Mutation Breeding of a N-methyl-N-nitrosourea (MNU)-Induced Rice (Oryza sativa L. ssp. Indica) Population for the Yield Attributing Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Materials
2.2. Genotypic Analysis
2.2.1. DNA Extraction
2.2.2. Polymorphism Screening and Mutant Population Genotyping by SSR Markers
2.3. Data Analysis
3. Results
3.1. Agronomic and Crop Quality Trait Performance of the Mutant Populations
3.2. Analysis of Variance among Phenotypes
3.3. Correlations of Phenotypic Parameters
3.4. Identification of Marker Polymorphism and Genotypic Segregation of the Phenotypic Characteristics in M2 and M3 Populations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xuan, T.D.; Khang, D.T. Effects of exogenous application of protocatechuic acid and vanillic acid to chlorophylls, phenolics and antioxidant enzymes of rice (Oryza sativa L.) in submergence. Molecules 2018, 23, 620. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Yang, Q. Genetic and molecular bases of rice yield. Annu. Rev. Plant Biol. 2010, 61, 421–442. [Google Scholar] [CrossRef]
- Ratho, S.N.; Pradhan, S.B. Cytoplasmically controlled cold tolerance in a cytoplasmic-genetic male sterile line of rice. Euphytica 1992, 58, 241–244. [Google Scholar] [CrossRef]
- Tao, D.; Hu, F.; Yang, J.; Yang, J.; Yang, G.; Yang, Y.; Xu, P.; Li, J.; Ye, C.; Dai, L. Cytoplasm and cytoplasm-nucleus interactions affect agronomic traits in Japonica rice. Euphytica 2004, 135, 129–134. [Google Scholar] [CrossRef]
- Chandraratna, M.F.; Sakai, K.I. A biometrical analysis of matroclinous inheritance of grain weight in rice. Heredity 1960, 14, 365–373. [Google Scholar] [CrossRef]
- Chang, T.T.; Liu, F.H. Diallel analysis of protein content in rice. Agron. Abstr. 1974, 65, Chicago, Illinois. [Google Scholar]
- Shi, C.H.; Xue, J.M.; Yu, Y.G.; Yang, X.E.; Zhu, J. Analysis of genetic effects on nutrient quality traits in Indica rice. Theor. Appl. Genet. 1996, 92, 1099–1102. [Google Scholar] [CrossRef]
- Xu, Y.B.; Shen, Z.T. Maternal effect on chalkiness in rice kernels. Rice Genet. Newsl. 1988, 5, 111–113. [Google Scholar]
- Shi, C.H.; Zhu, J. Analysis of seed and maternal genetic effects for characters of cooking quality in Indica rice. Chin. J. Rice Sci. 1994, 8, 129–134. [Google Scholar]
- Fukuoka, S.; Ebana, K.; Yamamoto, T.; Yano, M. Integration of genomics into rice breeding. Rice 2010, 3, 131–137. [Google Scholar] [CrossRef]
- Jaiswal, P.; Ware, D.; Ni, J.; Chang, K.; Zhao, W.; Schmidt, S.; Pan, X.; Clark, K.; Teytelman, L.; Cartinhour, S.; et al. Gramene: Development and integration of trait and gene ontologies for rice. Comp. Funct. Gen. 2002, 3, 132–136. [Google Scholar] [CrossRef] [PubMed]
- IRGSP. The map-based sequence of the rice genome. Nature 2005, 436, 793–800. [Google Scholar] [CrossRef] [Green Version]
- Riaz, A.; Gul, A. Plant mutagenesis and Crop Improvement. In Crop Production and Global Environment Issues; Hakeem, K., Ed.; Springer International Publishing AG: Cham, Switzerland, 2015; pp. 181–209. ISBN 9783319231624. [Google Scholar]
- Ahloowalia, B.S.; Maluszynski, M.; Nichterlein, K. Global impact of mutation-derived varieties. Euphytica 2004, 135, 187–204. [Google Scholar] [CrossRef]
- Maluszynski, M.; Szarejko, I. Induced mutations in the Green and Gene Revolutions. In Proceedings of the International Congress: In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution, Bologna, Italy, 27–31 May 2003; Avenue Media: Bologna, Italy, 2005; pp. 403–425. [Google Scholar]
- Maluszynski, M.; Gustafson, P.; Maluszynska, J.; Szarejko, I. Advanced breeding for germplasm enhancement and yield improvement. In Yield Gap and Productivity Decline in Rice Production; FAO: Rome, Italy, 2001; pp. 191–224. [Google Scholar]
- Kurowska, M.; Labocha-Pawłowska, A.; Gnizda, D.; Maluszynski, M.; Szarejko, I. Molecular analysis of point mutations in a barley genome exposed to MNU and Gamma rays. Mutat. Res 2012, 738–739, 52–70. [Google Scholar] [CrossRef]
- Greene, E.A.; Codomo, C.A.; Taylor, N.E.; Henikoff, J.G.; Till, B.J.; Reynolds, S.H.; Henikoff, S. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 2003, 164, 731–740. [Google Scholar] [PubMed]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Hussin, G.; Ramli, A.; Rahim, H.A.; Miah, G.; Usman, M. Principle and application of plant mutagenesis in crop improvement: A review. Biotechnol. Biotechnol. Equip. 2016, 30, 1–16. [Google Scholar] [CrossRef]
- Mutant Varieties Database. The Joint FAO/IAEA (Food of Agriculture Organization of the United Nations and International Atomic Energy Agency). Available online: https://mvd.iaea.org/ (accessed on 21 December 2018).
- Suzuki, T.; Eiguchi, M.; Kumamaru, T.; Satoh, H.; Matsusaka, H.; Moriguchi, K.; Nagato, Y.; Kurata, N. MNU-induced mutant pools and high-performance TILLING enable finding of any gene mutation in rice. Mol. Genet. Genom. 2008, 279, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.A.; Nawaz, M.A.; Shahid, M.Q.; Doğan, Y.; Comertpay, G.; Yıldız, M.; Hatipoğlu, R.; Ahmad, F.; Alsaleh, A.; Labhane, N.; et al. DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 2018, 32, 261–285. [Google Scholar] [CrossRef]
- Xie, F.; He, Z.; Esguerra, M.Q.; Qiu, F.; Ramanathan, V. Determination of heterotic groups for tropical Indica hybrid rice germplasm. Theor. Appl. Genet. 2014, 127, 407–417. [Google Scholar] [CrossRef]
- Anh, T.T.T.; Khanh, T.D.; Dat, T.D.; Xuan, T.D. Identification of phenotypic variation and genetic diversity in rice (Oryza sativa L.) mutants. Agriculture 2018, 8, 30. [Google Scholar] [CrossRef]
- Xuan, T.D.; Bach, D.T.; Dat, T.D. Involvement of phenolics, flavonoids, and phenolic acids in high yield characteristics of rice (Oryza sativa L.). Int. Lett. Nat. Sci. 2018, 68, 19–26. [Google Scholar] [CrossRef]
- Gramene Website Data Base. Available online: http://archive.gramene.org/markers/microsat/ (accessed on 1 July 2016).
- Liang, G.; Cao, X.; Sui, J.; Zhao, X.; Yan, C.; Yi, C.; Gu, M. Fine mapping of a semi dwarf gene sd-g in Indica rice (Oryza sativa L.). Chin. Sci. Bull. 2004, 49, 900–904. [Google Scholar]
- Tong, C.; Chen, Y.; Tang, F.; Huang, Y.; Chen, H.; Bao, J. Genetic diversity of amylose content and RVA pasting parameters in 20 rice acessions grown in Hainan, China. Food Chem. 2014, 161, 239–245. [Google Scholar] [CrossRef]
- Ogunbayo, S.A.; Sie, M.; Ojo, D.K.; Popoola, A.R.; Oduwaye, O.A.; Daniel, I.O.; Sanni, K.A.; Akinwale, M.G.; Toulou, B.; Shittu, A.; et al. Comparative Performance of Forty-Eight Rice Genotypes in Diverse Environments Using the Ammi and GGE Biplot Analyses. Int. J. Plant Breed. Genet. 2014, 8, 139–152. [Google Scholar] [CrossRef]
- Sikora, P.; Chawade, A.; Larsson, M.; Olsson, J.; Olsson, O. Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int. J. Plant Genom. 2011, 2011, 314829. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, P.; Rao, A.S. Effects of genotype and environment on seed yield and quality of rice. J. Agric. Sci. 2005, 143, 283–292. [Google Scholar] [CrossRef]
- Krishnan, P.; Ramakrishnan, B.; Reddy, K.R.; Reddy, V.R. High-temperature effects on rice growth, yield, and grain quality. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier/Academic Press: Cambridge, MA, USA, 2011; Volume 111, pp. 87–206. ISBN 978-0-12-387689-8. [Google Scholar]
- Doust, A.N.; Lukens, L.; Olsen, K.M.; Mauro-Herrera, M.; Meyer, A.; Rogers, K. Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication. Proc. Natl. Acad. Sci. USA 2014, 111, 6178–6183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifi, P.; Aminpanah, H.; Erfani, R.; Mohaddesi, A.; Abbasian, A. Evaluation of Genotype× Environment Interaction in Rice Based on AMMI Model in Iran. Rice Sci. 2017, 24, 173–180. [Google Scholar] [CrossRef]
- Lo, S.F.; Fan, M.J.; Hsing, Y.I.; Chen, L.J.; Chen, S.; Wen, I.C.; Liu, Y.L.; Chen, K.T.; Jiang, M.J.; Lin, M.K.; et al. Genetic resources offer efficient tools for rice functional genomics research. Plant Cell Environ. 2016, 39, 998–1013. [Google Scholar] [CrossRef] [PubMed]
- Marri, P.R.; Sarla, N.; Reddy, L.V.; Siddiq, E.A. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon. BMC Genet. 2005, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Russel, P.J. Mendenlian genetics. In Genetics: A Molecular Approach; Willbur, B., Ed.; Pearson Banjamin Cummings: San Francisco, CA, USA, 2010; pp. 297–319. ISBN 032569768. [Google Scholar]
- Xiong, L.Z.; Liu, K.D.; Dai, X.K.; Xu, C.G.; Zhang, Q. Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theor. Appl. Genet. 1999, 98, 243–251. [Google Scholar] [CrossRef]
- Moncada, P.; Martinez, C.P.; Borrero, J.; Châtel, M.; Gauch, J.H.; Guimaraes, E.; Tohme, J.; McCouch, S.R. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor. Appl. Genet. 2001, 102, 41–52. [Google Scholar] [CrossRef]
- Septiningsih, E.M.; Prasetiyono, J.; Lubis, E.; Tai, T.H.; Tjubaryat, T.; Moeljopawiro, S.; McCouch, S.R. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor. Appl. Genet. 2003, 107, 1419–1432. [Google Scholar] [CrossRef] [PubMed]
- Thomson, M.J.; Tai, T.H.; McClung, A.M.; Lai, X.H.; Hinga, M.E.; Lobos, K.B.; Xu, Y.; Martinez, C.P.; McCouch, S.R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor. Appl. Genet. 2003, 107, 479–493. [Google Scholar] [CrossRef] [PubMed]
- Brondani, C.; Rangel, P.; Brondani, R.; Ferreira, M. QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor. Appl. Genet. 2002, 104, 1192–1203. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.F.; Shen, L.S.; Tan, Z.; Xu, Y.; He, P.; Chen, Y.; Zhu, L. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theor. Appl. Genet. 1996, 93, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Causse, M.A.; Fulton, T.M.; Cho, Y.G.; Ahn, S.N.; Chunwongse, J.; Wu, K.; Xiao, J.; Yu, Z.; Ronald, P.C.; Harrington, S.E.; et al. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 1994, 138, 1251–1274. [Google Scholar] [PubMed]
- McCouch, S.R.; Kochert, G.; Yu, Z.H.; Wang, Z.Y.; Khush, G.S.; Coffman, W.R.; Tanksley, S.D. Molecular mapping of rice chromosomes. Theor. Appl. Genet. 1988, 76, 815–829. [Google Scholar] [CrossRef] [PubMed]
- Aluko, G.; Martinez, C.; Tohme, J.; Castano, C.; Bergman, C.; Oard, J.H. QTL mapping of grain quality traits from the interspecific cross Oryza sativa × O. glaberrima. Theor. Appl. Genet. 2004, 109, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Grandillo, S.; Tanksley, S.D. QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor. Appl. Genet. 1996, 92, 935–951. [Google Scholar] [CrossRef] [PubMed]
- Russel, P.J. Extension of and deviations from Mendelian genetic principles. In IGenetics A Molecular Approach, 3rd ed.; Wilbur, B., Ed.; Pearson Benjamin Cummings: San Francisco, CA, USA, 2010; pp. 363–400. ISBN 0-3256-976-8. [Google Scholar]
- Sato, M.; Sato, K. Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochimica et Biophysica Acta-Mol. Cell Res. 2013, 1833, 1979–1984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Till, B.J.; Cooper, J.; Tai, T.H.; Colowit, P.; Greene, E.A.; Henikoff, S.; Comai, L. Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol. 2007, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Long, T.; Yao, W.; Xiong, L.; Zhang, Q.; Wu, C. Mutant resources for the functional analysis of the rice genome. Mol. Plant 2013, 6, 596–604. [Google Scholar] [CrossRef] [PubMed]
Traits | Parents (Mean ± SE) | Mutated Populations | Control Populations | |
---|---|---|---|---|
Female (TBR1) | Male (KD18) | Mean ± SE | Mean ± SE | |
PH | 117.27 ± 0.50a a | 114.20 ± 0.60b a | 108.78 ± 0.60c b | 113.07 ± 0.49b b |
117.90 ± 0.85a a | 114.20 ± 0.60b a | 114.80 ± 0.76b a | 116 ± 0.43ab a | |
NP | 4.90 ± 0.16b a | 5.57 ± 0.22a a | 4.93 ± 0.23b b | 6.33 ± 0.26a a |
4.80 ± 0.00c a | 5.57 ± 0.22b a | 6.53 ± 0.00a a | 5.13 ± 0.18bc b | |
PL | 26.25 ± 0.29a a | 23.19 ± 0.13c a | 24.62 ± 0.21b a | 23.90 ± 0.16c a |
26.24 ± 0.29a a | 23.19 ± 0.13c a | 24.27 ± 0.16b a | 24.55 ± 0.21b a | |
GL | 6.03 ± 0.02b a | 5.53 ± 0.03c a | 6.15 ± 0.02a a | 5.99 ± 0.02b a |
6.03 ± 0.02b a | 5.53 ± 0.03c a | 6.14 ± 0.02a a | 6.01 ± 0.01b a | |
GW | 2.10 ± 0.02b a | 2.18 ± 0.01a a | 2.17 ± 0.01a a | 2.17 ± 0.03a a |
2.10 ± 0.02b a | 2.18 ± 0.01a a | 2.13 ± 0.01ab b | 2.17 ± 0.01ab a | |
LWR | 2.88 ± 0.03a a | 2.54 ± 0.02b a | 2.84 ± 0.01a b | 2.76 ± 0.07b a |
2.88 ± 0.03a a | 2.54 ± 0.02b a | 2.88 ± 0.01a a | 2.78 ± 0.01b a | |
FG | 21.60 ± 0.65a b | 19.66 ± 0.42b b | 18.69 ± 0.56b b | 17.53 ± 0.84c a |
26.22 ± 1.16ab a | 25.55 ± 0.91b a | 27.91 ± 1.23a a | 18.24 ± 0.71c a | |
SP | 0.90 ± 0.01a b | 0.89 ± 0.01a b | 0.75 ± 0.01b b | 0.72 ± 0.01c a |
0.92 ± 0.00b a | 0.98 ± 0.01a a | 0.90 ± 0.01b a | 0.74 ± 0.01c a | |
KWG | 19.19 ± 0.07b a | 18.54 ± 0.06c a | 20.01 ± 0.09a a | 19.99 ± 0.09a a |
19.35 ± 0.06b a | 18.63 ± 0.07c a | 19.86 ± 0.08a a | 19.31 ± 0.07b b | |
GY | 7.13 ± 0.22a b | 6.49 ± 0.14b b | 6.17 ± 0.18b b | 5.59 ± 0.28c a |
8.65 ± 0.38b a | 7.77 ± 0.30ab a | 9.21 ± 0.41a a | 6.02 ± 0.23c a | |
PC * | 6.22 ± 0.19ab a | 5.62 ± 0.10b a | 6.87 ± 0.33a a | 6.28 ± 0.28ab b |
7.62 ± 2.50a a | 6.29 ± 0.1.27a a | 5.04 ± 0.10a b | 7.07 ± 0.22a a | |
AC | 22.72 ± 0.07c a | 23.60 ± 0.06a a | 23.19 ± 0.17b a | 23.40 ± 0.15ab a |
22.46 ± 0.09ab b | 23.41 ± 0.06a b | 20.98 ± 0.93b b | 23.07 ± 0.16a a | |
LC | 9.32 ± 0.20b a | 8.60 ± 0.16c a | 15.10 ± 0.24a a | 9.77 ± 0.36b a |
9.27 ± 0.21a a | 8.33 ± 0.15b a | 9.23 ± 0.13a b | 10.14 ± 0.23a a |
Sources | Mean Square Values | ||
---|---|---|---|
Genotypes | Environments | G × E | |
df | 31 | 1 | 31 |
PH | 20.93 *** | 1255.63 *** | 17.11 * |
NP | 2.15 | 42.19 *** | 1.93 |
PL | 1.93 | 4.82 | 1.42 |
GL | 0.05 *** | 0.02 | 0.02 |
GW | 0.01 | 0.48 *** | 0.01 |
LWR | 0.02 | 0.76 *** | 0.02 |
FG | 47.20 *** | 4467.76 *** | 40.59 *** |
SP | 0.01 | 1.18 *** | 0.00 |
KWG | 0.26 | 13.52 *** | 0.30 |
GY | 5.14 *** | 468.13 *** | 4.42 *** |
PC | 2.36 ** | 167.31 *** | 2.23 * |
AC | 0.71 *** | 30.98 *** | 0.60 *** |
LC | 2.46 *** | 1578.39 *** | 2.05 * |
Traits | NP | PL | GL | GW | LWR | FG | TGP | SP | THG | KWG | GY | PC | AC | LC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PH | 0.17 | −0.03 | −0.29 ** | 0.09 | −0.19 | 0.09 | 0.14 | −0.10 | 0.03 | 0.03 | 0.09 | −0.22 * | 0.07 | −0.35 ** |
0.44 ** | 0.13 | −0.14 | 0.15 | −0.22 * | 0.13 | 0.10 | 0.08 | −0.11 | −0.11 | 0.13 | 0.32 ** | −0.19 | −0.14 | |
NP | 1 | 0.05 | −0.07 | 0.19 | −0.17 | 0.12 | 0.11 | 0.04 | 0.11 | 0.11 | 0.12 | −0.02 | −0.09 | −0.04 |
−0.01 | 0.02 | 0.01 | −0.01 | 0.17 | 0.16 | 0.06 | 0.15 | 0.15 | 0.17 | 0.22 * | −0.21 * | −0.09 | ||
PL | 1 | 0.12 | −0.05 | 0.08 | −0.01 | 0.00 | −0.02 | −0.07 | −0.07 | −0.01 | −0.02 | 0.00 | −0.03 | |
−0.09 | −0.14 | 0.06 | 0.17 | 0.16 | 0.01 | −0.18 | −0.18 | 0.17 | −0.01 | −0.13 | −0.11 | |||
GL | 1 | −0.26 * | 0.61 ** | −0.10 | −0.08 | −0.03 | −0.05 | −0.05 | −0.10 | 0.04 | −0.09 | 0.13 | ||
0.01 | 0.65 ** | −0.05 | −0.07 | 0.07 | 0.02 | 0.02 | −0.05 | 0.02 | −0.18 | 0.06 | ||||
GW | 1 | −0.92 ** | 0.04 | 0.00 | 0.08 | 0.11 | 0.11 | 0.05 | −0.09 | 0.05 | −0.05 | |||
−0.75 ** | −0.07 | −0.11 | 0.22 * | −0.07 | −0.07 | −0.07 | 0.00 | 0.17 | −0.09 | |||||
LWR | 1 | −0.08 | −0.05 | −0.07 | −0.10 | −0.10 | −0.08 | 0.08 | −0.09 | 0.09 | ||||
0.01 | 0.03 | −0.12 | 0.05 | 0.05 | 0.01 | 0.01 | −0.25 * | 0.11 | ||||||
FG | 1 | 0.89 ** | 0.31 ** | −0.13 | −0.13 | 1.00 ** | −0.05 | 0.00 | −0.16 | |||||
0.97 ** | 0.06 | −0.16 | −0.16 | 1.00 ** | −0.07 | −0.11 | 0.03 | |||||||
TGP | 1 | −0.16 | −0.06 | −0.06 | 0.89 ** | −0.04 | 0.08 | 0.00 | ||||||
−0.16 | −0.17 | −0.17 | 0.97 ** | −0.08 | −0.14 | 0.05 | ||||||||
SP | 1 | −0.19 | −0.19 | 0.32 ** | −0.03 | −0.17 | −0.30 ** | |||||||
0.05 | 0.05 | 0.06 | 0.01 | 0.18 | −0.06 | |||||||||
THG | 1 | 1.00 ** | −0.13 | −0.13 | −0.11 | 0.07 | ||||||||
1.00 ** | −0.16 | 0.00 | −0.06 | 0.00 | ||||||||||
KWG | 1 | −0.13 | −0.13 | −0.11 | 0.07 | |||||||||
−0.16 | 0.00 | −0.06 | 0.00 | |||||||||||
GY | 1 | −0.05 | 0.00 | −0.16 | ||||||||||
−0.07 | −0.11 | 0.03 | ||||||||||||
PC | 1 | 0.60 ** | 0.51 ** | |||||||||||
−0.38 ** | 0.20 | |||||||||||||
AC | 1 | 0.35 ** | ||||||||||||
0.05 |
No | Markers | Chr. | Sequences | Mapped Location | Map Set | Correlated Traits | |
---|---|---|---|---|---|---|---|
Forwards | Reverses | ||||||
1 | RM297 | 1 | 5′-TCTTTGGAGGCGAGCTGAG | 3′-CGAAGGGTACATCTGCTTAG | 132–132 cM | IRMI 2003 | PC, GT |
2 | RM414 | 1 | 5′-TAGGGCAATTGTGCAAGTGG | 3′-TTGGGAATTGGGTAGGACAG | 191.1–191.1 cM | Cornell SSR 2001 | GC, PH |
3 | RM207 | 2 | 5′-CCATTCGTGAGAAGATCTGA | 3′-CACCTCATCCTCGTAACGCC | 191.2–191.2 cM | Cornell SSR 2001 | BDR, PH |
4 | RM213 | 2 | 5′-ATCTGTTTGCAGGGGACAAG | 3′-AGGTCTAGACGATGTCGTGA | 186.4–186.4 cM | Cornell SSR 2001 | BDR, AC |
5 | RM6 | 2 | 5′-GTCCCCTCCACCCAATTC | 3′-TCGTCTACTGTTGGCTGCAC | 145.1–145.1 cM | CIAT SSR 2006 | PC |
6 | RM318 | 2 | 5′-GTACGGAAAACATGGTAGGAAG | 3′-TCGAGGGAAGGATCTGGTC | 145.4–145.4 cM | CIAT SSR 2006 | PC |
7 | RM7 | 3 | 5′-TTCGCCATGAAGTCTCTCG | 3′-CCTCCCATCATTTCGTTGTT | 48.6–48.6 cM | CIAT SSR 2006 | SN, AC |
8 | RM251 | 3 | 5′-GAATGGCAATGGCGCTAG | 3′-ATGCGGTTCAAGATTCGATC | 79.1–79.1 cM | Cornell SSR 2001 | AC |
9 | RM3392 | 3 | 5′-GTCCAATGATTCGTTCCCAC | 3′-CTTCACCGTTCACCAATTCC | 18.7–18.7 cM | CIAT SSR 2006 | AC |
10 | RM273 | 4 | 5′-GAAGCCGTCGTGAAGTTACC | 3′-GTTTCTACCTGATCGCGAC | 116.8–116.8 cM | CIAT SSR 2006 | GC |
11 | RM307 | 4 | 5′-GTACTACCGACCTACCGTTCAC | 3′-CTGCTATGCATGAACTGCTC | 0–0 cM | Cornell SSR 2001 | BDR, PH |
12 | SSR371* | 5 | 5′-TGCGATGAGATTACGAGACC | 3′-ACAGATTATTTGCTCACGCTAT | 0.5-2.0 cM | AC104708 | Semi-dwarfism |
13 | RM508 | 6 | 5′-GGATAGATCATGTGTGGGGG | 3′-ACCCGTGAACCACAAAGAAC | 0–0 cM | Cornell SSR 2001 | AC |
14 | RM587 | 6 | 5′-ACGCGAACAAATTAACAGCC | 3′-CTTTGCTACCAGTAGATCCAGC | 10.7–10.7 cM | Cornell SSR 2001 | AC |
15 | RM589 | 6 | 5′-ATCATGGTCGGTGGCTTAAC | 3′-CAGGTTCCAACCAGACACTG | 3.2–3.2 cM | Cornell SSR 2001 | AC, GC |
16 | RM527 | 6 | 5′-GGCTCGATCTAGAAAATCCG | 3′-TTGCACAGGTTGCGATAGAG | 61.2–61.2 cM | Cornel SSR 2001 | GC |
17 | RM584 | 6 | 5′-AGAAAGTGGATCAGGAAGGC | 3′-GATCCTGCAGGTAACCACAC | 26.2–26.2 cM | Cornel SSR 2001 | AC, GC |
18 | RM432 | 7 | 5′-TTCTGTCTCACGCTGGATTG | 3′-AGCTGCGTACGTGATGAATG | 43.5–43.5 cM | Cornel SSR 2001 | AC, GY |
19 | RM149 | 8 | 5′-GCTGACCAACGAACCTAGGCCG | 3′-GTTGGAAGCCTTTCCTCGTAACACG | 122.1–122.1 cM | CIAT SSR 2006 | BPR, PH, SP |
20 | RM219 | 9 | 5′-CGTCGGATGATGTAAAGCCT | 3′-CATATCGGCATTCGCCTG | 11.7–11.7 cM | Cornell SSR 2001 | PH, GY, AC |
21 | RM107 | 9 | 5′-AGATCGAAGCATCGCGCCCGAG | 3′-ACTGCGTCCTCTGGGTTCCCGG | 82.4–82.4 cM | Cornell SSR 2001 | AC |
22 | RM434 | 9 | 5′-GCCTCATCCCTCTAACCCTC | 3′-CAAGAAAGATCAGTGCGTGG | 57.7–57.7 cM | Cornell SSR 2001 | AC |
23 | RM5688 | 9 | 5′-GCAGTGTCCAACCATCTGTG | 3′-ATCTGGTCACCCTTTGCTTG | 30.8–30.8 cM | IRMI 2003 | AC |
24 | RM201 | 9 | 5′-CTCGTTTATTACCTACAGTACC | 3′-CTACCTCCTTTCTAGACCGATA | 81.2–81.2 cM | Cornell SSR 2001 | BDR, GY, PH |
25 | RM229 | 11 | 5′-CACTCACACGAACGACTGAC | 3′-CGCAGGTTCTTGTGAAATGT | 77.8–77.8 cM | Cornell SSR 2001 | PH, SP |
26 | RM202 | 11 | 5′-CAGATTGGAGATGAAGTCCTCC | 3′-CCAGCAAGCATGTCAATGTA | 42.1–42.1 cM | CIAT SSR 2006 | SP, PH |
27 | RM206 | 11 | 5′-CCCATGCGTTTAACTATTCT | 3′-CGTTCCATCGATCCGTATGG | 104.2–104.2 cM | CIAT SSR 2006 | BPR, BDR, PH, SP |
28 | RM287 | 11 | 5′-TTCCCTGTTAAGAGAGAAATC | 3′-GTGTATTTGGTGAAAGCAAC | 68.6–68.6 cM | Cornell SSR 2001 | AC |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xuan, T.D.; Anh, T.T.T.; Tran, H.-D.; Khanh, T.D.; Dat, T.D. Mutation Breeding of a N-methyl-N-nitrosourea (MNU)-Induced Rice (Oryza sativa L. ssp. Indica) Population for the Yield Attributing Traits. Sustainability 2019, 11, 1062. https://doi.org/10.3390/su11041062
Xuan TD, Anh TTT, Tran H-D, Khanh TD, Dat TD. Mutation Breeding of a N-methyl-N-nitrosourea (MNU)-Induced Rice (Oryza sativa L. ssp. Indica) Population for the Yield Attributing Traits. Sustainability. 2019; 11(4):1062. https://doi.org/10.3390/su11041062
Chicago/Turabian StyleXuan, Tran Dang, Truong Thi Tu Anh, Hoang-Dung Tran, Tran Dang Khanh, and Tran Dang Dat. 2019. "Mutation Breeding of a N-methyl-N-nitrosourea (MNU)-Induced Rice (Oryza sativa L. ssp. Indica) Population for the Yield Attributing Traits" Sustainability 11, no. 4: 1062. https://doi.org/10.3390/su11041062
APA StyleXuan, T. D., Anh, T. T. T., Tran, H. -D., Khanh, T. D., & Dat, T. D. (2019). Mutation Breeding of a N-methyl-N-nitrosourea (MNU)-Induced Rice (Oryza sativa L. ssp. Indica) Population for the Yield Attributing Traits. Sustainability, 11(4), 1062. https://doi.org/10.3390/su11041062