A Comparison of Neighborhood-Scale Interventions to Alleviate Urban Heat in Doha, Qatar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection
2.2. Model Setup and Calibration
2.3. Modeling Scenarios
3. Results
3.1. Base Model Comparisons
3.1.1. Air Temperature
3.1.2. Surface Temperature
3.1.3. Mean Radiant Temperature
3.2. Scenario 1: Roadside Trees
3.3. Scenario 2: Lighter Roads and Pavers
3.4. Scenario 3: Low-Density Buildings
3.5. Scenario 4: High-Density Buildings
4. Discussion
4.1. Air Temperature Reduction Strategies
4.2. Surface Temperature Reduction Strategies
4.3. Mean Radiant Temperature Reduction Strategies
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Model Version | Wind Speed (10 M) | Initial Temp | Spec Hum | Rel Hum | LBC (Lateral Boundary Condition) | Soil Wetness | Soil Initial Temp | Solar Adjustment | Time Steps | Switching Angles | Timing (Plant, Surface Data, Radiation) | Flow Fields |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Base V1 | 2 | 310 | 4 | 40 | Open | 30, 40, 40, 60 | 306, 304, 300, 293 | none | 20,10,5 | 30, 50 | 900,60, 900 | 1800 |
Base V2 | 4 | 310 | 4 | 40 | Open | 30, 40, 40, 60 | 306, 304, 300, 293 | none | 2,2,1 | 40,50 | 600,30,600 | 900 |
Base V3 | 5 | 308 | 6 | 45 | Open | 30, 40, 40, 60 | 306, 304, 300, 293 | 0.7 | 2,2,1 | 40,50 | 600,30,600 | 900 |
Base V4 | 4 | 307.39 | 4 | 45 | Simple Forcing | 30, 40, 40, 60 | 306, 304, 300, 293 | 0.9 | 2,2,1 | 40,50 | 600,30,600 | 900 |
Base V5 | 4 | 310 | 4 | 45 | Simple Forcing | 30, 40, 40, 61 | 306, 304, 300, 293 | 0.9 | 2,2,1 | 40,50 | 600,30,600 | 900 |
References
- Haunschild, R.; Bornmann, L.; Marx, W. Climate Change Research in View of Bibliometrics. PLoS ONE 2016, 11, e0160393. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division (2015). World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/366). Available online: https://esa.un.org/unpd/wup/publications/files/wup2014-report.pdf (accessed on 30 January 2019).
- Ramaswami, A.; Weible, C.; Main, D.; Heikkila, T.; Siddiki, S.; Duvall, A.; Pattison, A.; Bernard, M. A socio-ecological-infrastructural systems framework for interdisciplinary study of sustainable city systems. J. Ind. Ecol. 2016, 16, 801–813. [Google Scholar] [CrossRef]
- Lelieveld, J.; Proestos, Y.; Hadjinicolaou, P.; Tanarhte, M.; Tyrlis, E.; Zittis, G. Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim. Chang. 2016, 137, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Pal, J.S.; Eltahir, E.A.B. Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat. Clim. Chang. 2016, 6, 197–200. [Google Scholar] [CrossRef]
- Landsberg, H.E. The Urban Climate, Volume 28 (International Geophysics), 1st ed.; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Oke, T.R. Towards a more rational understanding of the urban heat island. McGill Climatol. Bull. 1969, 5, 1–21. [Google Scholar]
- Golden, J.S. The Built Environment Induced Urban Heat Island Effect in Rapidly Urbanizing Arid Regions—A Sustainable Urban Engineering Complexity. Environ. Sci. 2004, 1, 321–349. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Levermore, G.J.; Parkinson, J.B.; Laycock, P.J.; Lindley, S. The Urban Heat Island in Manchester 1996–2011. Build. Serv. Eng. Res. Technol. 2015, 36, 343–356. [Google Scholar] [CrossRef]
- El-Zein, A.; Jabbour, S.; Tekce, B.; Zurayk, H.; Nuwayhid, I.; Khawaja, M.; Tell, T.; Al Mooji, Y.; De-Jong, J.; Yassin, N.; et al. Health and ecological sustainability in the Arab world: A matter of survival. Lancet 2014, 383, 458–476. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef]
- Aflaki, A.; Mirnezhad, M.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Omrany, H.; Wang, Z.-H.; Akbari, H. Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities 2017, 62, 131–145. [Google Scholar] [CrossRef]
- Santamouris, M.; Ding, L.; Fiorito, F.; Oldfield, P.; Osmond, P.; Paolini, R.; Prasad, D.; Synnefa, A. Passive and active cooling for the outdoor built environment—Analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Sol. Energy 2017, 154, 14–33. [Google Scholar] [CrossRef]
- Santamouris, M.; Synnefa, A.; Karlessi, T. Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Sol. Energy 2011, 85, 3085–3102. [Google Scholar] [CrossRef]
- Younger, M.; Morrow-Almeida, H.R.; Vindigni, S.M.; Dannenberg, A.L. The built environment, climate change, and health: Opportunities for co-benefits. Am. J. Prev. Med. 2008, 35, 517–526. [Google Scholar] [CrossRef]
- Upreti, R.; Wang, Z.-H.; Yang, J. Radiative shading effect of urban trees on cooling the regional built environment. Urban For. Urban Green. 2017, 26, 18–24. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H.; Vaz, T. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Kyriakodis, G.-E.; Santamouris, M. Using reflective pavements to mitigate urban heat island in warm climates—Results from a large scale urban mitigation project. Urban Clim. 2018, 24, 326–339. [Google Scholar] [CrossRef]
- Radhi, H.; Sharples, S.; Taleb, H.; Fahmy, M. Will cool roofs improve the thermal performance of our built environment? A study assessing roof systems in Bahrain. Energy Build. 2017, 135, 324–337. [Google Scholar] [CrossRef] [Green Version]
- Makido, Y.; Shandas, V.; Ferwati, S.; Sailor, D. Daytime Variation of Urban Heat Islands: The Case Study of Doha, Qatar. Climate 2016, 4, 32. [Google Scholar] [CrossRef]
- Ferwati, S.; Skelhorn, C.; Shandas, V.; Voelkel, J.; Shawish, A.; Ghanim, M. Analysis of urban heat in a corridor environment—The case of Doha, Qatar. Urban Clim. 2018, 24, 692–702. [Google Scholar] [CrossRef]
- Rizzo, A. Rapid urban development and national master planning in Arab Gulf countries. Qatar as a case study. Cities 2014, 39, 50–57. [Google Scholar] [CrossRef]
- AlSarmi, S.H.; Washington, R. Changes in climate extremes in the Arabian Peninsula: Analysis of daily data. Int. J. Climatol. 2014, 34, 1329–1345. [Google Scholar] [CrossRef]
- Costello, A.; Abbas, M.; Allen, A.; Ball, S.; Bell, S.; Bellamy, R.; Friel, S.; Groce, N.; Johnson, A.; Kett, M. Managing the health effects of climate change. Lancet 2009, 373, 1693–1733. [Google Scholar] [CrossRef]
- ESRI. Heatwaves: Number of Deadly Heat Days [Internet]. ESRI Maps Glob. Risk Deadly Heat. 2017. Available online: https://maps.esri.com/globalriskofdeadlyheat/# (accessed on 13 June 2018).
- Das, R. Regulation of Temperature of Human Body [Internet]. 2017. Available online: https://www.slideshare.net/RanadhiDas1/regulation-of-temperature-of-human-body (accessed on 23 May 2018).
- Watts, N.; Amann, M.; Ayeb-Karlsson, S.; Belesova, K.; Bouley, T.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; Chambers, J.; et al. The Lancet Countdown on health and climate change: From 25 years of inaction to a global transformation for public health. Lancet 2018, 391, 581–630. [Google Scholar] [CrossRef]
- Qatar Ministry of Municipality and Environment. Qatar National Master Plan: Qatar National Development Framework 2032. Available online: https://www.mdps.gov.qa/en/Pages/default.aspx (accessed on 30 January 2019).
- Qatar General Secretariat for Development Planning. Qatar National Development Strategy 2011–2016. Available online: https://www.mdps.gov.qa/en/knowledge/HomePagePublications/Qatar_NDS_reprint_complete_lowres_16May.pdf (accessed on 30 January 2019).
- Oke, T.R. The distinction between canopy and boundary layer urban heat islands. Atmosphere 1976, 14, 268–277. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Bruse, M.; Fleer, H. Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environ. Model. Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Bruse, M. ENVI-Met Model Architecture [Internet]. 2017. Available online: http://envi-met.info/doku.php?id=intro:modelconcept#software_versions (accessed on 25 December 2018).
- Bruse, M. ENVI-Met Model Architecture [Internet]. 2011. Available online: http://www.envi-met.com/ (accessed on 25 December 2018).
- Skelhorn, C.; Lindley, S.; Levermore, G. The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landsc. Urban Plan. 2014, 121, 129–140. [Google Scholar] [CrossRef]
- McPherson, E.G.; Nowak, D.J.; Rowntree, R.A. Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project; U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Radnor, PA, USA, 1994; p. 201.
- Santamouris, M. Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renew. Sustain. Energy Rev. 2013, 26, 224–240. [Google Scholar] [CrossRef]
- Hathway, E.A.; Sharples, S. The interaction of rivers and urban form in mitigating the Urban Heat Island effect: A UK case study. Build Environ. 2012, 58, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.Y.; Wong, N.H.; Zheng, X. The Study of the Effects of Building Arrangement on Microclimate and Energy Demand of CBD in Nanjing, China. Procedia Eng. 2016, 169, 44–54. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Hong, B.; Lin, B. Numerical studies of the outdoor wind environment and thermal comfort at pedestrian level in housing blocks with different building layout patterns and trees arrangement. Renew. Energy 2015, 73, 18–27. [Google Scholar] [CrossRef]
- Walikewitz, N.; Anicke, B.J.; Langner, M.; Meier, F.; Endlicher, W. The difference between the mean radiant temperature and the air temperature within indoor environments: A case study during summer conditions. Build. Environ. 2015, 84, 151–161. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef]
- Armson, D.; Stringer, P.; Ennos, A.R.R. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For. Urban Green. 2012, 11, 245–255. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Leuzinger, S.; Vogt, R.; Körner, C. Tree surface temperature in an urban environment. Agric. For. Meteorol. 2010, 150, 56–62. [Google Scholar] [CrossRef]
- Kjelgren, R.; Montague, T. Urban tree transpiration over turf and asphalt surfaces. Atmos. Environ. 1998, 32, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.E. Climate Change and Urban Greenspace. Ph.D. Thesis, University of Manchester, Manchester, UK, 2006. [Google Scholar]
- Erell, E.; Pearlmutter DBoneh, D. Effect of high-albedo materials on pedestrian thermal comfort in urban canyons. In Proceedings of the 8th International Conference on Urban Climates (ICUC8), UCD, Dublin, Ireland, 6–10 August 2012. [Google Scholar]
- Ali-Toudert, F.; Djenane, M.; Bensalem, R.; Mayer, H. Outdoor thermal comfort in the old desert city of Beni-Isguen, Algeria. Clim. Res. 2005, 28, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Bryant, J.A.; Ahmed, T. Condensate Water Collection for an Institutional Building in Doha, Qatar: An Opportunity for Water Sustainability. In Proceedings of the Sixteenth Symposium on Improving Building Systems in Hot and Humid Climates, Plano, TX, USA, 15–17 December 2008. [Google Scholar]
- Jasim, S.Y.; Saththasivam, J.; Loganathan, K.; Ogunbiyi, O.O.; Sarp, S. Reuse of Treated Sewage Effluent (TSE) in Qatar. J. Water Process Eng. 2016, 11, 174–182. [Google Scholar] [CrossRef]
- Wong, M.S.; Nichol, J.; Ng, E. A study of the “wall effect” caused by proliferation of high-rise buildings using GIS techniques. Landsc Urban Plan. 2011, 102, 245–253. [Google Scholar] [CrossRef]
Base Model Results Air Temperature—06:00 | Site 1—Umm Salal Mohammed (Developing) | Site 5—Al Waab (Urbanized) | Site 9—Al Khulaifat (Coastal) |
---|---|---|---|
Min | 32.44 | 29.81 | 31.89 |
Max | 33.38 | 31.71 | 33.62 |
Avg | 32.91 | 30.76 | 32.75 |
Base Model Results Air Temperature—12:00 | |||
Min | 40.46 | 39.85 | 41.37 |
Max | 42.61 | 42.93 | 43.75 |
Avg | 41.53 | 41.39 | 42.56 |
Base Model Results Air Temperature—14:00 | |||
Min | 41.92 | 42.21 | 42.32 |
Max | 44.03 | 46.26 | 44.59 |
Avg | 42.98 | 44.23 | 43.45 |
Base Model Results Air Temperature—18:00 | |||
Min | 39.29 | 40.23 | 39.13 |
Max | 39.40 | 41.19 | 39.46 |
Avg | 39.51 | 40.71 | 39.30 |
Base Model Results Surface Temperature—06:00 | Site 1—Umm Salal Mohammed (Developing) | Site 5—Al Waab (Urbanized) | Site 9—Al Khulaifat (Coastal) |
---|---|---|---|
Min | 27.62 | 28.41 | 28.46 |
Max | 32.85 | 32.85 | 33.19 |
Avg | 30.24 | 30.63 | 30.83 |
Base Model Results Surface Temperature—12:00 | |||
Min | 32.85 | 32.85 | 32.85 |
Max | 60.39 | 60.00 | 55.88 |
Avg | 46.62 | 46.43 | 44.37 |
Base Model Results Surface Temperature—14:00 | |||
Min | 32.85 | 32.85 | 32.85 |
Max | 62.01 | 63.13 | 56.27 |
Avg | 47.43 | 47.99 | 44.56 |
Base Model Results Surface Temperature—18:00 | |||
Min | 32.85 | 32.85 | 32.85 |
Max | 44.62 | 47.35 | 44.92 |
Avg | 38.73 | 40.10 | 39.89 |
Base Model Results Tmrt—06:00 | Site 1—Umm Salal Mohammed (Developing) | Site 5—Al Waab (Urbanized) | Site 9—Al Khulaifat (Coastal) |
---|---|---|---|
Min | 20.30 | 21.53 | 23.38 |
Max | 25.16 | 27.45 | 27.53 |
Avg | 22.73 | 24.49 | 25.46 |
Base Model Results Tmrt—12:00 | |||
Min | 56.56 | 59.98 | 56.62 |
Max | 77.67 | 81.11 | 73.54 |
Avg | 67.11 | 70.54 | 65.08 |
Base Model Results Tmrt—14:00 | |||
Min | 58.18 | 61.21 | 55.73 |
Max | 82.77 | 86.72 | 76.90 |
Avg | 70.48 | 73.96 | 66.31 |
Base Model Results Tmrt—18:00 | |||
Min | 33.42 | 35.68 | 33.55 |
Max | 34.94 c | 38.35 c | 35.44 |
Avg | 34.18 c | 37.02 c | 34.49 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferwati, S.; Skelhorn, C.; Shandas, V.; Makido, Y. A Comparison of Neighborhood-Scale Interventions to Alleviate Urban Heat in Doha, Qatar. Sustainability 2019, 11, 730. https://doi.org/10.3390/su11030730
Ferwati S, Skelhorn C, Shandas V, Makido Y. A Comparison of Neighborhood-Scale Interventions to Alleviate Urban Heat in Doha, Qatar. Sustainability. 2019; 11(3):730. https://doi.org/10.3390/su11030730
Chicago/Turabian StyleFerwati, Salim, Cynthia Skelhorn, Vivek Shandas, and Yasuyo Makido. 2019. "A Comparison of Neighborhood-Scale Interventions to Alleviate Urban Heat in Doha, Qatar" Sustainability 11, no. 3: 730. https://doi.org/10.3390/su11030730
APA StyleFerwati, S., Skelhorn, C., Shandas, V., & Makido, Y. (2019). A Comparison of Neighborhood-Scale Interventions to Alleviate Urban Heat in Doha, Qatar. Sustainability, 11(3), 730. https://doi.org/10.3390/su11030730