Evolution of an Estuarine Island in the Anthropocene: Complex Dynamics of Chongming Island, Shanghai, P.R. China
Abstract
:1. Introduction
2. Briefs on Chongming Island
3. Geomorphological Evolution
3.1. Formation and Evolution
3.2. Sediment Dynamics
3.3. Effects of Typhoon and Storm Surges
4. Human Impacts on Island Dynamics
4.1. Human Inhabitation and Population
4.2. Land Reclamation
4.3. Sea Walls
4.4. Upstream Water Resource Management Construction
4.5. Sea Level Rise
5. Islands in a Metacoupled World
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Szabó, J. Anthropogenic Geomorphology: Subject and System; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3–10. [Google Scholar] [CrossRef]
- Lewis, S.L.; Maslin, M.A. Defining the anthropocene. Nature 2015, 519, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Meadows, M.E. Geomorphology in the anthropocene: Perspectives from the past, pointers for the future? In Geomorphology and Society; Meadows, M.E., Lin, J.C., Eds.; Springer: Tokyo, Japan, 2016; pp. 7–22. [Google Scholar] [CrossRef]
- Cooper, A.H.; Brown, T.J.; Price, S.J.; Ford, J.R.; Waters, C.N. Humans are the most significant global geomorphological driving force of the 21st century. Anthr. Rev. 2018, 5, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Rockström, J.; Falkenmark, M.; Allan, T.; Folke, C.; Gordon, L.; Jägerskog, A.; Kummu, M.; Lannerstad, M.; Meybeck, M.; Molden, D.; et al. The unfolding water drama in the anthropocene: Towards a resilience-based perspective on water for global sustainability. Ecohydrology 2014, 7, 1249–1261. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 292. [Google Scholar] [CrossRef]
- Kirch, P.V. Microcosmic histories: Island perspectives on “global” change. Am. Anthropol. 1997, 99, 30–42. [Google Scholar] [CrossRef]
- Kirch, P.V. Oceanic islands: Microcosms of “global change”. In The Archaeology of Global Change: The Impact of Humans on Their Environment; Redman, C.L., James, S.R., Fish, P.R., Rogers, J.D., Eds.; Smithsonian Books: Washington, DC, USA, 2004; pp. 13–27. [Google Scholar]
- Rick, T.C.; Kirch, P.V.; Erlandson, J.M.; Fitzpatrick, S.M. Archeology, deep history, and the human transformation of island ecosystems. Anthropocene 2013, 4, 33–45. [Google Scholar] [CrossRef]
- Briguglio, L. Small island developing states and their economic vulnerabilities. World Dev. 1995, 23, 1615–1632. [Google Scholar] [CrossRef]
- González, J.A.; Montes, C.; Rodríguez, J.; Tapia, W. Rethinking the Galapagos Islands as a complex social-ecological system: Implications for conservation and management. Ecol. Soc. 2008, 13, 582–592. [Google Scholar] [CrossRef]
- Walsh, S.J.; Mena, C.F. Perspectives for the Study of the Galapagos Islands: Complex. Systems and Human-Environment Interactions; Springer: New York, NY, USA, 2013; pp. 49–67. [Google Scholar] [CrossRef]
- Walsh, S.J.; Mena, C.F. Interactions of social, terrestrial, and marine sub-systems in the Galapagos Islands, Ecuador. Proc. Natl. Acad. Sci. USA 2016, 113, 14536–14543. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef] [Green Version]
- Mann, D.; Edwards, J.; Chase, J.; Beck, W.; Reanier, R.; Mass, M.; Finney, B.; Loret, J. Drought, vegetation change, and human history on Rapa Nui (Isla de Pascua, Easter Island). Quat. Res. 2008, 69, 16–28. [Google Scholar] [CrossRef]
- Brown, K.; Turner, R.K.; Hameed, H.; Bateman, I.J. Environmental carrying capacity and tourism development in the Maldives and Nepal. Environ. Conserv. 1997, 24, 316–325. [Google Scholar] [CrossRef]
- Holdschlag, A.; Ratter, B.M.W. Caribbean island states in a social-ecological panarchy? Complexity theory, adaptability and environmental knowledge systems. Anthropocene 2016, 13, 80–93. [Google Scholar] [CrossRef]
- Fitzpatrick, S.M.; Erlandson, J.M. Island archaeology, model systems, the anthropocene, and how the past informs the future. J. Isl. Coast. Archaeol. 2018, 13, 283–299. [Google Scholar] [CrossRef]
- Bianchi, T.S.; Allison, M.A. Large-river delta-front estuaries as natural “recorders” of global environmental change. Proc. Natl. Acad. Sci. USA 2009, 106, 8085–8092. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Chen, X. Summary on research of coupled human-environment system vulnerability under global environmental change. Prog. Geogr. 2010, 29, 454–462. [Google Scholar] [CrossRef]
- Turner, B.L.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Hovelsrud-Broda, G.K.; Kasperson, J.X.; Kasperson, R.E.; Luers, A. Illustrating the coupled human–environment system for vulnerability analysis: Three case studies. Proc. Natl. Acad. Sci. USA 2003, 100, 8080–8085. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J. Complexity of coupled human and natural systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Folke, C.; Alberti, M.; Redman, C.L.; Schneider, S.H.; Ostrom, E.; Pell, A.N.; Lubchenco, J. Coupled human and natural systems. AMBIO J. Hum. Environ. 2007, 36, 639–649. [Google Scholar] [CrossRef]
- Shanghai Digital Elevation Model. Geographical Information Monitoring Cloud Platform. 2013. Available online: http://www.dsac.cn/DataProduct/Detail/20082007 (accessed on 6 August 2017).
- Wei, T.; Chen, Z.; Duan, L.; Gu, J.; Saito, Y.; Zhang, W.; Wang, Y.; Kanai, Y. Sedimentation rates in relation to sedimentary processes of the Yangtze Estuary, China. Estuar. Coast. Shelf Sci. 2007, 71, 37–46. [Google Scholar] [CrossRef]
- Chen, B.; Wang, K. Suspended sediment transport in the offshore near Yangtze Estuary. J. Hydrodyn. 2008, 20, 373–381. [Google Scholar] [CrossRef]
- Mu, H.; Shi, J.; Yang, H.; Ma, Y.; Xu, W.; Zhang, H. Climate change and impact assessment for Chongming Island in 1961–2016. Adv. Meteorol. Sci. Technol. 2017. [Google Scholar] [CrossRef]
- Zhang, X. The historical formation of Chongming Island. Fudan J. Soc. Sci. Ed. 2005, 3, 62–71. [Google Scholar]
- Shen, Y.; Xu, M.; Zhang, L.; Song, J.; Huang, G. Chongming Statistical Yearbook 2018; Chongming Statistics Office: Shanghai, China, 2018. [Google Scholar]
- Chu, S. The evolution of Chongming Island. Geogr. Res. 1987, 6, 9–16. [Google Scholar] [CrossRef]
- Li, X. Tratigraphic subdivisions and sedimentary environmental evolutions of the late cenozoic sequences in Shanghai region. Shanghai Land Resour. 2009, 1–7. [Google Scholar] [CrossRef]
- Wu, Y. An account of Chongming reclamation. Mem. Arch. 2016, 4, 59–61. [Google Scholar]
- Zhou, Z. Historical atlas of Shanghai; Shanghai People’s Publishing House: Shanghai, China, 1999. [Google Scholar]
- Pang, R. Modern Sedimentation Rate and Its Implications for Environmental Evolutions in the Changjiang Estuary in China. Master’s Thesis, Nanjing University, Nanjing, China, 2011. [Google Scholar]
- Ran, Q. Modern Sedimentation Rates of the Changjiang Subaqueous Delta. Master‘s Thesis, Nanjing University, Nanjing, China, 2010. [Google Scholar]
- Neill, S.P. The role of coriolis in sandbank formation due to a headland/island system. Estuar. Coast. Shelf Sci. 2008, 79, 419–428. [Google Scholar] [CrossRef]
- Seybold, H.; Andrade, J.S., Jr.; Herrmann, H.J. Modeling river delta formation. Proc. Natl. Acad. Sci. USA 2007, 104, 16804–16809. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Liu, C.; Yang, O. Dynamic sediment environment of the north branch of Changjiang Estuary. J. East China Norm. Univ. Natl. Sci. 2001, 1, 90–96. [Google Scholar]
- Zhai, X. Preliminary Study on the Drooling Dynamics and Suspended Sedimentation Distribution Characteristics of the Yangtze River. Master’s Thesis, East China Normal University, Shanghai, China, 2006. [Google Scholar]
- Baylisssmith, T.P. The role of hurricans in the development of Reef Islands, Ontong Java Atoll, Solomon-Islands. Geogr. J. 1988, 154, 377–391. [Google Scholar] [CrossRef]
- Duperret, A.; Pomerai, M.R.D. Coastal rock cliff erosion by collapse at Puys, France: The role of impervious marl seams within chalk of NW Europe. J.Coast. Res. 2002, 18, 52–61. [Google Scholar]
- Zhang, L. Chongming Chronicles (1985–2004); China Local Records Publishing: Beijing, China, 2013. [Google Scholar]
- Zhou, Z. Chongming Chronicles (Before 1984); Shanghai People’s Publishing House: Shanghai, China, 1989. [Google Scholar]
- Pan, W. Reconstruction of erosion-deposition in Yangtze river estuary south branch and related problem study, 1681–1953. Collect. Essay. Chin. Hist. Geogr. 2009, 24, 22–28. [Google Scholar]
- Chai, T. Ups and Downs of the Old Chongming: Nanfeng Island; Wenhui Press: Shanghai, China, 2011. [Google Scholar]
- Lu, M. Chongming: From Shifting to Impregnable. Available online: http://shzw.eastday.com/eastday/city/gk/20180321/u1ai11308301.html (accessed on 14 October 2018).
- Hanghai Manicipall Government. 13th Five-Year Plan of Chongming World-Class Eco-Island Development. Available online: http://www.Shanghai.gov.cn/nw2/nw2314/nw39309/nw39385/nw40603/u26aw50776.html (accessed on 14 October 2018).
- Cai, M. Back in those days of Chongming land reclamation. Mem. Arch. 2007, 4, 31–32. [Google Scholar]
- Shen, Y.; Xu, M.; Zhang, L.; Song, J.; Huang, G. Chongming Statistical Yearbook 2017; Chongming Statistics Office: Shanghai, China, 2017. [Google Scholar]
- Li, J.; Yang, X.; Tong, Y. Progress on environmental effects of tidal flat reclamation. Prog. Geogr. 2007, 26, 43–51. [Google Scholar] [CrossRef]
- Nie, M.; Wang, M.; Li, B. Effects of salt marsh invasion by spartina alterniflora on sulfate-reducing bacteria in the Yangtze river estuary, China. Ecol. Eng. 2009, 35, 1804–1808. [Google Scholar] [CrossRef]
- Sousa, A.I.; Lillebø, A.I.; Caçador, I.; Pardal, M.A. Contribution of spartina maritima to the reduction of eutrophication in estuarine systems. Environ. Pollut. 2008, 156, 628–635. [Google Scholar] [CrossRef] [Green Version]
- Gan, X.; Cai, Y.; Choi, C.; Ma, Z.; Chen, J.; Bo, L. Potential impacts of invasive spartina alterniflora on spring bird communities at Chongming Dongtan, a chinese wetland of international importance. Estuar. Coast. Shelf Sci. 2009, 83, 211–218. [Google Scholar] [CrossRef]
- Wang, J.; Haung, X.; Liu, A.; Zhang, Y. Tendency of the biodiversity variation nearby Changjiang Estuary. Mar. Sci. Bull. 2004, 23, 32–39. [Google Scholar] [CrossRef]
- Zhang, Q. Shanghai Environment Yearbook 2014; Shanghai People’s Publishing House: Shanghai, China, 2014. [Google Scholar]
- Wang, H.; Saito, Y.; Zhang, Y.; Bi, N.; Sun, X.; Yang, Z. Recent changes of sediment flux to the Western Pacific Ocean from major rivers in east and southeast Asia. Earth.Sci. Rev. 2011, 108, 80–100. [Google Scholar] [CrossRef]
- Yang, S.; Shi, Z.; Zhao, Q. Influence of tidal marsh vegetations on hydrodynamics and sedimentation in the Changjiang estuary. Acta Oceanol. Sin. 2001, 23, 75180. [Google Scholar]
- Li, C.; Yang, S.; Fan, D.; Zhao, J. The change in Changjiang suspended load and its impact on the delta after completion of three-gorges dam. Quat. Sci. 2004, 24, 17–22. [Google Scholar]
- Liu, C. Ecological environment impact of the south-to-north water transfer project. Haihe Water Res. 2002, 1, 1–5. [Google Scholar] [CrossRef]
- Ying, M.; Li, J.; Wan, X.; Shen, H. Study on time series of sediment discharge at datong station in the Yangtze river. Res. Environ. Yangtze Basin 2005, 14, 81–87. [Google Scholar] [CrossRef]
- Yang, X.; Lu, X.X. Estimate of cumulative sediment trapping by multiple reservoirs in large river basins: An example of the Yangtze river basin. Geomorphology 2014, 227, 49–59. [Google Scholar] [CrossRef]
- He, X.; Dai, X.; Gu, C. Geomorphic evolution of eastern Chongming Island during the last 40 years and its future trend, based on the sea charts comparison. Mar. Geol. Qua. Geol. 2010, 4, 110–118. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Kuang, R. Analysis and trend prediction of shoreline evolution in Chongming Dongtan, Shanghai. J. Jilin Univ. Earth Sci. Ed. 2010, 40, 417–424. [Google Scholar]
- Li, X.; Zhou, Y.; Zhang, L.; Kuang, R. Shoreline change of Chongming Dongtan and response to river sediment load: A remote sensing assessment. J. Hydrol. 2014, 511, 432–442. [Google Scholar] [CrossRef]
- Chen, J. Impact and Countermeasures of South-to-North Water Transit (East Route) Towards the Ecological Environment of the Yangtze Estuary; East China Normal University Press: Shanghai, China, 2003. [Google Scholar]
- Wang, C.; Wang, Y.; Wang, P. Water quality modeling and polltion control for the eastern route of south to north water transfer project in China. J. Hydrodyn. 2006, 18, 5–13. [Google Scholar] [CrossRef]
- Cohen, A.S.; Bills, R.; Cocquyt, C.Z.; Caljon, A.G. The impact of sediment pollution on biodiversity in lake Tanganyika. Conserv. Biol. 1993, 7, 667–677. [Google Scholar] [CrossRef]
- Ma, D.; Wang, J. Evaluation on potential ecological risk of sediment pollution in main estuaries of China. China Environ. Sci. 2003, 23, 521–525. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II AND III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, l.A., Eds.; IPCC: Geneva, Switzerland, 2014; pp. 8–13. [Google Scholar]
- Chang, S.; Clement, T.P.; Simpson, M.J.; Lee, K.K. Does sea-level rise have an impact on saltwater intrusion? Adv. Water Res. 2011, 34, 1283–1291. [Google Scholar] [CrossRef] [Green Version]
- Storlazzi, C.D.; Gingerich, S.B.; Van, D.A.; Cheriton, O.M.; Swarzenski, P.W.; Quataert, E.; Voss, C.I.; Field, D.W.; Annamalai, H.; Piniak, G.A. Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. Sci. Adv. 2018, 4, eaap9741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, L.; Wang, N.; Ge, Z.; Zhang, L. Vulnerability assessment of the coastal wetland in the Yangtze Estuary under sea-level rise. Chin. J. Appl. Ecol. 2015, 25, 553–561. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, J.; Chen, Z.; Ruan, R.; Xu, G.; Zeng, G.; Zhu, J.; Dai, Z.; Gu, S.; Zhang, X. Anthropogenic Sea Level Rise and Adaptation in the Yangtze Estuary. In Proceedings of the 2016 Ocean Sciences Meeting, New Orleans, LA, USA, 21–26 February 2016; American Geophysical Union: Washington, DC, USA, 2016. [Google Scholar]
- Gong, S.L.; Yang, S.L. The case of east beach on Chongming Island in Shanghai:Evolution of bank erosion and deposition at the Yangtze estuarine and subsidence effects on reserve land resources. J. China Hydrol. 2007, 5, 78–82. [Google Scholar]
- Tian, B.; Zhang, L.Q.; Wang, X.R.; Zhou, Y.X.; Zhang, W. Forecasting the effects of sea-level rise at Chongming Dongtan nature reserve in the Yangtze delta, Shanghai, China. Ecol. Eng. 2010, 36, 1383–1388. [Google Scholar] [CrossRef]
- Wang, J. Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China. Clim. Chang. 2012, 115, 537–558. [Google Scholar] [CrossRef]
- Huang, B.; Ouyang, Z.; Zheng, H.; Zhang, H.; Wang, X. Construction of an eco-island: A case study of Chongming Island, China. Ocean Coast. Manag. 2008, 51, 575–588. [Google Scholar] [CrossRef]
- Li, M.T.; Chen, Z.Y.; Finlayson, B.; Wei, T.Y.; Chen, J.; Wu, X.D.; Xu, H.; Webber, M.; Barnett, J.; Wang, M. Water diversion and sea-level rise: Potential threats to freshwater supplies in the Changjiang River Estuary. Estuar. Coast. Shelf Sci. 2015, 156, 52–60. [Google Scholar] [CrossRef]
- Liu, J. Integration across a metacoupled world, ecology and society. Ecol. Soc. 2017, 22. [Google Scholar] [CrossRef]
- Liu, J.; Hull, V.; Batistella, M.; Defries, R.; Dietz, T.; Fu, F.; Hertel, T.W.; Izaurralde, R.C.; Lambin, E.F.; Li, S. Framing sustainability in a telecoupled world. Ecol. Soc. 2013, 18, 344–365. [Google Scholar] [CrossRef]
- Liu, J.G.; Vina, A.; Yang, W.; Li, S.X.; Xu, W.H.; Zheng, H. China’s environment on a metacoupled planet. Annu. Rev. Environ. Resour. 2018, 43, 1–4. [Google Scholar] [CrossRef]
- Robin, L. No Island is an Island. Available online: https://aeon.co/essays/island-mindedness-has-no-place-in-a-cosmopolitan-age (accessed on 4 April 2019).
- Chongming District Government. Master Plan and General Land-Use Plan of Chongming District Shanghai 2016–2040. Available online: http://www.Shanghai.gov.cn/newShanghai/xxgkfj/2035004.pdf (accessed on 14 October 2018).
- Shanghai Urban Planning and Land Resource Administration Bureau. Shanghai Master Plan 2017–2035: Excellent Global City; Shanghai Urban Planning and Land Resource Administration Bureau: Shanghai, China, 2018. [Google Scholar]
- Shanghai Municiple Government. Implementation Suggestions Towards Creating a National-Class Ecological County 2007; Shanghai Municipal Government: Shanghai, China, 2007. [Google Scholar]
- UNEP. Chongming Eco-Island International Evaluation Report; UN Environment-Tongji Institute of Environment for Sustainable Development: Shanghai, China, 2014. [Google Scholar]
- Chongming District Government. Master Plan and General Land-Use Plan of Chongming District; Chongming District Government: Shanghai, China, 2018; pp. 2017–2035. [Google Scholar]
- Xu, W.; Shi, Y.; Lu, F.; Liu, W. Land eco-environmental sensitivity assessment in Shanghai. Environ. Sci. Technol. 2011, 34, 178–182. [Google Scholar]
- Liu, Z.; Liu, H.; Lyu, X. Ecological fragility of wetlands in Sanjiang plain. Chin. J. Appl. Ecol. 2001, 12, 241–244. [Google Scholar]
- Viana, A.P.; Frédou, F.L.; Frédou, T.; Torres, M.F.; Bordalo, A.O. Fish fauna as an indicator of environmental quality in an urbanised region of the Amazon estuary. J. Fish Biol. 2010, 76, 467–486. [Google Scholar] [CrossRef]
- Rice, E.; Dam, H.G.; Stewart, G. Impact of climate change on estuarine zooplankton: Surface water warming in long island sound is associated with changes in copepod size and community structure. Estuar. Coast. 2015, 38, 13–23. [Google Scholar] [CrossRef]
- Cowart, L.; Walsh, J.P.; Corbett, D.R. Analyzing estuarine shoreline change: A case study of Cedar Island, North Carolina. J. Coast. Res. 2010, 265, 817–830. [Google Scholar] [CrossRef]
- Van, P.D.T.; Popescu, I.; van Griensven, A.; Solomatine, D.P.; Trung, N.H.; Green, A. A study of the climate change impacts on fluvial flood propagation in the vietnamese mekong delta. Hydrol. Earth Syst. Sci. 2012, 16, 4637–4649. [Google Scholar] [CrossRef] [Green Version]
- Lauri, H.; Moel, H.D.; Ward, P.J.; Räsänen, T.A.; Keskinen, M.; Kummu, M.S. Future changes in Mekong river hydrology: Impact of climate change and reservoir operation on discharge. Hydrol. Earth Syst. Sci. Discuss. 2012, 9, 4603–4619. [Google Scholar] [CrossRef]
Date | Disaster | Impacts |
---|---|---|
17–18 July, 1444 | Typhoon, rainstorm, storm surge | 167 people dead, >1000 houses destroyed |
15 July, 1461 | Typhoon, rainstorm, storm surge | >4000 people dead |
18 July, 1724 | High tide | >1000 people dead |
18–19 June, 1781 | Typhoon, storm surge | >12,000 people dead, >18,000 houses destroyed |
28–29 July, 1831 | Typhoon, rainstorm, storm surge | >9500 people dead |
3 Aug, 1905 | Typhoon, rainstorm, storm surge | >10,000 people dead |
18–21 Aug, 1921 | Typhoon, storm surge | >40 people dead, many sea walls were broken, and Nanfengsha Island was flooded |
2–3 Sept, 1933 | Typhoon, storm surge | sea wall broken, flood water level higher than 3 meters, many casualties |
28 Sept, 1933 | Typhoon and rainstorm | >300 people dead |
6 Sept, 1937 | Typhoon, storm surge, rainstorm | >70% of the sea walls were broken |
23 Feb, 1942 | Storm, rain | >100 people dead, many houses fall |
8–10 Aug, 1948 | Rainstorm | Rivers flooded and fields were inundated |
25 July, 1949 | Typhoon maximum magnitude 12 with 5.18 m storm surge | 147 people dead, >500 dikes and 30,000 houses were broken, and Nanfengsha Island was flooded after dikes were broken |
7 July, 1958 | Typhoon magnitude of 10 | 13 people dead, 773 houses fall, and 13,594 houses broken |
5 Oct, 1961 | Typhoon and rainstorm | Bridges and dikes broken, 8 fishing boats wrecked |
1–2 July, 1976 | Rainstorm, max daily precipitation >216.4 mm | Agriculture was flooded, Nanfengsha Island finally collapsed |
10–11 Sept, 1977 | Typhoon magnitude of 10 | 4 people dead, 3533 houses fall, and 14,829 houses broken |
31 Aug, 1981 | Typhoon and storm surge | 2 people dead, 25 dikes destroyed |
1 Aug, 1985 | Typhoon magnitude of 10, 5.12 m storm surge, max daily precipitation 227.6 mm | Hundreds of houses destroyed, farmland devastated |
27 Aug, 1986 | Typhoon magnitude of 12 | 1 person dead, houses destroyed, farmland devastated |
18 Aug, 1997 | Typhoon magnitude of 12, max daily precipitation 198.0 mm | 1 person dead, 44.5 km sea wall destroyed, 2740 houses fall, farmland flooded |
4–5 July, 2002 | Typhoon | 1 person dead, houses destroyed, farmland devastated |
Year | Event |
---|---|
618–626 | Xisha and Dongsha emerged in the Yangtze Estuary |
696 | Humans first settled on Xisha and Dongsha |
937 | Chongming government officially established |
1352 | The southern part of the island collapsed, destroying the small town, which was then reconstructed to the north |
1420 | The southern area of the town again collapsed and was reconstructed further north |
1529 | The town collapsed and was rebuilt towards the west on Sansha Island |
1550 | Flood inundated the town in the northeast; reconstructed on Pingyangsha in 1553 |
1583-1588 | Flood inundated the town in the southeast, reconstructed on Changsha (current location) |
1911 | Revolution of 1911, a key point for Chinese modernization, ended the Qing dynasty and emperor system, which changed the Chongming regime |
1949 | Founding of People’s Republic of China |
1955 | Initiation of large-scale land reclamation in Chongming |
1958 | Jurisdiction adjusted to Shanghai |
2016 | Future outlook; world-class eco-island |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Chen, R.; Meadows, M.E. Evolution of an Estuarine Island in the Anthropocene: Complex Dynamics of Chongming Island, Shanghai, P.R. China. Sustainability 2019, 11, 6921. https://doi.org/10.3390/su11246921
Wu S, Chen R, Meadows ME. Evolution of an Estuarine Island in the Anthropocene: Complex Dynamics of Chongming Island, Shanghai, P.R. China. Sustainability. 2019; 11(24):6921. https://doi.org/10.3390/su11246921
Chicago/Turabian StyleWu, Siduo, Ruishan Chen, and Michael E. Meadows. 2019. "Evolution of an Estuarine Island in the Anthropocene: Complex Dynamics of Chongming Island, Shanghai, P.R. China" Sustainability 11, no. 24: 6921. https://doi.org/10.3390/su11246921
APA StyleWu, S., Chen, R., & Meadows, M. E. (2019). Evolution of an Estuarine Island in the Anthropocene: Complex Dynamics of Chongming Island, Shanghai, P.R. China. Sustainability, 11(24), 6921. https://doi.org/10.3390/su11246921