A Study of Regional Power Generation Efficiency in China: Based on a Non-Radial Directional Distance Function Model
Abstract
:1. Introduction
2. Literature Review
3. Research Methods and Data Description
3.1. Calculation of Electricity Carbon Emissions
3.2. Non-Radial Directional Distance Function Model
3.2.1. Traditional Directional Distance Function
- (1)
- Input and output are disposed of at will. For example: if and , then .
- (2)
- Without input, there is no output, that is for , if , then .
- (3)
- The nature of inputs and outputs at the zero point is also possible without production, that is .
- (1)
- , . This indicates that in the production possibility set, the value of the directional distance function is non-negative, and when is on the production frontier, the value is equal to zero.
- (2)
- If , then . This indicates that the value of the directional distance function will not increase if the output increases under the given input.
- (3)
- If , then . This indicates that the value of the directional distance function will not decrease when the input increases under the given output.
- (4)
- is a concave function.
3.2.2. Non-Radial Directional Distance Function
3.3. Global Malmquist Index Analysis
4. Empirical Analysis
4.1. Static Result in Power System Productivity Efficiency
4.2. Dynamic Efficiency Measurement
4.3. Impact via Production Efficiency of Regional Thermal Power Systems to Regional Ecological Regulation Intensity
5. Conclusions and Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- China Energy Statistical Yearbook 2015; China Statistic Press: Beijing, China, 2015.
- Statistical Bulletin of National Economic and Social Development of the P. R. China 2017. China Stat. 2018, 3, 7–20. (In Chinese)
- Chai, Q.; Zhang, X. Technologies and policies for the transition to a sustainable energy system in China. Energy 2010, 35, 3995–4002. [Google Scholar] [CrossRef]
- Nikolovski, S.; Reza Baghaee, H.; Mlakić, D. Anfis-based peak power shaving/curtailment in microgrids including pv units and besss. Energies 2018, 11, 2953. [Google Scholar] [CrossRef]
- Baghaee, H.R.; Mirsalim, M.; Gharehpetian, G.B.; Talebi, H.A. Reliability/cost-based multi-objective pareto optimal design of stand-alone wind/pv/fc generation microgrid system. Energy 2016, 115, 1022–1041. [Google Scholar] [CrossRef]
- Baghaee, H.R.; Mirsalim, M.; Gharehpetian, G.B.; Talebi, H.A. Decentralized sliding mode control of wg/pv/fc microgrids under unbalanced and nonlinear load conditions for on- and off-grid modes. IEEE Syst. J. 2017, 12, 3108–3119. [Google Scholar] [CrossRef]
- Baghaee, H.R.; Mirsalim, M.; Gharehpetian, G.B.; Talebi, H.A. A decentralized power management and sliding mode control strategy for hybrid AC/DC microgrids including renewable energy resources. IEEE Trans. Ind. Inform. 2017. [Google Scholar] [CrossRef]
- Baghaee, H.R.; Mirsalim, M.; Gharehpetian, G.B. Multi-objective optimal power management and sizing of a reliable wind/PV microgrid with hydrogen energy storage using MOPSO. J. Intel. Fuzzy Syst. 2017, 32, 1753–1773. [Google Scholar] [CrossRef]
- Lund, H.; Afgan, H.; Bogdan, Z. Renewable energy strategies for sustainable development. Energy 2007, 32, 912–919. [Google Scholar] [CrossRef] [Green Version]
- Kaygusuz, K.; Kaygusuz, A. Renewable energy and sustainable development in Turkey. Renew. Energy 2014, 25, 431–453. [Google Scholar] [CrossRef]
- Jiang, B.; Sun, Z.Q.; Liu, M.Q. China’s energy development strategy under the low-carbon economy. Energy 2010, 35, 4257–4264. [Google Scholar] [CrossRef]
- Zhang, Z.X. China in the transition to a low-carbon economy. Energy Policy 2010, 38, 6638–6653. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Zhang, P.; Tian, Y.; Yuan, X.; Yang, Y. Developing low-carbon economy: Actions, challenges and solutions for energy savings in China. Renew. Energy 2011, 36, 3037–3042. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Lior, N.; Jin, H. The energy situation and its sustainable development strategy in China. Energy 2011, 36, 3639–3649. [Google Scholar] [CrossRef]
- Martin, N.; Worrell, E.; Schipper, L.; Blok, K. International Comparisons of Energy Efficiency, Workshop Proc; Utrecht University: Berkeley, CA, USA, 1994. [Google Scholar]
- Bagdadioglu, N.; Price, C.M.W.; Weyman-Jones, T.G. Efficiency and ownership in electricity distribution: A non-parametric model of the Turkish experience. Energy Econ. 1996, 18, 1–23. [Google Scholar] [CrossRef]
- Pollitt, M.G. Ownership and Efficiency in Nuclear Power Production. Oxford Econ. Pap. 1996, 48, 342–360. [Google Scholar] [CrossRef]
- Nagesha, N. Role of energy efficiency in sustainable development of small-scale industry clusters: An empirical study. Energy Sustain. Dev. 2008, 12, 34–39. [Google Scholar] [CrossRef]
- Cui, Q.; Li, Y. An empirical study on energy efficiency improving capacity: The case of fifteen countries. Energy Effic. 2015, 8, 1049–1062. [Google Scholar] [CrossRef]
- Mielnik, O.; Goldemberg, J. Communication The evolution of the “carbonization index” in developing countries. Energy Policy 1999, 27, 307–308. [Google Scholar] [CrossRef]
- Ang, B.W. Is the energy intensity a less useful indicator than the carbon factor in the study of climate change? Energy Policy 1999, 27, 943–946. [Google Scholar] [CrossRef]
- Soytas, U.; Sari, R.; Ewing, B.T. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 2007, 62, 482–489. [Google Scholar] [CrossRef]
- Yuan, J.; Hu, Z.; Hu, Z. Cointegration and co-feature analysis on electricity consumption and economic growth in China. In Proceedings of the WSEAS International Conference on Applied Computer Science Canary Islands, Tenerife, Spain, 16–18 December 2006; pp. 347–351. [Google Scholar]
- Zeng, M.; Ma, X.C.; Yang, L.L. Design and analysis of adjustable carbon emissions allocation mechanism in electricity market. Power Syst. Technol. 2010, 34, 141–145. [Google Scholar]
- Zhao, X.; Ma, Q.; Yang, R. Factors Influencing CO2 Emissions in China’s Power Industry: Co-integration Analysis. Energy Policy 2013, 57, 89–98. [Google Scholar] [CrossRef]
- Chu, J.; Zeng, M.; Yang, L. Carbon Emissions Trading and Sustainable Development of Power Industry. In Proceedings of the International Conference on Electrical and Control Engineering, Wuhan, China, 25–27 June 2010; pp. 3443–3446. [Google Scholar]
- Yang, L.; Lin, B. Carbon dioxide-emission in China’s power industry: Evidence and policy implications. Renew. Sustain. Energy Rev. 2016, 60, 258–267. [Google Scholar] [CrossRef]
- Yan, D.; Lei, Y.; Li, L.; Song, W. Carbon emission efficiency and spatial clustering analyses in China’s thermal power industry: Evidence from the provincial level. J. Clean. Prod. 2017, 156, 518–527. [Google Scholar] [CrossRef]
- Li, M.J.; Tao, W.Q. Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry. Appl. Energy 2017, 187, 203–215. [Google Scholar] [CrossRef]
- Yang, Q.; Wan, X.; Ma, H. Assessing Green Development Efficiency of Municipalities and Provinces in China Integrating Models of Super-Efficiency DEA and Malmquist Index. Sustainability 2015, 7, 4492–4510. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Wang, B. Evaluating green performance of building products based on gray relational analysis and analytic hierarchy process. Environ. Progress Sustain. Energy 2015, 33, 1389–1395. [Google Scholar] [CrossRef]
- Bernard, J.T.; Côté, B. The measurement of the energy intensity of manufacturing industries: A principal components analysis. Energy Policy 2005, 33, 221–233. [Google Scholar] [CrossRef]
- Shang, L.; Wang, S. Application of Improved Principal Component Analysis in Comprehensive Assessment on Thermal Power Generation Units. Power Syst. Technol. 2014, 38, 1928–1933. [Google Scholar]
- Fan, Z.; Song, C.X.; Li, M.J. Study on Energy Efficiency Evaluation Index System for Fossil-fuel Power Plant. Energy Procedia 2014, 61, 1093–1098. [Google Scholar] [Green Version]
- Liang, J.; Long, S. Unified efficiency evaluation of regional industries in China: A nonradial directional distance function approach. Appl. Econ. Lett. 2017, 24, 1154–1160. [Google Scholar] [CrossRef]
- Xie, H.L.; Wang, W. Exploring the Spatial-Temporal Disparities of Urban Land Use Economic Efficiency in China and Its Influencing Factors under Environmental Constraints Based on a Sequential, Slacks-Based Model. Sustainability 2015, 7, 10171–10190. [Google Scholar] [CrossRef]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and Undesirable Outputs: A Directional Distance Function Approach. Microeconomics 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, H. Energy and CO emission performance in electricity generation: A non-radial directional distance function approach. Eur. J. Oper. Res. 2012, 221, 625–635. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, P.; Zhou, D.Q. Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis. Energy Econ. 2013, 40, 795–803. [Google Scholar] [CrossRef]
- Wang, S.; Chu, C.; Chen, G. Efficiency and reduction cost of carbon emissions in China: A non-radial directional distance function method. J. Clean. Prod. 2016, 113, 624–634. [Google Scholar] [CrossRef]
- Wang, W.; Xie, H.; Lu, F. Measuring the Performance of Industrial Green Development Using a Non-Radial Directional Distance Function Approach: A Case Study of Jiangxi Province in China. Sustainability 2017, 9, 1757. [Google Scholar] [CrossRef]
- Luenberger, D.G. Benefit functions and duality. J. Math. Econ. 1992, 21, 461–481. [Google Scholar] [CrossRef] [Green Version]
- China Electric Power Yearbook; China Statistic Press: Beijing, China, 2015.
- Pastor, J.T.; Lovell, C.A.K. A Global Malmquist productivity index. Econ. Lett. 2005, 88, 266–271. [Google Scholar] [CrossRef]
- Becker, R.A. Air pollution abatement costs under the clean air act: Evidence from the pace survey. J. Environ. Econ. Manag. 2005, 50, 144–169. [Google Scholar] [CrossRef]
- Cole, M.A.; Elliott, R.J. Do environmental regulations cost jobs? an industry-level analysis of the UK. J. Econ. Anal. Policy 2007, 7, 1668. [Google Scholar] [CrossRef]
- Levinson, A. Environmental regulations and manufacturers’ location choices: Evidence from the census of manufactures. J. Public Econ. 1996, 62, 5–29. [Google Scholar] [CrossRef]
- Xing, Y.; Kolstad, C.D. Do lax environmental regulations attract foreign investment? Environ. Resour. Econ. 2002, 21, 1–22. [Google Scholar] [CrossRef]
Province | 2005 | 2006 | 2008 | 2010 | 2012 | 2014 | Average Productivity Efficiency |
---|---|---|---|---|---|---|---|
Beijing | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Tianjin | 1.000 | 1.000 | 0.924 | 0.940 | 0.951 | 0.923 | 0.956 |
Hebei | 0.952 | 0.963 | 0.858 | 1.000 | 1.000 | 0.964 | 0.956 |
Shanxi | 1.000 | 1.000 | 0.945 | 0.929 | 0.940 | 0.927 | 0.957 |
Inner Mongolia | 1.000 | 0.852 | 1.000 | 0.841 | 0.813 | 0.887 | 0.899 |
Liaoning | 0.856 | 0.944 | 0.920 | 0.838 | 0.846 | 0.824 | 0.871 |
Jilin | 0.821 | 0.836 | 0.765 | 0.784 | 0.793 | 0.725 | 0.788 |
Heilongjiang | 0.831 | 0.845 | 0.809 | 0.802 | 0.802 | 0.766 | 0.809 |
Shanghai | 1.000 | 1.000 | 1.000 | 0.991 | 1.000 | 0.993 | 0.997 |
Jiangsu | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Zhejiang | 0.940 | 0.942 | 1.000 | 1.000 | 1.000 | 1.000 | 0.980 |
Anhui | 0.910 | 0.914 | 0.927 | 0.943 | 0.938 | 0.940 | 0.929 |
Fujian | 0.925 | 0.914 | 0.904 | 0.978 | 1.000 | 0.931 | 0.942 |
Jiangxi | 0.829 | 0.872 | 0.829 | 0.848 | 0.882 | 0.884 | 0.857 |
Shandong | 0.862 | 0.891 | 0.903 | 0.915 | 0.900 | 0.935 | 0.901 |
Henan | 0.838 | 0.848 | 0.854 | 0.887 | 0.899 | 0.874 | 0.867 |
Hubei | 0.834 | 0.833 | 0.818 | 0.871 | 0.826 | 0.810 | 0.832 |
Hunan | 0.968 | 0.826 | 0.835 | 0.867 | 0.860 | 0.773 | 0.855 |
Guangdong | 0.993 | 0.968 | 0.962 | 0.983 | 1.000 | 0.922 | 0.971 |
Guangxi | 0.838 | 0.877 | 0.830 | 0.892 | 1.000 | 0.824 | 0.877 |
Hainan | 1.000 | 1.000 | 1.000 | 0.989 | 0.960 | 1.000 | 0.991 |
Chongqing | 0.860 | 0.820 | 0.824 | 0.836 | 0.850 | 0.818 | 0.835 |
Sichuan | 0.770 | 0.785 | 0.748 | 0.807 | 0.812 | 0.763 | 0.781 |
Guizhou | 0.938 | 0.914 | 0.897 | 0.898 | 0.894 | 0.843 | 0.897 |
Yunnan | 0.831 | 0.684 | 0.770 | 0.803 | 0.786 | 0.695 | 0.761 |
Shaanxi | 0.897 | 0.941 | 0.895 | 0.889 | 0.922 | 1.000 | 0.924 |
Gansu | 0.989 | 0.979 | 0.950 | 0.833 | 0.892 | 0.789 | 0.905 |
Qinghai | 0.918 | 0.833 | 0.900 | 0.833 | 0.852 | 0.867 | 0.867 |
Ningxia | 1.000 | 1.000 | 1.000 | 0.874 | 1.000 | 1.000 | 0.979 |
Xinjiang | 0.875 | 0.881 | 0.893 | 0.901 | 0.847 | 0.902 | 0.883 |
Province | 2005 | 2007 | 2009 | 2011 | 2013 | 2014 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Malmquist Index | Efficiency Change | Tech Change | Malmquist Index | Efficiency Change | Tech Change | Malmquist Index | Efficiency Change | Tech Change | Malmquist Index | Efficiency Change | Tech Change | Malmquist Index | Efficiency Change | Tech Change | Malmquist Index | Efficiency Change | Tech Change | |
Beijing | 0.998167 | 1 | 0.998167 | 1.007596 | 1 | 1.007596 | 1.001207 | 1 | 1.001207 | 0.999633 | 1 | 0.999633 | 1 | 1 | 1 | 1 | 1 | 1 |
Tianjin | 0.994971 | 1 | 0.994971 | 1.000318 | 1 | 1.000318 | 0.999065 | 0.994682 | 1.004406 | 0.994279 | 1 | 0.994279 | 1.006811 | 0.998161 | 1.008666 | 1.000914 | 0.997085 | 1.00384 |
Hebei | 0.991833 | 1 | 0.991833 | 0.99313 | 0.863191 | 1.150533 | 1.024415 | 1.035901 | 0.988912 | 0.975381 | 1 | 0.975381 | 1.032731 | 0.983074 | 1.050512 | 1.008966 | 0.999227 | 1.009747 |
Shanxi | 1.001892 | 1 | 1.001892 | 1.005784 | 0.928849 | 1.082828 | 1.008992 | 0.975096 | 1.034761 | 0.986732 | 1.077239 | 0.915983 | 1.126268 | 1.090633 | 1.032674 | 0.908384 | 0.900088 | 1.009216 |
Inner Mongolia | 0.981209 | 1.206423 | 0.813321 | 0.978175 | 1.460936 | 0.669554 | 0.997836 | 0.240218 | 4.153884 | 0.291521 | 15.762848 | 0.018494 | 0.434214 | 1.202172 | 0.361191 | 0.624481 | 1 | 0.624481 |
Liaoning | 0.996674 | 1.057599 | 0.942394 | 1.003421 | 0.899528 | 1.115498 | 0.994734 | 0.905182 | 1.098933 | 0.981736 | 1.022089 | 0.96052 | 0.999713 | 0.974114 | 1.026279 | 1.007876 | 1.014476 | 0.993494 |
Jilin | 0.997416 | 1.033368 | 0.965209 | 0.999384 | 0.982157 | 1.01754 | 1.014663 | 1.022758 | 0.992084 | 0.991861 | 1.013865 | 0.978297 | 1.005522 | 0.988819 | 1.016891 | 0.996097 | 0.994429 | 1.001677 |
Heilongjiang | 1.002298 | 1.047081 | 0.957231 | 1.002675 | 0.997807 | 1.004879 | 1.004886 | 0.998334 | 1.006563 | 0.993353 | 1.013259 | 0.980355 | 1.025256 | 1.013431 | 1.011669 | 0.986786 | 0.984804 | 1.002013 |
Shanghai | 1.001641 | 1 | 1.001641 | 1.001587 | 1 | 1.001587 | 1.003563 | 1 | 1.003563 | 1.000067 | 1.001653 | 0.998417 | 1.010343 | 1 | 1.010343 | 1 | 1 | 1 |
Jiangsu | 0.978726 | 1 | 0.978726 | 0.99121 | 1 | 0.99121 | 1.042984 | 1 | 1.042984 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Zhejiang | 0.99174 | 1.014826 | 0.977252 | 0.974846 | 1 | 0.974846 | 1.032304 | 1 | 1.032304 | 1.004879 | 1 | 1.004879 | 1.041152 | 1 | 1.041152 | 1 | 1 | 1 |
Anhui | 0.998672 | 0.960818 | 1.039397 | 1.000181 | 0.987227 | 1.013122 | 1.000891 | 0.97981 | 1.021515 | 1.006857 | 1.036172 | 0.971709 | 1.037024 | 0.999196 | 1.037858 | 0.988635 | 0.99465 | 0.993952 |
Fujian | 1.001246 | 1.005967 | 0.995307 | 1.00083 | 1.000963 | 0.999867 | 1.010874 | 1.025632 | 0.98561 | 0.99594 | 0.995082 | 1.000862 | 1.0119 | 0.984556 | 1.027773 | 0.990246 | 0.990954 | 0.999286 |
Jiangxi | 0.999799 | 1.022968 | 0.97735 | 0.992053 | 0.985353 | 1.0068 | 1.000855 | 0.998713 | 1.002145 | 0.998699 | 1.007537 | 0.991228 | 1.005564 | 0.999908 | 1.005656 | 1.001096 | 0.999529 | 1.001568 |
Shandong | 0.947425 | 0.993275 | 0.95384 | 0.991162 | 1.260601 | 0.786261 | 1.007909 | 1.5 | 0.671939 | 0.99687 | 1.109227 | 0.898706 | 1.264503 | 1.158796 | 1.091221 | 0.906788 | 0.919949 | 0.985694 |
Henan | 0.989426 | 1.203253 | 0.822293 | 0.986316 | 0.956874 | 1.030769 | 1.038652 | 1.075928 | 0.965355 | 0.947657 | 1.044582 | 0.907211 | 1.062191 | 0.894801 | 1.187069 | 0.974397 | 0.988176 | 0.986055 |
Hubei | 1.002215 | 1.028749 | 0.974208 | 1.001601 | 0.998461 | 1.003144 | 1.007513 | 1.00519 | 1.002311 | 1.000067 | 1.009253 | 0.990899 | 1.013469 | 1.008979 | 1.00445 | 1.002537 | 0.991717 | 1.01091 |
Hunan | 1.01549 | 1.071826 | 0.947439 | 1.001495 | 0.99745 | 1.004055 | 1.005236 | 1.000769 | 1.004464 | 0.990505 | 0.998965 | 0.991531 | 1.013023 | 1.000478 | 1.012539 | 0.995533 | 0.993899 | 1.001644 |
Guangdong | 0.986284 | 1 | 0.986284 | 1.045877 | 1 | 1.045877 | 1.036339 | 1 | 1.036339 | 0.996232 | 1 | 0.996232 | 1.015695 | 0.973503 | 1.04334 | 1.033384 | 1.027218 | 1.006002 |
Guangxi | 1.000722 | 1.01908 | 0.981985 | 0.991179 | 0.98946 | 1.001738 | 1.003384 | 1.000271 | 1.003111 | 0.994875 | 1.003936 | 0.990975 | 1.027699 | 1 | 1.027699 | 0.976656 | 0.977615 | 0.999019 |
Hainan | 1 | 1 | 1 | 0.999536 | 1 | 0.999536 | 0.999738 | 1 | 0.999738 | 0.999011 | 1 | 0.999011 | 1 | 1 | 1 | 1 | 1 | 1 |
Chongqing | 1.000338 | 1.014512 | 0.986029 | 0.99478 | 0.987155 | 1.007724 | 1.002287 | 1.00141 | 1.000876 | 0.99971 | 1.025751 | 0.974613 | 1.006124 | 1.006838 | 0.999291 | 0.995516 | 0.985955 | 1.009698 |
Sichuan | 0.995899 | 1.035467 | 0.961787 | 1.001322 | 1.00394 | 0.997392 | 1.00809 | 1.006986 | 1.001096 | 0.999999 | 1.007963 | 0.992099 | 1.006668 | 0.978027 | 1.029284 | 0.989765 | 0.989621 | 1.000145 |
Guizhou | 0.992606 | 1 | 0.992606 | 0.997189 | 0.975229 | 1.022517 | 0.999468 | 1.051419 | 0.95059 | 0.988655 | 1.010595 | 0.97829 | 1.007832 | 0.988615 | 1.019439 | 0.997909 | 1.002156 | 0.995762 |
Yunnan | 0.966891 | 0.955808 | 1.011596 | 1.017816 | 1.032439 | 0.985836 | 1.004575 | 1.006924 | 0.997667 | 0.990525 | 1.014165 | 0.97669 | 1.012828 | 0.997632 | 1.015233 | 1.006002 | 1.00416 | 1.001835 |
Shaanxi | 1.000666 | 1.015835 | 0.985068 | 0.995088 | 0.960626 | 1.035874 | 0.995027 | 0.978744 | 1.016636 | 1.006848 | 1.02116 | 0.985985 | 1.053078 | 1.02936 | 1.023041 | 0.969436 | 1 | 0.969436 |
Gansu | 0.998514 | 0.998621 | 0.999892 | 0.998413 | 0.976109 | 1.02285 | 0.995807 | 0.982898 | 1.013134 | 1.005673 | 1.01925 | 0.98668 | 0.993304 | 0.983662 | 1.009802 | 1.000802 | 0.99863 | 1.002175 |
Qinghai | 1 | 1 | 1 | 1.000601 | 1 | 1.000601 | 1.001632 | 1 | 1.001632 | 0.996028 | 1 | 0.996028 | 1.005863 | 1 | 1.005863 | 0.995199 | 1 | 0.995199 |
Ningxia | 0.998434 | 1 | 0.998434 | 0.998789 | 1 | 0.998789 | 0.997591 | 0.97256 | 1.025737 | 1.000573 | 1.036798 | 0.965061 | 1 | 1 | 1 | 1 | 1 | 1 |
Xinjiang | 1.00098 | 1.017275 | 0.983982 | 0.999202 | 0.990586 | 1.008698 | 0.991876 | 0.982824 | 1.00921 | 0.989586 | 0.998287 | 0.991284 | 1.007758 | 0.991791 | 1.016099 | 0.986982 | 0.989669 | 0.997286 |
Variable | Meaning | Unit | N | Mean | Max | Min | SD |
---|---|---|---|---|---|---|---|
Stringency | Environment Regulation | - | 300 | 42.83353 | 280.39 | 3.59 | 34.60319 |
Malm | Malmquist Index | - | 300 | 1.004929 | 4.2671 | 0.2915 | 0.19878 |
EFF | Effinecy Change | - | 300 | 1.048712 | 15.7628 | 0.240218 | 0.8571323 |
TECH | Technology Change | - | 300 | 1.024846 | 4.813693 | 0.018494 | 0.3395874 |
Pub | Fiscal expenditure/GDP | % | 300 | 20.76413 | 61.21 | 7.98 | 8.9759 |
Industry | Third Industry GDP/GDP | % | 300 | 40.1445 | 77.95 | 28.62 | 8.1988 |
Unemp | Unemployment rate | % | 300 | 3.6032 | 5.7 | 1.21 | 0.6477 |
Independent Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Malm | −10.33 | −10.2 | −10.27 | −9.87 | −10.41 | −9.78 | −9.78 | −9.59 | −10.33 | −10.2 | −10.27 | −9.87 |
(7.28) | (7.37) | (7.36) | (7.25) | (7.3) | (7.19) | (7.21) | (7.17) | (7.28) | (7.37) | (7.36) | (7.25) | |
Pub | −0.23 | −0.21 | 0.07 | −1.2 *** | −1.2 *** | −0.71 | −0.23 | −0.21 | 0.07 | |||
(0.32) | (0.32) | (0.33) | (0.39) | (0.4) | (0.48) | (0.32) | (0.32) | (0.33) | ||||
Industry | −0.34 | 0.01 | 0.004 | 0.09 | −0.34 | 0.01 | ||||||
(0.38) | (0.4) | (0.52) | (0.52) | (0.38) | (0.4) | |||||||
Unemp | 12.91 *** | 10.95 * | 12.91 *** | |||||||||
(4.52) | (5.67) | (4.52) | ||||||||||
Constant | 53.22 *** | 58 *** | 71.54 *** | 4.04 | 53.3 *** | 77.63 *** | 77.78 *** | 23.74 | 53.22 *** | 58 *** | 71.54 *** | 4.04 |
(8.72) | (10.72) | (18.09) | (29.8) | (7.47) | (10.74) | (21.53) | (35.23) | (8.72) | (10.72) | (18.09) | (29.8) | |
Fix Effect | N | N | N | N | Y | Y | Y | Y | N | N | N | N |
Random Effect | N | N | N | N | N | N | N | N | Y | Y | Y | Y |
R-square | 0.003 | 0.0243 | 0.002 | 0.0241 | 0.003 | 0.0647 | 0.0646 | 0.0066 | 0.003 | 0.0243 | 0.002 | 0.0241 |
N | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
Independent Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
EFF | −0.57 | −0.54 | −0.58 | −0.49 | −0.63 | −0.53 | −0.529 | −0.469 | −0.57 | −0.54 | −0.58 | −0.49 |
(1.75) | (1.77) | (1.77) | (1.74) | (1.76) | (1.73) | (1.74) | (1.72) | (1.75) | (1.77) | (1.77) | (1.74) | |
Pub | −0.24 | −0.22 | 0.07 | −1.22 *** | −1.22 *** | −0.72 | −0.24 | −0.22 | 0.07 | |||
(0.32) | (0.32) | (0.34) | (0.39) | (0.4) | (0.47) | (0.32) | (0.32) | (0.34) | ||||
Industry | −0.34 | 0.021 | 0.001 | 0.1 | −0.34 | 0.021 | ||||||
(0.38) | (0.4) | (0.52) | (0.52) | (0.38) | (0.4) | |||||||
Unemp | 12.99 *** | 11.02 * | 12.99 *** | |||||||||
(4.52) | (5.68) | (4.52) | ||||||||||
Constant | 43.43 *** | 48.38 *** | 61.87 *** | −5.79 | 43.49 *** | 68.62 *** | 68.58 *** | 14.28 | 43.43 *** | 48.38 *** | 61.87 *** | −5.79 |
(5.08) | (8.09) | (16.69) | (28.96) | (2.34) | (8.34) | (20.46) | (34.61) | (5.08) | (8.09) | (16.69) | (28.96) | |
Fix Effect | N | N | N | N | Y | Y | Y | Y | N | N | N | N |
Random Effect | N | N | N | N | N | N | N | N | Y | Y | Y | Y |
R-square | 0 | 0.069 | 0.0075 | 0.021 | 0 | 0.072 | 0.072 | 0.0092 | 0 | 0.069 | 0.0075 | 0.021 |
N | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
Independent Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TECH | −7.85 * | −7.71 * | −7.7 * | −7.77 * | −8.28 * | −8.01 * | −8.01 * | −8.03 * | −7.84 * | −7.71 * | −7.7 * | −7.77 * |
(4.57) | (4.62) | (4.61) | (4.54) | (4.61) | (4.54) | (4.55) | (4.52) | (4.57) | (4.62) | (4.61) | (4.54) | |
Pub | −0.24 | −0.22 | 0.07 | −1.2 *** | −1.2 *** | −0.7 | −0.24 | −0.22 | 0.07 | |||
(0.32) | (0.32) | (0.33) | (0.38) | (0.4) | (0.47) | (0.32) | (0.32) | (0.33) | ||||
Industry | −0.34 | 0.029 | 0.02 | 0.12 | −0.34 | 0.029 | ||||||
(0.38) | (0.4) | (0.52) | (0.51) | (0.38) | (0.4) | |||||||
Unemp | 13.05 *** | 11.07 * | 13.05 *** | |||||||||
(4.5) | (5.6) | (4.5) | ||||||||||
Constant | 50.88 *** | 55.67 *** | 68.82 *** | 1.03 | 51.32 *** | 76.05 *** | 75.33 *** | 20.89 | 50.88 *** | 55.67 *** | 68.82 *** | 1.03 |
(6.66) | (9.13) | (17.1) | (29.06) | (4.94) | (9.28) | (20.65) | (34.55) | (6.66) | (9.13) | (17.1) | (29.06) | |
Fix Effect | N | N | N | N | Y | Y | Y | Y | N | N | N | N |
Random Effect | N | N | N | N | N | N | N | N | Y | Y | Y | Y |
R-square | 0.0017 | 0.019 | 0.0021 | 0.0235 | 0.0017 | 0.0628 | 0.0634 | 0.0064 | 0.0017 | 0.019 | 0.0021 | 0.0235 |
N | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Zhou, D.; Pu, Z.; Sun, H. A Study of Regional Power Generation Efficiency in China: Based on a Non-Radial Directional Distance Function Model. Sustainability 2019, 11, 659. https://doi.org/10.3390/su11030659
Zhu J, Zhou D, Pu Z, Sun H. A Study of Regional Power Generation Efficiency in China: Based on a Non-Radial Directional Distance Function Model. Sustainability. 2019; 11(3):659. https://doi.org/10.3390/su11030659
Chicago/Turabian StyleZhu, Jin, Dequn Zhou, Zhengning Pu, and Huaping Sun. 2019. "A Study of Regional Power Generation Efficiency in China: Based on a Non-Radial Directional Distance Function Model" Sustainability 11, no. 3: 659. https://doi.org/10.3390/su11030659
APA StyleZhu, J., Zhou, D., Pu, Z., & Sun, H. (2019). A Study of Regional Power Generation Efficiency in China: Based on a Non-Radial Directional Distance Function Model. Sustainability, 11(3), 659. https://doi.org/10.3390/su11030659