Application of Non-Parametric Bootstrap Confidence Intervals for Evaluation of the Expected Value of the Droplet Stain Diameter Following the Spraying Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Mathematical Background
- -
- calculation of the fraction k of bootstrap samples for which the estimator value of the parameter is lower than the estimator calculated on the basis of the original sample,
- -
- calculation of interval bounds regarding the calculated fraction of samples in order to correct the bias.
2.3. Computer Simulations
3. Results
4. Discussion
5. Conclusions
- -
- The size distribution of traces of droplets obtained from sprayers is asymmetrical, similar to the log-normal distribution.
- -
- The six bootstrap methods compared give confidence intervals that in general do not hold the assumed confidence level especially for small samples.
- -
- The bootstrap methods are generally useful for constructing confidence intervals for the expected value of droplet diameter but not all methods always give confidence intervals that in general hold the assumed confidence level.
- -
- The simulation studies conducted here can be used in practice with the interval estimation of the expected value of droplet stain diameters. An adequate method should be selected depending on the sample size, in particular in the case of smaller sizes (below 100) and depending on the variability of data.
- -
- The studentized and double bootstrap methods allow obtaining less distinct coverage than the assumed confidence level, compared with the other four methods.
- -
- For small sample sizes, the lengths of the confidence intervals obtained using the studentized and double bootstrap methods are similar, greater than the intervals from the other four methods.
- -
- Although the confidence intervals obtained by the studentized and double bootstrap methods maintain the assumed coverage level, however, for small samples the estimated confidence intervals are too wide, which makes it impossible to use them in practice. It is recommended to use samples with at least 100-200 elements for usefull confidence intervals.
- -
- The coverage of intervals obtained using the studentized and double bootstrap methods is less sensitive to the variability of the feature, compared with the basic and percentile methods. For small sample sizes, a confidence level of 93% or more can be obtained if the coefficient of variation does not exceed certain values. For example, if the sample size is ca. 30 elements, the standard deviation of the sample cannot be higher than 22%–33%, 25%–36%, 25%–34%, 23%–33%, 109%–123% and 110%–123% of the sample mean for the basic, percentile, bias-corrected, bias-corrected and accelerated, studentized and double bootstrap methods, respectively.
- -
- Determining the confidence interval for the expected value of droplet size using bootstrap methods requires knowledge of the exact diameters of individual traces, that is, using image analysis or another measurement method, such as laser droplet size measurement. However, the method presented in this work allows the analysis of surface coverage.
Author Contributions
Funding
Conflicts of Interest
References
- Cheng, X.; Shuai, C.; Liu, J.; Wang, J.; Liu, Y.; Li, W.; Shuai, J. Modelling environment and poverty factors for sustainable agriculture in the Three Gorges Reservoir of China. Land Degrad. Dev. 2018, 29, 3940–3953. [Google Scholar] [CrossRef]
- Kiełbasa, B.; Pietrzak, S.; Ulén, B.; Drangert, J.O.; Tonderski, K. Sustainable agriculture: The study on farmers’ perception and practices regarding nutrient management and limiting losses. J. Water Land Dev. 2018, 36, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Öhlund, E.; Zurek, K.; Hammer, M. Towards sustainable agriculture? The EU framework and local adaptation in Sweden and Poland. Environ. Policy Gov. 2015, 25, 270–287. [Google Scholar] [CrossRef]
- Piesik, D. Biologiczna walka z chwastami na przykładzie Rumex confertus Willd. Postępy Nauk Rolniczych 2001, 3, 85–98. [Google Scholar]
- Biziuk, M.; Hupka, J.; Warendecki, W.; Zygmunt, B.; Siłwoiecki, A.; Zelechowska, A.; Dąbrowski, Ł.; Wiergowski, M.; Zaleska, A.; Tyszkiewicz, H. Pestycydy: Występowanie, Oznaczanie i Unieszkodliwianie; Wydawnictwo Naukowo-Techniczne: Warszawa, Poland, 2001. [Google Scholar]
- Lipa, J.J. Zwalczanie szkodników, chwastów i patogenów. Zesz. Probl. Postęp. Nauk Rol., Rol. Ekol. 1987, 324, 131–155. [Google Scholar]
- Miłkowski, P.; Woźnica, Z. Zachowanie się kropel opryskowych na powierzchni roślin a skuteczność chwastobójcza Glifosatu. Pr. Kom. Nauk Roln. Kom. Nauk Lesn., Poznan. Tow. Przyj. Nauk 2001, 91, 77–85. [Google Scholar]
- Sawa, J.; Huyghebaert, B.; Koszel, M. Parametry pracy opryskiwaczy a jakość oprysku. In Proceedings of the 4th Conference: “Racjonalna Technika Ochrony Roślin”, Skierniewice, Poland, 15–16 October 2003; pp. 84–89. [Google Scholar]
- Miczulski, B. Podstawy Praktycznej Ochrony Roślin; Wydawnictwo Akademii Rolniczej w Lublinie: Lublin, Poland, 1991. [Google Scholar]
- Rogalski, L.; Konopka, W. Wybrane charakterystyki opryskiwania pszenicy w zależności od wartości dawki cieczy użytkowej. Zesz. Probl. Postęp. Nauk Rol. 2002, 486, 367–373. Available online: http://agro.icm.edu.pl/ agro/element/bwmeta1.element.agro-c9aa0840-51cb-4418-a22e-1e912970f2f1/c/367-373.pdf (accessed on 25 October 2019).
- Rogalski, L.; Konopka, W. Bilansowanie rozchodu masy oprysku w łanie pszenicy w zależności od rodzaju cieczy użytkowej. Zesz. Probl. Postęp. Nauk Rol. 2002, 486, 375–380. [Google Scholar]
- Nilars, T.; Taylor, B.; Kappel, D. Wpływ rozpylaczy na jakość i bezpieczeństwo opryskiwania. In Proceedings of the 3rd Conference: “Racjonalna Technika Ochrony Roślin”, Skierniewice, Poland, 16–17 October 2002; pp. 121–134. [Google Scholar]
- Marshall, J.S.; Palmer, W.M.K. The distribution of raindrops with size. J. Meteorol. 1948, 5, 165–166. [Google Scholar] [CrossRef]
- Kozu, T.; Nakamura, K. Rainfall parameter estimation from dual-radar measurements combining reflectivity profiles and path-integrated attenuation. J. Atmos. Ocean. Technol. 1991, 8, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Su, C.L.; Chu, Y.H. Analysis of terminal velocity and VHF backscatter of precipitation particles using Chung-Li VHF radar combined with ground-based disdrometer. Terr. Atmos. Ocean. Sci. 2007, 18, 97–116. [Google Scholar] [CrossRef] [Green Version]
- Ulbrich, C.W. Natural variations in the analytical form of the raindrop size distribution. J. Appl. Meteorol. 1983, 22, 1764–1775. [Google Scholar] [CrossRef] [Green Version]
- Maguire, W.B.; Avery, S.K. Retrieval of raindrop size distribution using two Doppler wind profilers: Model sensitivity testing. J. Appl. Meteorol. Climatol. 1994, 33, 1623–1635. [Google Scholar] [CrossRef] [Green Version]
- Feingold, G.; Levin, Z. Application of the lognormal raindrop distribution to differential reflectivity radar measurement (ZDR). J. Atmos. Ocean. Technol. 1987, 4, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Meneghini, R.; Rincon, R.; Liao, L. On the use of the lognormal particle size distribution to characterize global rain. In Proceedings of the International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; pp. 1707–1709. [Google Scholar] [CrossRef] [Green Version]
- Kuna-Broniowski, M.; Kuna-Broniowska, I. The use of comparators for automatic classification of the splashed rain drops. Electron. J. Pol. Agric. Univ. Agric. Eng. 2001, 4, #08. Available online: http: //www.ejpau.media.pl/volume4/issue2/engineering/art-08.html (accessed on 25 October 2019).
- Wilks, D.S. Rainfall intensity, the Weibull distribution, and estimation of daily surface runoff. J. Appl. Meteorol. 1989, 28, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Joss, J.; Waldvogel, A. Raindrop size distribution and sampling size errors. J. Atmos. Sci. 1969, 26, 566–569. [Google Scholar] [CrossRef] [Green Version]
- Efron, B.; Tibshirani, R.J. Statistical data analysis in the computer age. Science 1991, 253, 390–395. [Google Scholar] [CrossRef] [Green Version]
- Efron, B.; Tibshirani, R.J. An introduction to the Bootstrap; Chapman & Hall: New York, NY, USA, 1993. [Google Scholar] [CrossRef]
- Kamińska, J.; Machowczyk, A.; Szewrański, S. The variation of drop size gamma distribution parameters for different natural rainfall intensity, Wydawnictwo ITP. Woda-Środ.-Obsz. Wiej. 2010, 10, 95–102. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BATC-0005-0103 (accessed on 25 October 2019).
- Hall, P. The Bootstrap and Edgeworth Expansion; Springer: New York, NY, USA, 1992. [Google Scholar] [CrossRef]
- Pekasiewicz, D. Bootstrapowa weryfikacja hipotez o wartości oczekiwanej populacji o rozkładzie asymetrycznym. Acta Univ. Lodz. Folia Oeconomica 2012, 271, 151–159. Available online: http://cejsh. icm.edu.pl/cejsh/element/bwmeta1.element.hdl_11089_1928/c/Pekasiewicz_151-159.pdf (accessed on 25 October 2019).
- Zhou, X.; Gao, S. Confidence intervals for the log-normal mean. Stat. Med. 1997, 16, 783–790. [Google Scholar] [CrossRef]
- Land, C.E. An evaluation of approximate confidence interval estimation methods for lognormal means. Technometrics 1972, 14, 145–158. [Google Scholar] [CrossRef]
- Angus, J.E. Inferences on the lognormal mean for complete samples. Commun. Stat. Simul. Comput. 1988, 17, 1307–1331. [Google Scholar] [CrossRef]
- Angus, J.E. Bootstrap one-sided confidence intervals for the lognormal mean. Statistician 1994, 43, 395–401. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Mathew, T.P. Inferences on the means of lognormal distributions using generalized p-values and generalized confidence intervals. J. Stat. Plan. Inference 2003, 115, 103–121. [Google Scholar] [CrossRef]
- Efron, B. The Jackknife, the Bootstrap, and Other Resampling Plans; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1982. [Google Scholar] [CrossRef]
- Ozkan, H.E.; Reichard, D.L.; Ackerman, K.D. Effect of orifice wear on spray patterns from fan nozzles. Trans. ASAE 1992, 35, 1091–1096. [Google Scholar] [CrossRef]
- Efron, B. Better Bootstrap Confidence Intervals. J. Am. Stat. Assoc. 1987, 82, 171–185. [Google Scholar] [CrossRef]
- McCullough, B.D.; Vinod, H.D. Implementing the Double Bootstrap. Comput. Econ. 1998, 12, 79–95. [Google Scholar] [CrossRef]
- Maleksaeidi, H.; Karami, E. Social-ecological resilience and sustainable agriculture under water scaricity. Agroecol. Sustain. Food Syst. 2013, 37, 262–290. [Google Scholar] [CrossRef]
- Tikhonovich, I.A.; Provorov, N.A. Microbiology Is a basis of sustainable agriculture: An opinion. Ann. Appl. Biol. 2011, 159, 155–168. [Google Scholar] [CrossRef]
- McNeill, D. The contested discourse of sustainable agriculture. Glob. Policy 2019, 10 (Suppl. 1). [Google Scholar] [CrossRef] [Green Version]
- Domardzki, K.; Rola, H. Efektywność stosowania niższych dawek herbicydów w zbożach. Pamiętnik Puławski Materiały Konferencji 2000, 120, 53–63. [Google Scholar]
- Głazek, M.; Mrówczyński, M. Łączne stosowanie agrochemikaliów w nowoczesnej technologii produkcji zbóż. Pamiętnik Puławski Materiały Konferencji 1999, 114, 119–126. [Google Scholar]
- Szymańska, E. Zużycie chemicznych środków ochrony roślin i możliwości jego ograniczenia w zrównoważonym systemie produkcji zbóż. Pamiętnik Puławski Materiały Konferencji 2000, 120, 439–444. [Google Scholar]
- De Cock, N.; Massinon, M.; Salah, S.O.T.; Lebeau, F. Investigation on optimal spray properties for ground based agricultural applications using deposition and retention models. Biosyst. Eng. 2017, 162, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Arvidsson, T.; Bergström, L.; Kreuger, J. Spray drift as influenced by meteorological and technical factors. Pest. Manag. Sci 2011, 67, 586–598. [Google Scholar] [CrossRef]
- Butts, T.R.; Luck, J.D.; Fritz, B.K.; Hofmann, W.C.; Kruger, G.R. Evaluation of spray pattern uniformity using three unique analyses as impacted by nozzle, pressure, and pulse-width modulation duty cycle. Pest. Manag. Sci. 2019, 75, 1875–1886. [Google Scholar] [CrossRef] [Green Version]
- Parafiniuk, S.; Milanowski, M.; Subr, A.K. The influence of the water quality of the droplet spectrum produced by agricultural nozzles. Agric. Agric. Sci. Procedia 2015, 7, 203–208. [Google Scholar] [CrossRef]
- Benkwitz, A.; Lütkepohl, H.; Wolters, J. Comparison of bootstrap confidence intervals for impulse responses of German monetary systems. Macroecon. Dyn. 2001, 5, 81–100. Available online: https://www.researchgate.net/publication/23775280_Comparison_of_Bootstrap_Confidence_ Intervals_for_Impulse_Responses_of_German_Monetary_Systems (accessed on 4 December 2019). [CrossRef] [Green Version]
- Trichakis, I.; Nikolos, I.; Karatzas, G.P. Comparison of bootstrap confidence intervals for an ANN model of a karstic aquifer response. Hydrol. Process. 2011, 25, 2827–2836. [Google Scholar] [CrossRef]
Stain Class | No. Objects | % Objects | % Area | Diameter Mean | Diameter Std |
---|---|---|---|---|---|
New nozzle | |||||
<150 m | 511 | 62.01 | 43.96 | 123.89 | 19.19 |
150–250 m | 242 | 29.37 | 36.72 | 184.29 | 22.61 |
250–350 m | 61 | 7.40 | 15.95 | 293.17 | 52.33 |
350–450 m | 9 | 1.09 | 3.17 | 382.51 | 69.80 |
>450 m | 1 | 0.12 | 0.19 | 471.00 | 0.00 |
Older nozzle | |||||
<150 m | 323 | 51.43 | 37.49 | 132.34 | 14.37 |
150–250 m | 204 | 32.48 | 35.71 | 196.42 | 15.69 |
250–350 m | 80 | 12.74 | 19.09 | 295.28 | 24.28 |
350–450 m | 12 | 1.91 | 3.69 | 412.07 | 39.19 |
>450 m | 9 | 1.43 | 4.01 | 521.74 | 47.16 |
Sample Size | Standard Deviation | B | P | BC | BCa | S | D |
---|---|---|---|---|---|---|---|
10 | 40 | 0.897 | 0.897 | 0.895 | 0.895 | 0.947 | 0.946 |
80 | 0.843 | 0.859 | 0.861 | 0.865 | 0.932 | 0.932 | |
120 | 0.789 | 0.821 | 0.828 | 0.847 | 0.921 | 0.922 | |
20 | 40 | 0.918 | 0.919 | 0.919 | 0.917 | 0.946 | 0.948 |
80 | 0.881 | 0.895 | 0.899 | 0.901 | 0.937 | 0.938 | |
120 | 0.838 | 0.864 | 0.870 | 0.882 | 0.924 | 0.924 | |
30 | 40 | 0.928 | 0.932 | 0.933 | 0.934 | 0.950 | 0.949 |
80 | 0.898 | 0.911 | 0.913 | 0.917 | 0.941 | 0.942 | |
120 | 0.869 | 0.892 | 0.897 | 0.905 | 0.934 | 0.934 | |
50 | 40 | 0.935 | 0.935 | 0.936 | 0.939 | 0.947 | 0.947 |
80 | 0.919 | 0.925 | 0.926 | 0.928 | 0.943 | 0.944 | |
120 | 0.883 | 0.902 | 0.907 | 0.914 | 0.932 | 0.933 | |
80 | 40 | 0.944 | 0.945 | 0.946 | 0.946 | 0.950 | 0.952 |
80 | 0.925 | 0.934 | 0.935 | 0.931 | 0.942 | 0.944 | |
120 | 0.895 | 0.907 | 0.908 | 0.910 | 0.926 | 0.925 | |
100 | 40 | 0.943 | 0.940 | 0.941 | 0.941 | 0.944 | 0.945 |
80 | 0.930 | 0.938 | 0.937 | 0.935 | 0.944 | 0.944 | |
120 | 0.905 | 0.917 | 0.919 | 0.920 | 0.934 | 0.936 | |
150 | 40 | 0.948 | 0.949 | 0.948 | 0.948 | 0.952 | 0.953 |
80 | 0.931 | 0.937 | 0.937 | 0.937 | 0.942 | 0.943 | |
120 | 0.921 | 0.930 | 0.932 | 0.932 | 0.942 | 0.943 | |
200 | 40 | 0.941 | 0.941 | 0.940 | 0.941 | 0.945 | 0.946 |
80 | 0.943 | 0.946 | 0.947 | 0.946 | 0.950 | 0.951 | |
120 | 0.928 | 0.939 | 0.941 | 0.939 | 0.948 | 0.949 | |
400 | 40 | 0.947 | 0.946 | 0.946 | 0.945 | 0.947 | 0.947 |
80 | 0.942 | 0.946 | 0.946 | 0.946 | 0.946 | 0.948 | |
120 | 0.936 | 0.940 | 0.939 | 0.941 | 0.944 | 0.946 | |
600 | 40 | 0.949 | 0.951 | 0.949 | 0.949 | 0.952 | 0.952 |
80 | 0.946 | 0.946 | 0.946 | 0.946 | 0.948 | 0.949 | |
120 | 0.940 | 0.942 | 0.941 | 0.939 | 0.942 | 0.944 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bochniak, A.; Kluza, P.A.; Kuna-Broniowska, I.; Koszel, M. Application of Non-Parametric Bootstrap Confidence Intervals for Evaluation of the Expected Value of the Droplet Stain Diameter Following the Spraying Process. Sustainability 2019, 11, 7037. https://doi.org/10.3390/su11247037
Bochniak A, Kluza PA, Kuna-Broniowska I, Koszel M. Application of Non-Parametric Bootstrap Confidence Intervals for Evaluation of the Expected Value of the Droplet Stain Diameter Following the Spraying Process. Sustainability. 2019; 11(24):7037. https://doi.org/10.3390/su11247037
Chicago/Turabian StyleBochniak, Andrzej, Paweł Artur Kluza, Izabela Kuna-Broniowska, and Milan Koszel. 2019. "Application of Non-Parametric Bootstrap Confidence Intervals for Evaluation of the Expected Value of the Droplet Stain Diameter Following the Spraying Process" Sustainability 11, no. 24: 7037. https://doi.org/10.3390/su11247037
APA StyleBochniak, A., Kluza, P. A., Kuna-Broniowska, I., & Koszel, M. (2019). Application of Non-Parametric Bootstrap Confidence Intervals for Evaluation of the Expected Value of the Droplet Stain Diameter Following the Spraying Process. Sustainability, 11(24), 7037. https://doi.org/10.3390/su11247037