A Synthesis of Opportunities for Applying the Telecoupling Framework to Marine Protected Areas
Abstract
:1. Introduction
2. Distal Processes Affecting MPAs
3. The Telecoupling Framework—A Potential New Frontier for MPA Research
4. Opportunities for Applying the Telecoupling Framework to Marine Protected Areas
4.1. Telecoupled Ecosystem Services Approaches
4.2. Adapted Social Network Analysis
4.3. Telecoupled Qualitative Analysis
4.4. Telecoupled Supply Chain Analysis
4.5. Telecoupling Framework and Decision Support Tools
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. UN Sustainable Development Goals. Available online: https://sustainabledevelopment.un.org/sdgs (accessed on 15 May 2019).
- Eriksen, M.; Lebreton, L.C.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef] [PubMed]
- Diaz, R.J.; Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef] [PubMed]
- IUCN. Protected Areas. Available online: https://www.iucn.org/theme/protected-areas/about (accessed on 15 May 2019).
- Costello, M.J.; Ballantine, B. Biodiversity conservation should focus on no-take Marine Reserves: 94% of Marine Protected Areas allow fishing. Trends Ecol. Evol. 2015, 30, 507–509. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Protected Planet. Available online: https://www.protectedplanet.net/marine (accessed on 15 May 2019).
- Huserbraten, M.B.O.; Moland, E.; Knutsen, H.; Olsen, E.M.; André, C.; Stenseth, N.C. Conservation, spillover and gene flow within a network of Northern European marine protected areas. PLoS ONE 2013, 8, e73388. [Google Scholar] [CrossRef] [PubMed]
- Pichegru, L.; Grémillet, D.; Crawford, R.; Ryan, P. Marine no-take zone rapidly benefits endangered penguin. Biol. Lett. 2010, 6, 498–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selig, E.R.; Bruno, J.F. A global analysis of the effectiveness of marine protected areas in preventing coral loss. PLoS ONE 2010, 5, e9278. [Google Scholar] [CrossRef] [PubMed]
- United Nations Development Programme. Village of Andavadoaka, Madagascar; Equator Initiative Case Study Series; UNDP: New York, NY, USA, 2012; Available online: https://californiampas.org/wp-content/uploads/2016/08/Madagascar_Andavadoaka_Village_MPA_Case_Study.pdf (accessed on 15 May 2019).
- Gill, D.A.; Mascia, M.B.; Ahmadia, G.N.; Glew, L.; Lester, S.E.; Barnes, M.; Craigie, I.; Darling, E.S.; Free, C.M.; Geldmann, J. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 2017, 543, 665. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.J.; Brown, C.J.; Halpern, B.S.; Segan, D.B.; McGowan, J.; Beger, M.; Watson, J.E. Shortfalls in the global protected area network at representing marine biodiversity. Sci. Rep. 2015, 5, 17539. [Google Scholar] [CrossRef] [PubMed]
- Agardy, T.; Di Sciara, G.N.; Christie, P. Mind the gap: Addressing the shortcomings of marine protected areas through large scale marine spatial planning. Mar. Policy 2011, 35, 226–232. [Google Scholar] [CrossRef]
- Gray, N.J. Sea change: Exploring the international effort to promote marine protected areas. Conserv. Soc. 2010, 8, 331. [Google Scholar] [CrossRef]
- Christie, P. Marine protected areas as biological successes and social failures in Southeast Asia. Am. Fish. Soc. Symp. 2004, 42, 155–164. [Google Scholar]
- United Nations. International Migration Report 2017: Highlights (ST/ESA/SER.A/404); Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2017; Available online: https://www.un.org/en/development/desa/population/migration/publications/migrationreport/docs/MigrationReport2017_Highlights.pdf (accessed on 15 May 2019).
- The World Bank. International Tourism, Number of Arrivals. Available online: https://data.worldbank.org/indicator/st.int.arvl (accessed on 15 May 2019).
- United Nations. UNCTADStat. Available online: https://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=101 (accessed on 15 May 2019).
- Ban, N.C.; Whitney, C.; Davies, T.E.; Buscher, E.; Lancaster, D.; Eckert, L.; Rhodes, C.; Jacob, A.L. Conservation Actions at Global and Local Scales in Marine Social–Ecological Systems: Status, Gaps, and Ways Forward. In Conservation for the Anthropocene Ocean; Elsevier: Amsterdam, The Netherlands, 2017; pp. 143–168. [Google Scholar]
- Österblom, H.; Crona, B.I.; Folke, C.; Nyström, M.; Troell, M. Marine ecosystem science on an intertwined planet. Ecosystems 2017, 20, 54–61. [Google Scholar] [CrossRef]
- Tickler, D.; Meeuwig, J.J.; Palomares, M.-L.; Pauly, D.; Zeller, D. Far from home: Distance patterns of global fishing fleets. Sci. Adv. 2018, 4, eaar3279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Hull, V.; Batistella, M.; DeFries, R.; Dietz, T.; Fu, F.; Hertel, T.; Izaurralde, R.C.; Lambin, E.; Li, S.; et al. Framing sustainability in a telecoupled world. Ecol. Soc. 2013, 18, 18. [Google Scholar] [CrossRef]
- Hyrenbach, K.D.; Forney, K.A.; Dayton, P.K. Marine protected areas and ocean basin management. Aquat. Conserv. Mar. Freshw. Ecosyst. 2000, 10, 437–458. [Google Scholar] [CrossRef]
- Drakou, E.G.; Pendleton, L.; Effron, M.; Ingram, J.C.; Teneva, L. When ecosystems and their services are not co-located: Oceans and coasts. ICES J. Mar. Sci. 2017, 74, 1531–1539. [Google Scholar] [CrossRef]
- McClanahan, T.R.; Mangi, S. Spillover of exploitable fishes from a marine park and its effect on the adjacent fishery. Ecol. Appl. 2000, 10, 1792–1805. [Google Scholar] [CrossRef]
- Stobart, B.; Warwick, R.; González, C.; Mallol, S.; Díaz, D.; Reñones, O.; Goñi, R. Long-term and spillover effects of a marine protected area on an exploited fish community. Mar. Ecol. Prog. Ser. 2009, 384, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Goñi, R.; Adlerstein, S.; Alvarez-Berastegui, D.; Forcada, A.; Reñones, O.; Criquet, G.; Polti, S.; Cadiou, G.; Valle, C.; Lenfant, P.; et al. Spillover from six western Mediterranean marine protected areas: Evidence from artisanal fisheries. Mar. Ecol. Prog. Ser. 2008, 366, 159–174. [Google Scholar] [CrossRef]
- Forcada, A.; Valle, C.; Bonhomme, P.; Criquet, G.; Cadiou, G.; Lenfant, P.; Sánchez-Lizaso, J.L. Effects of habitat on spillover from marine protected areas to artisanal fisheries. Mar. Ecol. Prog. Ser. 2009, 379, 197–211. [Google Scholar] [CrossRef]
- Abesamis, R.A.; Russ, G.R. Density-dependent spillover from a marine reserve: Long-term evidence. Ecol. Appl. 2005, 15, 1798–1812. [Google Scholar] [CrossRef]
- Goñi, R.; Hilborn, R.; Díaz, D.; Mallol, S.; Adlerstein, S. Net contribution of spillover from a marine reserve to fishery catches. Mar. Ecol. Prog. Ser. 2010, 400, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Kamat, V.R. Dispossession and disenchantment: The micropolitics of marine conservation in southeastern Tanzania. Mar. Policy 2018, 88, 261–268. [Google Scholar] [CrossRef]
- Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J. Stemming the tide of light pollution encroaching into marine protected areas. Conserv. Lett. 2016, 9, 164–171. [Google Scholar] [CrossRef]
- Liubartseva, S.; Coppini, G.; Lecci, R. Are Mediterranean Marine Protected Areas sheltered from plastic pollution? Mar. Pollut. Bull. 2019, 140, 579–587. [Google Scholar] [CrossRef]
- Fossi, M.C.; Panti, C.; Marsili, L.; Maltese, S.; Spinsanti, G.; Casini, S.; Caliani, I.; Gaspari, S.; Muñoz-Arnanz, J.; Jimenez, B.; et al. The Pelagos Sanctuary for Mediterranean marine mammals: Marine Protected Area (MPA) or marine polluted area? The case study of the striped dolphin (Stenella coeruleoalba). Mar. Pollut. Bull. 2013, 70, 64–72. [Google Scholar] [CrossRef]
- Bruno, J.F.; Bates, A.E.; Cacciapaglia, C.; Pike, E.P.; Amstrup, S.C.; van Hooidonk, R.; Henson, S.A.; Aronson, R.B. Climate change threatens the world’s marine protected areas. Nat. Clim. Chang. 2018, 8, 499. [Google Scholar] [CrossRef]
- Roberts, C.M.; O’Leary, B.C.; McCauley, D.J.; Cury, P.M.; Duarte, C.M.; Lubchenco, J.; Pauly, D.; Sáenz-Arroyo, A.; Sumaila, U.R.; Wilson, R.W.; et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl. Acad. Sci. USA 2017, 114, 6167–6175. [Google Scholar] [CrossRef] [Green Version]
- Njogu, A.K.; Villiers, S.D.; Wambua, S.M. Does protection of marine areas safeguard coral reefs from human-source pollution? Front. Environ. Sci. 2019, 7, 89. [Google Scholar]
- Klinger, T.; Chornesky, E.A.; Whiteman, E.A.; Chan, F.; Largier, J.L.; Wakefield, W.W. Using integrated, ecosystem-level management to address intensifying ocean acidification and hypoxia in the California Current large marine ecosystem. Elem. Sci. Anth. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Howard, J.; McLeod, E.; Thomas, S.; Eastwood, E.; Fox, M.; Wenzel, L.; Pidgeon, E. The potential to integrate blue carbon into MPA design and management. Aquat. Conserv. Mar. Freshw. Ecosyst. 2017, 27, 100–115. [Google Scholar] [CrossRef] [Green Version]
- Aalto, E.A.; Micheli, F.; Boch, C.A.; Espinoza Montes, J.A.; Woodson, C.B.; De Leo, G.A. Catastrophic Mortality, Allee Effects, and Marine Protected Areas. Am. Nat. 2019, 193, 391–408. [Google Scholar] [CrossRef]
- Higham, J.E.; Lück, M. Marine Wildlife and Tourism Management: Insights from the Natural and Social Sciences; CABI: Wallingford, UK, 2007. [Google Scholar]
- Reynolds, S.D.; Norman, B.M.; Beger, M.; Franklin, C.E.; Dwyer, R.G. Movement, distribution and marine reserve use by an endangered migratory giant. Divers. Distrib. 2017, 23, 1268–1279. [Google Scholar] [CrossRef] [Green Version]
- Hays, G.C.; Mortimer, J.A.; Ierodiaconou, D.; Esteban, N. Use of long-distance migration patterns of an endangered species to inform conservation planning for the world’s largest marine protected area. Conserv. Biol. 2014, 28, 1636–1644. [Google Scholar] [CrossRef]
- Clements, C.S.; Hay, M.E. Size matters: Predator outbreaks threaten foundation species in small Marine Protected Areas. PLoS ONE 2017, 12, e0171569. [Google Scholar] [CrossRef]
- Krueck, N.C.; Ahmadia, G.N.; Green, A.; Jones, G.P.; Possingham, H.P.; Riginos, C.; Treml, E.A.; Mumby, P.J. Incorporating larval dispersal into MPA design for both conservation and fisheries. Ecol. Appl. 2017, 27, 925–941. [Google Scholar] [CrossRef] [Green Version]
- Allen, A.S.; Yurk, H.; Vagle, S.; Pilkington, J.; Canessa, R. The underwater acoustic environment at SGaan Kinghlas-Bowie Seamount Marine Protected Area: Characterizing vessel traffic and associated noise using satellite AIS and acoustic datasets. Mar. Pollut. Bull. 2018, 128, 82–88. [Google Scholar] [CrossRef]
- Williams, R.; Erbe, C.; Ashe, E.; Clark, C.W. Quiet (er) marine protected areas. Mar. Pollut. Bull. 2015, 100, 154–161. [Google Scholar] [CrossRef]
- Giakoumi, S.; Pey, A. Assessing the effects of marine protected areas on biological invasions: A global review. Front. Environ. Sci. 2017, 4, 49. [Google Scholar] [CrossRef]
- Caselle, J.E.; Davis, K.; Marks, L.M. Marine management affects the invasion success of a non-native species in a temperate reef system in California, USA. Ecol. Lett. 2018, 21, 43–53. [Google Scholar] [CrossRef]
- Hogg, K.; Noguera-Méndez, P.; Semitiel-García, M.; Gray, T.; Young, S. Controversies over stakeholder participation in marine protected area (MPA) management: A case study of the Cabo de Palos-Islas Hormigas MPA. Ocean Coast. Manag. 2017, 144, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Bucaram, S.J.; Hearn, A.; Trujillo, A.M.; Rentería, W.; Bustamante, R.H.; Morán, G.; Reck, G.; García, J.L. Assessing fishing effects inside and outside an MPA: The impact of the Galapagos Marine Reserve on the Industrial pelagic tuna fisheries during the first decade of operation. Mar. Policy 2018, 87, 212–225. [Google Scholar] [CrossRef]
- Robinson, J.; New, A.; Popova, E.; Srokosz, M.; Yool, A. Far-field connectivity of the UK’s four largest marine protected areas: Four of a kind? Earth’s Future 2017, 5, 475–494. [Google Scholar] [CrossRef]
- Lopes, P.F.M.; Pacheco, S.; Clauzet, M.; Silvano, R.A.M.; Begossi, A. Fisheries, tourism, and marine protected areas: Conflicting or synergistic interactions? Ecosyst. Serv. 2015, 16, 333–340. [Google Scholar] [CrossRef]
- Alexander, S.M.; Armitage, D.; Carrington, P.J.; Bodin, Ö. Examining horizontal and vertical social ties to achieve social–ecological fit in an emerging marine reserve network. Aquat. Conserv. Mar. Freshw. Ecosyst. 2017, 27, 1209–1223. [Google Scholar] [CrossRef]
- Ouellette, W.; Getinet, W. Remote sensing for marine spatial planning and integrated coastal areas management: Achievements, challenges, opportunities and future prospects. Remote Sens. Appl. Soc. Environ. 2016, 4, 138–157. [Google Scholar] [CrossRef]
- Xu, E.G.B.; Leung, K.M.Y.; Morton, B.; Lee, J.H.W. An integrated environmental risk assessment and management framework for enhancing the sustainability of marine protected areas: The Cape d’Aguilar Marine Reserve case study in Hong Kong. Sci. Total Environ. 2015, 505, 269–281. [Google Scholar] [CrossRef]
- Strickland-Munro, J.; Kobryn, H.; Brown, G.; Moore, S.A. Marine spatial planning for the future: Using Public Participation GIS (PPGIS) to inform the human dimension for large marine parks. Mar. Policy 2016, 73, 15–26. [Google Scholar] [CrossRef]
- Lombard, A.T.; Ban, N.C.; Smith, J.L.; Lester, S.E.; Sink, K.J.; Wood, S.A.; Jacob, A.L.; Kyriazi, Z.; Tingey, R.; Sims, H.E. Practical Approaches and Advances in Spatial Tools to Achieve Multi-Objective Marine Spatial Planning. Front. Environ. Sci. 2019, 6. [Google Scholar] [CrossRef]
- Lopes, P.F.M.; Mendes, L.; Fonseca, V.; Villasante, S. Tourism as a driver of conflicts and changes in fisheries value chains in Marine Protected Areas. J. Environ. Manag. 2017, 200, 123–134. [Google Scholar] [CrossRef]
- Fox, A.D.; Henry, L.-A.; Corne, D.W.; Roberts, J.M. Sensitivity of marine protected area network connectivity to atmospheric variability. R. Soc. Open Sci. 2016, 3, 160494. [Google Scholar] [CrossRef] [Green Version]
- Coleman, M.A.; Cetina-Heredia, P.; Roughan, M.; Feng, M.; van Sebille, E.; Kelaher, B.P. Anticipating changes to future connectivity within a network of marine protected areas. Glob. Chang. Biol. 2017, 23, 3533–3542. [Google Scholar] [CrossRef] [Green Version]
- Lea, J.S.; Humphries, N.E.; von Brandis, R.G.; Clarke, C.R.; Sims, D.W. Acoustic telemetry and network analysis reveal the space use of multiple reef predators and enhance marine protected area design. Proc. R. Soc. B Biol. Sci. 2016, 283, 20160717. [Google Scholar] [CrossRef]
- Madrigal-Ballestero, R.; Albers, H.J.; Capitán, T.; Salas, A. Marine protected areas in Costa Rica: How do artisanal fishers respond? Ambio 2017, 46, 787–796. [Google Scholar] [CrossRef]
- Davies, T.E.; Maxwell, S.M.; Kaschner, K.; Garilao, C.; Ban, N.C. Large marine protected areas represent biodiversity now and under climate change. Sci. Rep. 2017, 7, 9569. [Google Scholar] [CrossRef]
- Merchant, N.D.; Pirotta, E.; Barton, T.R.; Thompson, P.M. Soundscape and noise exposure monitoring in a marine protected area using shipping data and time-lapse footage. In The Effects of Noise on Aquatic Life, 2nd, ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 705–712. [Google Scholar]
- Tonacci, A.; Lacava, G.; Lippa, M.A.; Lupi, L.; Cocco, M.; Domenici, C. Electronic nose and AUV: A novel perspective in marine pollution monitoring. Mar. Technol. Soc. J. 2015, 49, 18–24. [Google Scholar] [CrossRef]
- Davies, T.E.; Epstein, G.; Aguilera, S.E.; Brooks, C.M.; Cox, M.; Evans, L.S.; Maxwell, S.M.; Nenadovic, M.; Ban, N.C. Assessing trade-offs in large marine protected areas. PLoS ONE 2018, 13, e0195760. [Google Scholar] [CrossRef]
- Ban, N.C.; Davies, T.E.; Aguilera, S.E.; Brooks, C.; Cox, M.; Epstein, G.; Evans, L.S.; Maxwell, S.M.; Nenadovic, M. Social and ecological effectiveness of large marine protected areas. Glob. Chang. Biol. 2017, 43, 82–91. [Google Scholar] [CrossRef]
- Xiong, H.; Millington, J.D.; Xu, W. Trade in the telecoupling framework: Evidence from the metals industry. Ecol. Soc. 2018, 23, 11. [Google Scholar] [CrossRef]
- Dou, Y.; Liu, J. Modeling telecoupled systems: Design for simulating telecoupled soybean trade. In Proceedings of the 20th Annual Conference on Global Economic Analysis, West Lafayette, IN, USA, 7–9 June 2017; pp. 7–9. [Google Scholar]
- Raya Rey, A.; Pizarro, J.; Anderson, C.; Huettmann, F. Even at the uttermost ends of the Earth: How seabirds telecouple the Beagle Channel with regional and global processes that affect environmental conservation and social-ecological sustainability. Ecol. Soc. 2017, 22, 31. [Google Scholar] [CrossRef]
- López-Hoffman, L.; Diffendorfer, J.; Wiederholt, R.; Thogmartin, W.; McCracken, G.; Medellin, R.; Semmens, D. Operationalizing the telecoupling framework by calculating spatial subsidies in the ecosystem services of migratory Mexican free-tailed bats. Ecol. Soc. 2017, 22, 23. [Google Scholar] [CrossRef]
- Easter, T.; Killion, A.; Carter, N. Climate change, cattle, and the challenge of sustainability in a telecoupled system in Africa. Ecol. Soc. 2018, 23, 10. [Google Scholar] [CrossRef]
- Baird, I.; Fox, J. How land concessions affect places elsewhere: Telecoupling, political ecology, and large-scale plantations in southern Laos and northeastern Cambodia. Land 2015, 4, 436–453. [Google Scholar] [CrossRef]
- Deines, J.M.; Liu, X.; Liu, J. Telecoupling in urban water systems: An examination of Beijing’s imported water supply. Water Int. 2016, 41, 251–270. [Google Scholar] [CrossRef]
- Friis, C.; Nielsen, J. Land-use change in a telecoupled world: The relevance and applicability of the telecoupling framework in the case of banana plantation expansion in Laos. Ecol. Soc. 2017, 22, 1–17. [Google Scholar] [CrossRef]
- Liu, J. Integration across a metacoupled planet. Ecol. Soc. 2017, 22, 29. [Google Scholar] [CrossRef]
- Liu, J.; Dou, Y.; Batistella, M.; Challies, E.; Connor, T.; Friis, C.; Millington, J.D.; Parish, E.; Romulo, C.L.; Silva, R.F.B.; et al. Spillover systems in a telecoupled Anthropocene: Typology, methods, and governance for global sustainability. Curr. Opin. Environ. Sustain. 2018, 33, 58–69. [Google Scholar] [CrossRef]
- Hull, V.; Liu, J. Telecoupling: A new frontier for global sustainability. Ecol. Soc. 2018, 23, 41. [Google Scholar] [CrossRef]
- Sun, J.; Tong, Y.-X.; Liu, J. Telecoupled land-use changes in distant countries. J. Integr. Agric. 2017, 16, 368–376. [Google Scholar] [CrossRef]
- López-Hoffman, L.; Diffendorfer, J.; Wiederholt, R.; Bagstad, K.; Thogmartin, W.; McCracken, G.; Medellin, R.; Russell, A.; Semmens, D. Operationalizing the telecoupling framework for migratory species using the spatial subsidies approach to examine ecosystem services provided by Mexican free-tailed bats. Ecol. Soc. 2017, 22, 23. [Google Scholar] [CrossRef]
- Rulli, M.C.; Casirati, S.; Dell’Angelo, J.; Davis, K.F.; Passera, C.; D’Odorico, P. Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest. Renew. Sustain. Energy Rev. 2019, 105, 499–512. [Google Scholar] [CrossRef]
- Zimmerer, K.S.; Lambin, E.; Vanek, S.J. Smallholder telecoupling and potential sustainability. Ecol. Soc. 2018, 23, 17. [Google Scholar] [CrossRef]
- Zhang, J.; Connor, T.; Yang, H.; Ouyang, Z.; Li, S.; Liu, J. Complex effects of natural disasters on protected areas through altering telecouplings. Ecol. Soc. 2018, 23, 17. [Google Scholar] [CrossRef]
- Boillat, S.; Gerber, J.-D.; Oberlack, C.; Zaehringer, J.; Ifejika Speranza, C.; Rist, S. Distant interactions, power, and environmental justice in protected area governance: A telecoupling perspective. Sustainability 2018, 10, 3954. [Google Scholar] [CrossRef]
- Yang, H.; Lupi, F.; Zhang, J.; Chen, X.; Liu, J. Feedback of telecoupling: The case of a payments for ecosystem services program. Ecol. Soc. 2018, 23, 45. [Google Scholar] [CrossRef]
- Liu, J.; Hull, V.; Luo, J.; Yang, W.; Liu, W.; Viña, A.; Vogt, C.; Xu, Z.; Yang, H.; Zhang, J.; et al. Multiple telecouplings and their complex interrelationships. Ecol. Soc. 2015, 20, 44. [Google Scholar] [CrossRef]
- Carlson, A.; Taylor, W.; Liu, J.; Orlic, I. Peruvian anchoveta as a telecoupled fisheries system. Ecol. Soc. 2018, 23, 35. [Google Scholar] [CrossRef]
- Potts, T.; Burdon, D.; Jackson, E.; Atkins, J.; Saunders, J.; Hastings, E.; Langmead, O. Do marine protected areas deliver flows of ecosystem services to support human welfare? Mar. Policy 2014, 44, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Andriamihaja, O.R.; Metz, F.; Zaehringer, J.G.; Fischer, M.; Messerli, P. Land competition under telecoupling: Distant actors’ environmental versus economic claims on land in North-Eastern Madagascar. Sustainability 2019, 11, 851. [Google Scholar] [CrossRef]
- Nielsen, J.Ø.; Hauer, J.; Friis, C. Toolbox: Capturing and Understanding Telecoupling through Qualitative Research. In Telecoupling; Springer: Berlin/Heidelberg, Germany, 2019; pp. 303–312. [Google Scholar]
- Parra Paitan, C.; Verburg, P.H. Methods to Assess the Impacts and Indirect Land Use Change Caused by Telecoupled Agricultural Supply Chains: A Review. Sustainability 2019, 11, 1162. [Google Scholar] [CrossRef]
- Tonini, F.; Liu, J. Telecoupling toolbox: Spatially explicit tools for studying telecoupled human and natural systems. Ecol. Soc. 2017, 22, 11. [Google Scholar] [CrossRef]
- Sousa-Lima, R.S.; Norris, T.F.; Oswald, J.N.; Fernandes, D.P. A Review and Inventory of Fixed Autonomous Recorders for Passive Acoustic Monitoring of Marine Mammals. Aquat. Mamm. 2013, 39, 205–210. [Google Scholar] [CrossRef]
- Goddijn-Murphy, L.; Peters, S.; Van Sebille, E.; James, N.A.; Gibb, S. Concept for a hyperspectral remote sensing algorithm for floating marine macro plastics. Mar. Pollut. Bull. 2018, 126, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Cabral, R.B.; Halpern, B.S.; Lester, S.E.; White, C.; Gaines, S.D.; Costello, C. Designing MPAs for food security in open-access fisheries. Sci. Rep. 2019, 9, 8033. [Google Scholar] [CrossRef]
- Markantonatou, V.; Noguera-Méndez, P.; Semitiel-García, M.; Hogg, K.; Sano, M. Social networks and information flow: Building the ground for collaborative marine conservation planning in Portofino Marine Protected Area (MPA). Ocean Coast. Manag. 2016, 120, 29–38. [Google Scholar] [CrossRef]
- Oberlack, C.; Boillat, S.; Brönnimann, S.; Gerber, J.-D.; Heinimann, A.; Ifejika Speranza, C.; Messerli, P.; Rist, S.; Wiesmann, U. Polycentric governance in telecoupled resource systems. Ecol. Soc. 2018, 23, 16. [Google Scholar] [CrossRef]
- Fabinyi, M.; Knudsen, M.; Segi, S. Social complexity, ethnography and coastal resource management in the Philippines. Coast. Manag. 2010, 38, 617–632. [Google Scholar] [CrossRef]
- Baker-Médard, M. Gendering marine conservation: The politics of marine protected areas and fisheries access. Soc. Nat. Resour. 2017, 30, 723–737. [Google Scholar] [CrossRef]
- Elliott, G.; Mitchell, B.; Wiltshire, B.; Manan, I.A.; Wismer, S. Community participation in marine protected area management: Wakatobi National Park, Sulawesi, Indonesia. Coast. Manag. 2001, 29, 295–316. [Google Scholar]
- Millington, J.; Xiong, H.; Peterson, S.; Woods, J. Integrating modelling approaches for understanding telecoupling: Global food trade and local land use. Land 2017, 6, 56. [Google Scholar] [CrossRef]
- Morin Dalton, T. An approach for integrating economic impact analysis into the evaluation of potential marine protected area sites. J. Environ. Manag. 2004, 70, 333–349. [Google Scholar] [CrossRef]
- Hornborg, S.; Hobday, A.J.; Ziegler, F.; Smith, A.D.M.; Green, B.S. Shaping sustainability of seafood from capture fisheries integrating the perspectives of supply chain stakeholders through combining systems analysis tools. ICES J. Mar. Sci. 2018, 75, 1965–1974. [Google Scholar] [CrossRef]
- Xuan, B.B.; Armstrong, C.W. Trading Off Tourism for Fisheries. Environ. Resour. Econ. 2019, 73, 697–716. [Google Scholar] [CrossRef]
- Ban, N.C.; Gurney, G.G.; Marshall, N.A.; Whitney, C.K.; Mills, M.; Gelcich, S.; Bennett, N.J.; Meehan, M.C.; Butler, C.; Ban, S.; et al. Well-being outcomes of marine protected areas. Nat. Sustain. 2019, 2, 524–532. [Google Scholar] [CrossRef]
- Mangubhai, S.; Wilson, J.R.; Rumetna, L.; Maturbongs, Y.; Purwanto. Explicitly incorporating socioeconomic criteria and data into marine protected area zoning. Ocean Coast. Manag. 2015, 116, 523–529. [Google Scholar] [CrossRef]
- Wilhelm, T.A.; Sheppard, C.R.; Sheppard, A.L.; Gaymer, C.F.; Parks, J.; Wagner, D.; Lewis, N.A. Large marine protected areas–advantages and challenges of going big. Aquat. Conserv. Mar. Freshw. Ecosyst. 2014, 24, 24–30. [Google Scholar] [CrossRef]
- Leenhardt, P.; Cazalet, B.; Salvat, B.; Claudet, J.; Feral, F. The rise of large-scale marine protected areas: Conservation or geopolitics? Ocean Coast. Manag. 2013, 85, 112–118. [Google Scholar] [CrossRef]
- Gleason, M.; McCreary, S.; Miller-Henson, M.; Ugoretz, J.; Fox, E.; Merrifield, M.; McClintock, W.; Serpa, P.; Hoffman, K. Science-based and stakeholder-driven marine protected area network planning: A successful case study from north central California. Ocean Coast. Manag. 2010, 53, 52–68. [Google Scholar] [CrossRef]
- Halpern, B.S.; Lester, S.E.; McLeod, K.L. Placing marine protected areas onto the ecosystem-based management seascape. Proc. Natl. Acad. Sci. USA 2010, 107, 18312–18317. [Google Scholar] [CrossRef] [Green Version]
Process | (a) Region → MPA | (b) MPA → Region |
---|---|---|
Pollution |
|
|
Climate change |
|
|
Animal migration |
| |
Animal (and larval) dispersal |
|
|
Anthropogenic noise |
|
|
Invasive species |
| |
Fisheries |
|
Method | Description/Examples |
---|---|
Ecosystem services analysis | |
Social network analysis |
|
Remote sensing change detection analysis |
|
Integrated risk assessment |
|
Participatory approaches |
|
Marine Spatial Planning (MSP) |
|
Value chain analysis |
|
Particle tracking models | |
Telemetry |
|
Bio-economic models |
|
Telecoupling Approach | Example Telecoupling Study | Potential for MPAs |
---|---|---|
Spatial subsidies approach | Mapping ecosystem services (tourism and pollination) across the entire migratory pathway in bats to identify relative areas of high or low benefits and associated spatial disconnects in management planning [81] |
|
Adapted social network analysis | Understanding environmental and economic impacts of land competition among distant land grabbing actors in Madagascar by tracking flows among networked actors [90]. Semi-structured interviews with actors at multiple levels explicitly ask stakeholders about flow origin and direction. |
|
Telecoupled qualitative analysis | Multi-site ethnographic approaches involve travel and intensive ethnographies with stakeholders at multiple sites that may be connected as sending, receiving, and spillover systems of a particular flow [91]. |
|
Telecoupled supply chain analysis | A suite of methods (e.g., life cycle analysis (LCA), footprints, input-output analysis) can be used for analyzing supply chains. These approaches can be telecoupled by broadening the spatial scale and explicitly incorporating spillover effects and feedback loops [92]. |
|
Telecoupling decision support tools | The Telecoupling Toolbox GeoApp is an open-source GIS platform allowing users to specify sending, receiving and spillover systems, quantify flows between systems, and map causes and effects across space [93]. |
|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hull, V.; Rivera, C.J.; Wong, C. A Synthesis of Opportunities for Applying the Telecoupling Framework to Marine Protected Areas. Sustainability 2019, 11, 4450. https://doi.org/10.3390/su11164450
Hull V, Rivera CJ, Wong C. A Synthesis of Opportunities for Applying the Telecoupling Framework to Marine Protected Areas. Sustainability. 2019; 11(16):4450. https://doi.org/10.3390/su11164450
Chicago/Turabian StyleHull, Vanessa, Christian J. Rivera, and Chad Wong. 2019. "A Synthesis of Opportunities for Applying the Telecoupling Framework to Marine Protected Areas" Sustainability 11, no. 16: 4450. https://doi.org/10.3390/su11164450
APA StyleHull, V., Rivera, C. J., & Wong, C. (2019). A Synthesis of Opportunities for Applying the Telecoupling Framework to Marine Protected Areas. Sustainability, 11(16), 4450. https://doi.org/10.3390/su11164450