The Impact of Foreign and Indigenous Innovations on the Energy Intensity of China’s Industries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.1.1. Generalized Model
2.1.2. Control Variables
2.1.3. Empirical Model
2.1.4. Estimation Method
2.2. Data Collection and Processing
3. Results
3.1. Linear Regression Analysis
3.2. Nonlinear Analysis
4. Discussion
5. Conclusions and Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Code | Sub-Sectors |
---|---|
H01 | Mining and Washing of Coal |
H02 | Extraction of Petroleum and Natural Gas |
H03 | Mining and Processing of Ferrous Metal Ores |
H04 | Mining and Processing of Non-Ferrous Metal Ores |
H05 | Mining and Processing of Non-metal Ores |
H06 | Processing of Food from Agricultural Products |
H07 | Manufacture of Foods |
H08 | Manufacture of Liquor, Beverages, and Refined Tea |
H09 | Manufacture of Tobacco |
H10 | Manufacture of Textile |
H11 | Manufacture of Textile, Wearing Apparel, and Accessories |
H12 | Manufacture of Leather, Fur, Feather and Related Products, and Footwear |
H13 | Processing of Timber, Manufacture of Wood, Bamboo, Rattan, Palm, and Straw Products |
H14 | Manufacture of Furniture |
H15 | Manufacture of Paper and Paper Products |
H16 | Printing and Reproduction of Recording Media |
H17 | Manufacture of Articles for Culture, Education, Arts and Crafts, Sport, and Entertainment Activities |
H18 | Processing of Petroleum, Coking, and Processing of Nuclear Fuel |
H19 | Manufacture of Raw Chemical Materials and Chemical Products |
H20 | Manufacture of Medicines |
H21 | Manufacture of Chemical Fibers |
H22 | Manufacture of Non-metallic Mineral Products |
H23 | Smelting and Pressing of Ferrous Metals |
H24 | Smelting and Pressing of Non-ferrous Metals |
H25 | Manufacture of Metal Products |
H26 | Manufacture of General Purpose Machinery |
H27 | Manufacture of Special Purpose Machinery |
H28 | Manufacture of Railway, Ship, Aerospace, and Other Transport Equipment |
H29 | Manufacture of Electrical Machinery and Apparatus |
H30 | Manufacture of Computers, Communication, and Other Electronic Equipment |
H31 | Manufacture of Measuring Instruments and Machinery |
H32 | Production and Supply of Electric Power and Heat Power |
H33 | Production and Supply of Gas |
H34 | Production and Supply of Water |
Appendix B
Variables | FE | FGLS | DK |
---|---|---|---|
Constant | 5.6610 *** | 5.5765 *** | 5.6610 *** |
(0.0402) a | (0.3247) | (0.4789) | |
lnSRD | −0.3714 ***b | −0.3866 *** | −0.3714 *** |
(0.0402) | (0.0352) | (0.0201) | |
lnSFDI | −0.1532 *** | −0.1038 *** | −0.1532 * |
(0.0460) | (0.0683) | (0.0852) | |
lnSEX | 0.1139 | 0.1374 | 0.1139 |
(0.2146) | (0.1866) | (0.3577) | |
lnSIM | −0.1668 | −0.1972 | −0.1668 |
(0.2263) | (0.2059) | (0.3886) | |
lnPe/Pq | −0.6858 *** | −0.4774 *** | −0.6858 *** |
(0.0896) | (0.0531) | (0.0943) | |
lnES | 0.3867 *** | 0.2064 *** | 0.3867 *** |
(0.0687) | (0.0322) | (0.0655) | |
Hausman (p) | 41.5742 *** | ||
Wald x2 | 1079.25 *** | ||
Heteroscedasticity test c | 4755.34 *** | ||
First-order autocorrelation test | 61.71 *** | ||
Within-R2 | 0.7793 | 0.7793 | |
Observations | 374 | 374 | 374 |
References
- Yan, H.J. Provincial energy intensity in China: The role of urbanization. Energy Policy 2015, 86, 635–650. [Google Scholar] [CrossRef]
- Tang, X.; McLellan, B.C.; Snowden, S.; Zhang, B.; Höök, M. Dilemmas for China: Energy, Economy and Environment. Sustainability 2015, 7, 5508–5520. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.B.; Yu, S.W. Effects of investment on energy intensity: Evidence from China. Chin. J. Popul. Resour. Environ. 2016, 14, 197–207. [Google Scholar] [CrossRef]
- Huang, J.B.; Du, D.; Hao, Y. The driving forces of the change in China’s energy intensity: An empirical research using DEA-Malmquist and spatial panel estimations. Econ. Model. 2017, 65, 41–50. [Google Scholar] [CrossRef]
- Huang, J.B.; Hao, Y.; Lei, H.Y. Indigenous versus foreign innovation and energy intensity in China. Renew. Sustain. Energy Rev. 2018, 81, 1721–1729. [Google Scholar] [CrossRef]
- Song, C.U.; Oh, W. Determinants of innovation in energy intensive industry and implications for energy policy. Energy Policy 2015, 81, 122–130. [Google Scholar] [CrossRef]
- Fisher-Vanden, K.; Hu, Y.; Jefferson, G.; Rock, M.; Toman, M. Factors influencing energy intensity in four Chinese industries. Energy J. 2016, 37, 153–178. [Google Scholar] [CrossRef]
- Huang, J.B.; Du, D.; Tao, Q.Z. An analysis of technological factors and energy intensity in China. Energy Policy 2017, 109, 1–9. [Google Scholar] [CrossRef]
- Hong, L.; Chao, A. Strategic Corporate Social Responsibility, Sustainable Growth, and Energy Policy in China. Energies 2018, 11, 3024. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, C.; Huang, J.B.; Hao, Y. The Impact of Financial Development on Energy Demand: Evidence from China. Emerg. Mark. Financ. Tr. 2018, 54, 269–287. [Google Scholar] [CrossRef]
- Zha, D.L.; Kavuri, S.A.; Si, S.J. Energy biased technology change: Focused on Chinese energy-intensive industries. Appl. Energy 2017, 190, 1081–1089. [Google Scholar] [CrossRef]
- Teng, Y.H. Indigenous R&D, technology import and energy consumption intensity: Evidence from industrial sectors in China. Chin. J. Popul. Resour. Environ. 201, 21, 169–175. (In Chinese) [Google Scholar]
- Yu, H.Y. The influential factors of China’s regional energy intensity and its spatial linkages: 1988–2007. Energy Policy 2012, 45, 583–593. [Google Scholar] [CrossRef]
- Adom, P.K.; Kwakwa, P.A. Effects of changing trade structure and technical characteristics of the manufacturing sector on energy intensity in Ghana. Renew. Sustain. Energy Rev. 2014, 35, 475–483. [Google Scholar] [CrossRef]
- Adom, P.K. Determinants of energy intensity in South Africa: Testing for structural effects in parameters. Energy 2015, 89, 334–346. [Google Scholar] [CrossRef]
- Voigt, S.; Cian, E.D.; Schymura, M.; Verdolini, E. Energy intensity developments in 40 major economies: Structural change or technology improvement? Energy Econ. 2014, 41, 47–62. [Google Scholar] [CrossRef] [Green Version]
- Hübler, M.; Keller, A. Energy savings via FDI? Empirical evidence from developing countries. Environ. Dev. Econ. 2010, 15, 59–80. [Google Scholar] [CrossRef]
- Elliott, R.J.R.; Sun, P.; Chen, S. Energy intensity and foreign direct investment: A Chinese city-level study. Energy Econ. 2013, 40, 484–494. [Google Scholar] [CrossRef]
- Rafiq, S.; Salim, R.; Nielsen, I. Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies. Energy Econ. 2016, 56, 20–28. [Google Scholar] [CrossRef]
- Hang, L.M.; Tu, M.Z. The impacts of energy prices on energy intensity: Evidence from China. Energy Policy 2007, 35, 2978–2988. [Google Scholar] [CrossRef]
- Zheng, Y.M.; Qi, J.H.; Chen, X.L. The effect of increasing exports on industrial energy intensity in China. Energy Policy 2011, 39, 2688–2698. [Google Scholar] [CrossRef]
- Wang, B.B.; Qi, S.Z. Biased technological progress, factor substitution and China’s Industrial energy intensity. Econ. Res. 2014, 2, 115–127. (In Chinese) [Google Scholar]
- Huang, J.B.; Zheng, X.M.; Wang, A.L.; Cai, X.C. Convergence analysis of China’s energy intensity at the industrial sector level. Environ. Sci. Pollut. Res. 2019. [Google Scholar] [CrossRef]
- Tan, R.P.; Lin, B.Q. What factors lead to the decline of energy intensity in China’s energy intensive industries? Energy Econ. 2018, 71, 213–221. [Google Scholar] [CrossRef]
- Fisher-Vanden, K.; Jefferson, G.H.; Liu, H.M.; Tao, Q. What is driving China’s decline in energy intensity? Resour. Energy Econ. 2004, 26, 77–97. [Google Scholar] [CrossRef]
- Coe, D.T.; Helpman, E. International R&D Spillovers. Eur. Econ. Rev. 1995, 39, 859–887. [Google Scholar]
- Van Pottelsberghe de la Potterie, B.; Lichtenberg, F. International R&D spillovers: A re-examination. Eur. Econ. Rev. 1998, 42, 1483–1491. [Google Scholar]
- Huang, J.B.; Liu, Q.; Cai, X.C.; Hao, Y.; Lei, H.Y. The effect of technological factors on China’s carbon intensity: New evidence from a panel threshold model. Energy Policy 2018, 115, 32–42. [Google Scholar] [CrossRef]
- Lai, M.Y.; Peng, S.J.; Bao, Q. Technology spillovers, absorptive capacity and economic growth. China Econ. Rev. 2006, 17, 300–320. [Google Scholar] [CrossRef]
- Huang, J.B.; Cai, X.C.; Huang, S.; Tian, S.; Lei, H.Y. Technological factors and total factor productivity in China: Evidence based on a panel threshold model. China Econ. Rev. 2018. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric Analysis, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Huang, J.B. Investigating the driving forces of China’s carbon intensity based on a dynamic spatial model. Environ. Sci. Pollut. Res. 2018, 25, 21833–21843. [Google Scholar] [CrossRef] [PubMed]
- Cohen, W.M.; Levinthal, D.A. Innovation and Learning: The Two Faces of R&D. Econ. J. 1989, 99, 569–596. [Google Scholar]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econ. 1999, 93, 345–368. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.E. Sample splitting and threshold estimation. Econometrica 2000, 68, 575–603. [Google Scholar] [CrossRef]
Variables | Definition (unit) | Max | Min | Mean | Std |
---|---|---|---|---|---|
lnEI | ln form of energy consumption divided by industrial added value of each industrial sub-sector (TCE/104 yuan) | 2.7660 | −2.7658 | 0.2780 | 1.1981 |
lnSRD | ln form of indigenous R&D capital stock: (108 yuan) | 7.9420 | −0.0758 | 4.6322 | 1.5966 |
lnSFDI | ln form of foreign innovation through FDI (108 yuan) | 5.5718 | −3.4882 | 2.4902 | 1.6736 |
lnSEX | ln form of foreign innovation through export (108 yuan) | 7.3127 | −2.2607 | 3.6848 | 1.8705 |
lnSIM | ln form of foreign innovation from import (108 yuan) | 7.0766 | −2.4728 | 3.5055 | 1.8692 |
lnPe/Pq | ln form of the ratio of price index of purchasing fuel and power to price index for industrial product (%) | 5.7004 | 4.1918 | 4.8070 | 0.2643 |
lnES | ln form the ratio of the assets in a sub-sector to the total assets in the overall industrial sectors (%) | 2.8956 | −2.1762 | 0.4738 | 1.1560 |
Variables | FE | FGLS | DK |
---|---|---|---|
Constant | 5.8635 *** | 5.6245 *** | 5.8635 *** |
(0.3398) a | (0.2554) | (0.3767) | |
lnSRD | −0.3417 ***b | −0.3694 *** | −0.3417 *** |
(0.0341) | (0.0267) | (0.0247) | |
lnSFDI | −0.1719 *** | −0.0775 *** | −0.1719 *** |
(0.0339) | (0.0257) | (0.0525) | |
lnSEX | 0.0325 | 0.1461 | 0.0325 |
(0.2075) | (0.2210) | (0.3253) | |
lnSIM | −0.0684 | −0.1893 | −0.0684 |
(0.2122) | (0.2153) | (0.3344) | |
lnPe/Pq | −0.7544 *** | −0.5516 *** | −0.7544 *** |
(0.0849) | (0.0633) | (0.0929) | |
lnES | 0.3638 *** | 0.2012 *** | 0.3638 *** |
(0.0633) | (0.0387) | (0.0586) | |
Hausman (p) | 42.8 *** | ||
Wald x2 | 1140.05 *** | ||
Heteroscedasticity test c | 4813.20 *** | ||
First-order autocorrelation test | 60.19 *** | ||
Within-R2 | 0.7906 | 0.7906 | |
Observations | 374 | 374 | 374 |
Threshold Variable | Independent Variable | Threshold Value | F | p-Value | 5% Critical Value |
---|---|---|---|---|---|
LFC b | Single | 0.8 | 21.0021 ***a | 0.001 | 4.0874 |
lnSFDI Double | 0.8, 31.57 | 10.8609 *** | 0.002 | 3.7766 | |
Triple | 0.8,31.57, 57.78 | 9.0507 *** | 0.004 | 4.0037 | |
Single | 0.8 | 14.3437 *** | 0.001 | 4.2870 | |
lnSEX Double | 0.8,31.57 | 20.7860 *** | 0.000 | 6.4628 | |
Trible | 0.8,31.57, 57.78 | 18.6475 *** | 0.000 | 3.9566 | |
Single | 0.8 | 15.0719 *** | 0.001 | 7.6137 | |
lnSIM Double | 22.45 | 21.3923 *** | 0.001 | 4.3234 | |
Trible | 0.8, 22.45,57.78 | 15.4517 *** | 0.000 | 3.9011 | |
Single | 0.35 | 17.47 *** | 0.001 | 3.7540 | |
lnSFDI Double | 0.35, 0.83 | 7.6038 *** | 0.007 | 4.1056 | |
Trible | 0.35, 0.83, 1.79 | 5.5733 *** | 0.009 | 1.6908 | |
R&D intensity | Single | 0.35 | 38.8761 *** | 0.000 | 3.9233 |
lnSEX Double | 0.35, 1.10 | 14.7158 *** | 0.002 | 4.330 | |
Trible | 0.35, 1.10,1.73 | 6.5309 ** | 0.010 | 3.672 | |
Single | 0.35 | 37.1671 *** | 0.000 | 4.0123 | |
lnSIM Double | 0.35, 1.10 | 13.9764 *** | 0.000 | 3.6338 | |
Trible | 0.35, 1.10,1.73 | 3.3071 * | 0.06 | 3.5261 |
Threshold Variable | Independent Variable | Threshold Value | Variables | Coefficient | Threshold Value | Variable | Coefficient | Threshold Value | Variable | Coefficients |
---|---|---|---|---|---|---|---|---|---|---|
LFC c | lnSFDI | γ < 0.8 | lnSFDI | −0.0462 | 0.8 < γ < 31.57 | lnSFDI | −0.1634 ***a | 31.57< γ < 57.78 b | lnSFDI | −0.2029 *** |
lnSEX | 0.0950 | lnSEX | 0.0950 | lnSEX | 0.0950 | |||||
lnSIM | −0.1270 | lnSIM | −0.1270 | lnSIM | −0.1270 | |||||
lnSEX | γ < 0.8 | lnSFDI | −0.1709 *** | 0.8 < γ < 31.57 | lnSFDI | −0.1709 *** | 31.57 < γ < 57.78 | lnSFDI | −0.1709 *** | |
lnSEX | 0.4777 ** | lnSEX | 0.2510 | lnSEX | 0.2115 | |||||
lnSIM | −0.2887 | lnSIM | −0.2887 | lnSIM | −0.2887 | |||||
lnSIM | γ < 0.8 | lnSFDI | −0.1725 *** | 0.8 < γ < 22.45 | lnSFDI | −0.1725 *** | 22.45 < γ < 57.78 | lnSFDI | −0.1725 *** | |
lnSEX | 0.2035 | lnSEX | 0.2035 | lnSEX | 0.2035 | |||||
lnSIM | −0.0335 | lnSIM | −0.2397 | lnSIM | −0.2798 | |||||
R&D intensity | lnSFDI | γ < 0.35 | lnSFDI | −0.2680 *** | 0.35 < γ < 0.83 | lnSFDI | −0.1838 *** | 0.83 < γ < 1.79 | lnSFDI | −0.1482 *** |
lnSEX | 0.0455 | lnSEX | 0.0455 | lnSEX | 0.0455 | |||||
lnSIM | 0.1061 | lnSIM | 0.1061 | lnSIM | 0.1061 | |||||
lnSEX | γ < 0.35 | lnSFDI | −0.1359 *** | 0.35 < γ < 1.1 | lnSFDI | −0.1359 *** | 1.1 < γ < 1.73 | lnSFDI | −0.1359 *** | |
lnSEX | −0.2488 | lnSEX | −0.1464 | lnSEX | -0.1153 | |||||
lnSIM | −0.0446 ** | lnSIM | −0.0446 ** | lnSIM | −0.0446 ** | |||||
lnSIM | γ<0.35 | lnSFDI | −0.1426 *** | 0.35 < γ < 1.1 | lnSFDI | −0.1426 *** | 1.1 < γ | lnSFDI | −0.1426 *** | |
lnSEX | −0.0643 | lnSEX | −0.0643 | lnSEX | −0.0643 | |||||
lnSIM | −0.0772 | lnSIM | 0.0271 | lnSIM | 0.0643 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Du, X.; Huang, J.; Huang, C. The Impact of Foreign and Indigenous Innovations on the Energy Intensity of China’s Industries. Sustainability 2019, 11, 1107. https://doi.org/10.3390/su11041107
Chen S, Du X, Huang J, Huang C. The Impact of Foreign and Indigenous Innovations on the Energy Intensity of China’s Industries. Sustainability. 2019; 11(4):1107. https://doi.org/10.3390/su11041107
Chicago/Turabian StyleChen, Shuxing, Xiangyang Du, Junbing Huang, and Cheng Huang. 2019. "The Impact of Foreign and Indigenous Innovations on the Energy Intensity of China’s Industries" Sustainability 11, no. 4: 1107. https://doi.org/10.3390/su11041107
APA StyleChen, S., Du, X., Huang, J., & Huang, C. (2019). The Impact of Foreign and Indigenous Innovations on the Energy Intensity of China’s Industries. Sustainability, 11(4), 1107. https://doi.org/10.3390/su11041107