The Effects of Land Use Zoning and Densification on Changes in Land Surface Temperature in Seoul
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Empirical Analyses
3.1. Descriptive Analysis
3.2. Statistical Analysis
4. Conclusions and Implications
Author Contributions
Funding
Conflicts of Interest
References
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates; Routledge: New York, NY, USA, 1987. [Google Scholar]
- Stone, B.; Rodgers, M. Urban form and thermal efficiency: How the design of cities influences the urban heat island effect. J. Am. Plan. Assoc. 2001, 67, 186–198. [Google Scholar] [CrossRef]
- Hondula, D.M.; Georgescu, M.; Balling, R.C. Challenges associated with projecting urbanization-induced heat-related mortality. Sci. Total Environ. 2014, 490, 538–544. [Google Scholar] [CrossRef] [PubMed]
- EPA (US Environmental Protection Agency). Heat Island Impacts; United States Environmental Protection Agency: Washington, DC, USA, 2016. Available online: http://www.epa.gov/hiri/impacts/index.htm (accessed on 23 August 2018).
- Whitman, S.; Good, G.; Donoghue, E.R.; Benbow, N.; Shou, W.; Mou, S. Mortality in Chicago attributed to the July 1995 heat wave. Am. J. Public Health 1997, 87, 1515–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robine, J.M.; Cheung, S.L.K.; Le Roy, S.; Van Oyen, H.; Griffiths, C.; Michel, J.P.; Herrmann, F.R. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biol. 2008, 331, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Stone, B.; Hess, J.; Frumkin, H. Urban form and extreme heat events: Are sprawling cities more vulnerable to climate change than compact cities? Environ. Health Perspect. 2010, 118, 1425–1428. Available online: http://users.metu.edu.tr/ioguz/Stone_2010.pdf (accessed on 22 February 2016). [CrossRef] [Green Version]
- Gago, E.J.; Roldán, J.; Pacheco-Torres, R.; Ordóñez, J. The city and urban heat islands: A review of strategies to mitigate adverse effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzamanb, M.D.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinfor. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Q.; Ding, H.; Liang, H. Detection of urban expansion and land surface temperature change using multi-temporal Landsat images. Resour. Conserv. Recycl. 2018, 128, 526–534. [Google Scholar] [CrossRef]
- Weng, Q.; Liu, H.; Lu, D. Assessing the effects of land use and land cover patterns on thermal conditions using landscape metrics in city of Indianapolis, United States. Urban Ecosyst. 2007, 10, 203–219. [Google Scholar] [CrossRef]
- Xiao, H.; Weng, Q. The impact of land use and land cover changes on land surface temperature in a karst area of China. J. Environ. Manag. 2007, 85, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Thi Van, T.; Xuan Bao, H.A. Study of the impact of urban development on surface temperature using remote sensing in Ho Chi Minh City. South. Vietnam. Geogr. Res. 2010, 48, 86–96. [Google Scholar]
- Rinner, C.; Hussain, M. Toronto’s urban heat island-exploring the relationship between land use and surface temperature. Remote Sens. 2011, 3, 1251–1265. [Google Scholar] [CrossRef] [Green Version]
- Balçik, F. Determining the impact of urban components on land surface temperature of Istanbul by using remote sensing indices. Environ. Monit. Assess. 2014, 186, 859–872. [Google Scholar] [CrossRef] [PubMed]
- Heusinkveld, B.G.; Steeneveld, G.J.; Hove, L.V.; Jacobs, C.M.J.; Holtslag, A.A.M. Spatial variability of the Rotterdam urban heat island as influenced by urban land use. J. Geophys. Res. Atmos. 2014, 119, 677–692. [Google Scholar] [CrossRef]
- Buyadi, S.; Mohd, W.; Misni, A. Impact of land use changes on the surface temperature distribution of area surrounding the National Botanic Garden, Shah Alam. Soc. Behav. Sci. 2013, 101, 516–525. [Google Scholar] [CrossRef] [Green Version]
- Emmanuel, R.; Loconsole, A. Green infrastructure as an adaptation approach to tackling urban overheating in the Glasgow Clyde Valley Region, UK. Landsc. Urban Plan. 2015, 138, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Quan, J.; Zhan, W.; Chen, Y.; Wang, M.; Wang, J. Time series decomposition of remotely sensed land surface temperature and investigation of trends and seasonal variations in surface urban heat islands. J. Geophys. Res. Atmos. 2016, 121, 2638–2657. [Google Scholar]
- EPA (US Environmental Protection Agency). Reducing Urban Heat Islands: Compendium of Strategies; US Environmental Protection Agency: Washington, DC, USA, 2008.
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z.; Xu, W.; Zheng, H. Spatial pattern of green space affects land surface temperature: Evidence from the heavily urbanized Beijing metropolitan area, China. Landsc. Ecol. 2012, 27, 887–898. [Google Scholar] [CrossRef]
- Qwen, T.W.; Carlson, T.N.; Gilles, R.R. An assessment of satellite remotely sensed land cover parameters in quantitatively describing the climatic effect of urbanization. Int. J. Remote Sens. 1998, 19, 1663–1681. [Google Scholar]
- Yuan, F.; Wu, C.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Bokaie, M.; Zarkesh, M.K.; Arasteh, P.D.; Hosseini, A. Assessment of urban heat island based on the relationship between land surface temperature and land use/land cover in Tehran. Sustain. Cities Soc. 2016, 23, 94–104. [Google Scholar] [CrossRef]
- Jun, M.; Kim, J.; Kim, H.; Yeo, C.; Hyun, J. Effects of two urban development strategies on changes in the land surface temperature: Infill versus suburban new town development. J. Urban Plan. Dev. 2017, 143, 04017010. [Google Scholar] [CrossRef]
- Stone, B.; Norman, J. Land use planning and surface heat island formation: A parcel-based radiation flux approach. Atmos. Environ. 2006, 40, 3561–3573. [Google Scholar] [CrossRef]
- Schwarz, N.; Manceur, A. Analyzing the influence of urban forms on surface urban heat islands in Europe. J. Urban Plan. Dev. 2015, 141, A4014003. [Google Scholar] [CrossRef]
- Benas, N.; Chrysoulakis, N.; Cartalis, C. Trends of urban surface temperature and heat island characteristics in the Mediterranean. Theor. Appl. Climatol. 2016, 130, 807–816. [Google Scholar] [CrossRef]
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Mutiibwa, D.; Strachan, S.; Albright, T. Land surface temperature and surface air temperature in complex terrain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4762–4774. [Google Scholar] [CrossRef]
- Bonafoni, S. Downscaling of Landsat and MODIS Land Surface Temperature Over the Heterogeneous Urban Area of Milan. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2019–2027. [Google Scholar] [CrossRef]
- Gerace, A.; Montanaro, M. Derivation and validation of the stray light correction algorithm for the thermal infrared sensor onboard Landsat 8. Remote Sens. Environ. 2017, 191, 246–257. [Google Scholar] [CrossRef]
- Qin, Z.; Kamieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Zhi-Hao, Q.; Zhang, M.H.; Karnieli, A. Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data. ACTA Geogr. Sin. Chin. Ed. 2001, 56, 466–474. [Google Scholar]
- Jiménez-Muñoz, J.; Sobrino, J. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Muñoz, J.; Cristobal, J.; Sobrino, J.; Soria, G.; Ninyerola, M.; Pons, X. Revision of the single-channel algorithm for land surface retrieval from Landsat thermal-infrared data. IEEE Trans.Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y. Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote Sens. 2011, 3, 1535–1552. [Google Scholar] [CrossRef] [Green Version]
- Sospedra, F.; Caselles, V.; Valor, E. Effective wavenumber for thermal infrared bands-application to Landsat-TM. Int. J. Remote Sens. 1998, 19, 2105–2117. [Google Scholar] [CrossRef]
- Rogan, J.; Ziemer, M.; Martin, D.; Ratick, S.; Cuba, N.; DeLauer, V. The impact of tree cover loss on land surface temperature: A case study of central Massachusetts using Landsat Thematic Mapper thermal data. App. Geogr. 2013, 45, 49–57. [Google Scholar] [CrossRef]
- Jaccard, J.; Turrisi, R. Interaction Effects in Multiple Regression, 2nd ed.; Sage University Papers Series on Quantitative Applications in the Social Sciences, 07-072; Sage: Thousand Oaks, CA, USA, 2003. [Google Scholar]
- Chen, L.; Jiang, R.; Xiang, W. Surface heat island in Shanghai and its relationship with urban development from 1989 to 2013. Adv. Meteorol. 2016, 2016, 9782686. [Google Scholar] [CrossRef]
Attribute | 2004 | 2014 |
---|---|---|
Satellite Image | Landsat TM 5 | Landsat 8 |
Sensor | TM | OLI TIRS |
Date/Time Acquired | June 3/13:52 | September 19/14:11 |
Projection/Datum | UTM zone52/WGS84 | UTM zone52/WGS84 |
Number of Bands | 7 | 11 |
Thermal Band | 6 | 10, 11 |
Red Band/NIR Band | 3/4 | 4/5 |
2004 | 2014 | |||
---|---|---|---|---|
Mean | S.D. | Mean | S.D. | |
Z-scored land surface temperature (ZLST) | 0.024 | 0.987 | 0.013 | 0.997 |
Normalized difference vegetation index (NDVI) | 0.211 | 0.108 | 0.302 | 0.203 |
Building coverage ratio (BCR) | 0.403 | 0.131 | 0.410 | 0.130 |
Floor area ratio (FAR) | 1.950 | 1.172 | 2.126 | 1.282 |
N | 222,253 | 222,253 |
Land Use Classification | Floor Area Ratio (FAR), % |
---|---|
Low-density residential area | 50–200 |
Medium-density residential area | 150–250 |
High-density residential area | 200–300 |
Semi-residential area | 200–500 |
Commercial area | 200–1500 |
Semi-industrial area | 200–400 |
Land Use Types | Share * | 2004 | 2014 | Difference between 2004 and 2014 | |||
---|---|---|---|---|---|---|---|
ZLST | NDVI | ZLST | NDVI | ZLST | NDVI | ||
Low-density residential areas | 9.2% | −0.664 | 0.296 | −0.297 | 0.381 | 0.367 | 0.084 |
Medium-density residential areas | 42.7% | 0.243 | 0.188 | 0.271 | 0.249 | 0.028 | 0.062 |
High-density residential areas | 32.0% | −0.259 | 0.238 | −0.415 | 0.379 | −0.156 | 0.141 |
Semi-residential areas | 3.9% | 0.513 | 0.161 | 0.459 | 0.215 | −0.054 | 0.054 |
Commercial areas | 7.5% | 0.265 | 0.166 | 0.237 | 0.214 | −0.028 | 0.048 |
Semi-industrial areas | 4.7% | 0.508 | 0.191 | 0.511 | 0.309 | 0.003 | 0.118 |
Variables | Base Model | Model with Interaction Variables | ||||
---|---|---|---|---|---|---|
β | t-Value | VIF | β | t-Value | VIF | |
Intercept | −0.506 | −74.9 *** | 0.00 | −0.681 | −87.3 *** | 0.00 |
NDVI | −1.912 | −222.7 *** | 1.32 | −1.911 | −221.4 *** | 1.34 |
BCR | 1.633 | 153.3 *** | 1.21 | 1.630 | 153.3 *** | 1.21 |
Medium-density residential areas | 0.394 | 83.7 *** | 3.40 | 0.579 | 88.9 *** | 6.55 |
High-density residential areas | 0.087 | 18.3 *** | 3.05 | 0.285 | 42.9 *** | 6.07 |
Semi-residential areas | 0.537 | 69.1 *** | 1.41 | 0.774 | 70.8 *** | 2.80 |
Commercial areas | 0.279 | 43.9 *** | 1.77 | 0.510 | 57.9 *** | 3.42 |
Semi-industrial areas | 0.795 | 110.3 *** | 1.45 | 0.949 | 94.4 *** | 2.84 |
Year | 0.153 | 57.6 *** | 1.10 | 0.508 | 61.1 *** | 10.93 |
Medium-density residential area x Year | - | - | - | −0.374 | −40.9 *** | 8.82 |
High-density residential area x Year | - | - | - | −0.401 | −42.5 *** | 7.58 |
Semi-residential area x Year | - | - | - | −0.476 | −31.2 *** | 2.85 |
Commercial area x Year | - | - | - | −0.465 | −37.6 *** | 3.50 |
Semi-industrial area x Year | - | - | - | −0.312 | −21.8 *** | 2.88 |
N | 444,506 | 444,506 | ||||
Adjusted R2 | 0.281 | 0.284 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-I.; Jun, M.-J.; Yeo, C.-H.; Kwon, K.-H.; Hyun, J.Y. The Effects of Land Use Zoning and Densification on Changes in Land Surface Temperature in Seoul. Sustainability 2019, 11, 7056. https://doi.org/10.3390/su11247056
Kim J-I, Jun M-J, Yeo C-H, Kwon K-H, Hyun JY. The Effects of Land Use Zoning and Densification on Changes in Land Surface Temperature in Seoul. Sustainability. 2019; 11(24):7056. https://doi.org/10.3390/su11247056
Chicago/Turabian StyleKim, Jae-Ik, Myung-Jin Jun, Chang-Hwan Yeo, Ki-Hyun Kwon, and Jun Yong Hyun. 2019. "The Effects of Land Use Zoning and Densification on Changes in Land Surface Temperature in Seoul" Sustainability 11, no. 24: 7056. https://doi.org/10.3390/su11247056
APA StyleKim, J. -I., Jun, M. -J., Yeo, C. -H., Kwon, K. -H., & Hyun, J. Y. (2019). The Effects of Land Use Zoning and Densification on Changes in Land Surface Temperature in Seoul. Sustainability, 11(24), 7056. https://doi.org/10.3390/su11247056