental impact data | 24% |
Mean | 95% Confidence Interval | Linearized Standard Error | |
---|---|---|---|
kcal | 2020 | 1980–2060 | 17.6 |
Land Use (m2) | 3.92 | 3.51–4.34 | 0.195 |
CF kg CO2e (IPCC 2013) | 2.26 | 2.09–2.42 | 0.0777 |
CF kg CO2e (IPCC 2007) | 2.05 | 1.90–2.19 | 0.672 |
Acidifying emissions g SO2eq | 16.3 | 15.4–17.2 | 0.436 |
Eutrophying emissions g PO43q | 12.2 | 11.2–13.2 | 0.474 |
Freshwater withdrawals (L) | 159 | 150–168 | 4.28 |
Stress-weighted water use (L) | 5140 | 4780–5500 | 168 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bryan, T.; Hicks, A.; Barrett, B.; Middlecamp, C. An Environmental Impact Calculator for 24-h Diet Recalls. Sustainability 2019, 11, 6866. https://doi.org/10.3390/su11236866
Bryan T, Hicks A, Barrett B, Middlecamp C. An Environmental Impact Calculator for 24-h Diet Recalls. Sustainability. 2019; 11(23):6866. https://doi.org/10.3390/su11236866
Chicago/Turabian StyleBryan, Thomas, Andrea Hicks, Bruce Barrett, and Catherine Middlecamp. 2019. "An Environmental Impact Calculator for 24-h Diet Recalls" Sustainability 11, no. 23: 6866. https://doi.org/10.3390/su11236866
APA StyleBryan, T., Hicks, A., Barrett, B., & Middlecamp, C. (2019). An Environmental Impact Calculator for 24-h Diet Recalls. Sustainability, 11(23), 6866. https://doi.org/10.3390/su11236866