The Influence of Digestate on the Static Strength of Spring Rapeseeds (Brassica napus var. arvensis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Determining the Compressive Force
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kowalczyk-Juśko, A.; Szymańska, M. Poferment Nawozem dla Rolnictwa; FnRRPR: Warszawa, Poland, 2015. [Google Scholar]
- Krajowy Ośrodek Wsparcia Rolnictwa-Rejestr wytwórców biogazu rolniczego z dnia 05.01.2018 r. Available online: http://www.kowr.gov.pl/uploads/pliki/oze/biogaz/7.%20Rejestr%20wytw%C3%B3rc%C3%B3w%20biogazu%20rolniczego%20z%20dnia%2005.01.2018%20r.pdf (accessed on 1 February 2019).
- Alburquerque, J.A.; Fuente, C.; Ferrer-Costa, A.; Carrasco, L.; Cegarra, J.; Abdad, M.; Bernal, M.P. Assessment of the Fertilizer Potential of Digestates from Farm and Agroindustrial Residues. Biomass Bioenergy 2012, 40, 181–189. [Google Scholar] [CrossRef]
- Kouřimská, L.; Poustková, I.; Babička, L. The use of digestate as a replacement of mineral fertilizers for vegetables growing. Sci. Agric. Bohem. 2012, 43, 121–126. [Google Scholar] [CrossRef]
- Odlare, M.; Pell, M.; Svensson, K. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Waste Manag. 2008, 28, 1246–1253. [Google Scholar] [CrossRef]
- Comparetti, A.; Febo, P.; Greco, C.; Orlando, S. Current state and future of biogas and digestate production. Bulg. J. Agric. Sci. 2013, 19, 1–14. [Google Scholar]
- Montemurro, F.; Vitti, C.; Diacono, M.; Canali, S.; Tittarelli, F.; Ferri, D. A three-year field anaerobic digestates application: Effects on fodder crops performance and soil properties. Fresenius Environ. Bull. 2010, 19, 2087–2093. [Google Scholar]
- Kwede, A.; Schulze, D.; Schwedes, J. Determination of the stress ratio in uniaxial compression tests—Part 1. Powder Handl. Process. 1994, 6, 61–65. [Google Scholar]
- Kwede, A.; Schulze, D.; Schwedes, J. Determination of the stress ratio in uniaxial compression tests—Part 2. Powder Handl. Process. 1994, 6, 199–203. [Google Scholar]
- Bojanowska, M. Changes in chemical composition of rapeseed meal during storage, influencing nutritional value of its protein and lipid fractions. J. Anim. Feed Sci. 2017, 26, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Izli, N.; Unal, H.; Sincik, M. Physical and mechanical properties of rapeseed at different moisture content. Int. Agrophys. 2009, 23, 137–145. [Google Scholar]
- Szwed, G.; Tys, J. Susceptibility of rapeseeds to dynamic depending on moisture and storage time. Zesz. Probl. Postępów Nauk Rol. 1995, 427, 87–90. [Google Scholar]
- Niewiadomski, H. Technologia Nasion Rzepaku; PWN: Warszawa, Poland, 1983. [Google Scholar]
- Brooker, D.B.; Baaker-Arkema, F.W.; Hall, C.W. Drying and Storage of Grains and Oilseeds; Van Nostrand Reinhold: New York, NY, USA, 1992. [Google Scholar]
- Stępniewski, A.; Szot, B.; Sosnowski, S. Uszkodzenia Nasion Rzepaku w Pozbiorowym Procesie Obróbki. Acta Agrophys. 2003, 2, 195–203. [Google Scholar]
- Sukumaran, C.R.; Sing, B.P.N. Compression of a bed of rapeseeds: The oil-point. J. Agric. Eng. Res. 1989, 42, 77–84. [Google Scholar] [CrossRef]
- Unal, H.; Sincik, M.; Izli, N. Comparison of some engineering properties of rapeseed cultivars. Ind. Crop. Prod. 2009, 30, 131–136. [Google Scholar] [CrossRef]
- Calisir, S.; Marakoglu, T.; Ogut, H.; Ozturk, O. Physical properties of rapeseed (Brassica napus oleifera L.). J. Food Eng. 2005, 69, 61–66. [Google Scholar] [CrossRef]
- Molenda, M.; Horabik, J. Mechanical Properties of Granular Agro-Materials and Food Powders for Industrial Practice: Characterization of Mechanical Properties of Particulate Solids for Storage and Handling—Part 1; Institute of Agrophysics Polish Academy of Sciences: Lublin, Poland, 2005. [Google Scholar]
- Rusinek, R.; Molenda, M.; Sykut, J.; Pits, N.; Tys, J. Uniaxial compression of rapeseed using apparatus with cuboid chamber. Acta Agrophys. 2007, 10, 677–685. [Google Scholar]
- Tys, J.; Szwed, G. Rapeseed storage and their mechanical strength. Int. Agrophys. 2000, 14, 255–257. [Google Scholar]
- Laskowski, J.; Łysiak, G.; Skonecki, S. Mechanical Properties of Granular Agro-Materials and Food Powders for Industrial Practice: Material Properties in Grinding and Agglomeration—Part 2; Institute of Agrophysics Polish Academy of Sciences: Lublin, Poland, 2005. [Google Scholar]
- Moya, M.; Ayuga, F.; Guaita, M.; Aguado, P. Mechanical properties of granular agricultural materials. Trans. ASAE 2002, 45, 1569–1577. [Google Scholar] [CrossRef]
- Yang, S.H.; Hsiau, S.S. The simulation and experimental study of granular materials discharged from a silo with the placement of inserts. Powder Technol. 2001, 120, 244–255. [Google Scholar] [CrossRef]
- Herak, D.; Kabutey, A.; Divisova, M. Analysis of tangential curve equation describing mechanical behaviour of rapeseeds (Brassica napus L.) mixture under compression loading. Res. Agric. Eng. 2013, 59, 9–15. [Google Scholar] [CrossRef]
- Tańska, M.; Konopka, I.; Rotkiewicz, D. Relationships of rapeseed strength properties to seed size, colour and coat fibre composition. J. Sci. Food Agric. 2008, 88, 2186–2193. [Google Scholar] [CrossRef]
- Kuotsu, K.; Das, A.; Lal, R.; Munda, G.C.; Ghosh, P.K.; Ngachan, S.V. Land forming and tillage effects on soil properties and productivity of rainfed groundnut (Arachis hypogaea L.)–rapeseed (Brassica campestris L.) cropping system in northeastern India. SoilTillage Res. 2014, 142, 15–24. [Google Scholar] [CrossRef]
- Obchodzki, P.; Żebrowski, J.; Piotrowska, A. Studies on seed mechanical properties of recent Polish rapeseed cultivars. In Proceedings of the 11th International Rapeseed Congress, Copenhagen, Denmark, 6–10 July 2003; Volume 2, pp. 681–684. [Google Scholar]
- Tańska, M.; Rotkiewicz, D. Technological value of rapeseed seed fractions after one year storage. Rośliny Oleiste (Oilseed Crop.) 2003, 24, 709–716. [Google Scholar]
- Tys, J.; Sobczuk, H.; Rybacki, R. Influence of drying temperature on mechanical properties for seeds of oilseed rape. Rośliny Oleiste (Oilseed Crop.) 2002, 23, 417–426. [Google Scholar]
- Szot, B.; Kutzbach, H.D. Rapeseed damage as influenced by the dynamic load. Int. Agrophys. 1992, 6, 103–115. [Google Scholar]
- Herak, D.; Sleger, V.; Mizera, C.; Sedlacek, A. Mechanical behavior of bulk rapeseeds under quasi dynamic compression loading. Eng. Rural Dev. Jelgava 2015, 20, 28–32. [Google Scholar]
- Kabutey, A.; Herak, D.; Chotebrosky, R.; Dajbach, O.; Sigalingging, R.; Akabgbe, O.L. Compression behaviour of bulk rapeseed: Effects of heat treatment, force, and speed. Int. J. Food Prop. 2017, 20, 654–662. [Google Scholar] [CrossRef]
- Mizera, C.; Herak, D.; Hrabe, P.; Kabutey, A. Extraction of oil from rapeseed using duo screw press. Agron. Res. 2018, 16, 1118–1123. [Google Scholar] [CrossRef]
- Szwed, G.; Tys, J.; Strobel, W. Zmiana właściwości mechanicznych nasion rzepaku wywołana warunkami oraz czasem przechowywania. Inżynieria Rolnicza 2000, 6, 289–294. [Google Scholar]
- Figiel, A.; Stępień, B.; Janowicz, L. Wybrane właściwości wytrzymałościowe nasion rzepaku. Inżynieria Rolnicza 2006, 2, 285–292. [Google Scholar]
- KQ/PB-17-76-77: 2012. ver. 04 from 02.07.12. Gleby mineralne, organiczne, ogrodnicze. Zawartość metali Cu, Mn, Zn, Fe, Cd, Pb, Ni, Cr. Polskie Centrum Akredytacji. Zakres akredytacji laboratorium badawczego Nr AB 1186. Available online: www.pca.gov.pl/akredytowane-podmioty/akredytacje-aktywne/laboratoria-badawcze/AB%20733,podmiot.html (accessed on 1 March 2015).
- PN-R-04024: 1997. Analiza chemiczno-rolnicza gleby—Oznaczanie zawartości przyswajalnego fosforu, potasu, magnezu i manganu w glebach organicznych. Available online: http://sklep.pkn.pl/pn-r-04024-1997p.html (accessed on 1 March 2015).
- PN-ISO 10390: 1997. Jakość gleby—Oznaczanie pH. Available online: http://sklep.pkn.pl/pn-iso-10390-1997p.html (accessed on 1 March 2015).
- Lamb, K.E.; Johnson, B.L. Seed size and seeding depth influence on canola emergence and performance in the Northern Great Plants. Agron. J. 2004, 96, 454–461. [Google Scholar] [CrossRef]
- Mińkowski, K. Influence of variety and size of winter rapeseed on content and chemical composition of hull and embryo. Rośliny Oleiste (Oilseed Crop.) 2000, 21, 156–166. [Google Scholar]
- Szwed, G.; Tys, J. Resistance of rape seeds to the impact of dynamic forces. Zesz. Probl. Postępów Nauk Rol. 1995, 427, 83–86. [Google Scholar]
Month | Year 2015 | Year 2016 | ||||
---|---|---|---|---|---|---|
Pressure (hPa) | Temperature (°C) | Rainfall (mm H2O) | Pressure (hPa) | Temperature (°C) | Rainfall (mm H2O) | |
March | 991.41 | 4.70 | 1.31 | 985.26 | 3.46 | 2.04 |
April | 986.86 | 7.75 | 1.20 | 983.69 | 8.91 | 1.20 |
May | 986.75 | 12.37 | 2.20 | 985.82 | 14.44 | 1.09 |
June | 989.60 | 26.63 | 0.63 | 986.30 | 18.34 | 1.78 |
July | 986.81 | 21.60 | 1.42 | 987.12 | 18.91 | 4.49 |
August | 990.38 | 25.15 | 0.30 | 990.73 | 18.07 | 1.52 |
September | 989.19 | 14.63 | 3.02 | 990.73 | 15.15 | 0.47 |
Element | Unit | Content |
---|---|---|
Nitrogen | (g·L−1) | 0.119 |
Phosphorus | (g·L−1) | 0.12 |
Potassium | (g·L−1) | 5.37 |
Calcium | (g·L−1) | 0.28 |
Magnesium | (g·L−1) | 0.07 |
Cadmium | (mg·L−1) | <0.43 |
Lead | (mg·L−1) | <0.43 |
Nickel | (mg·L−1) | <0.43 |
Chromium | (mg·L−1) | <0.43 |
Cooper | (mg·L−1) | 0.43 |
Zink | (mg·L−1) | 2.00 |
Manganese | (mg·L−1) | 2.26 |
Iron | (mg·L−1) | 70.82 |
Experimental Variant | Kind of Field | Acidity | Liming Needs | Content of Bioavailable Ingredients (mg 100 g−1) | |||
---|---|---|---|---|---|---|---|
pH in KCl | Reaction | P2O3 | K2O | Mg | |||
Before sieve | |||||||
Digestate | Control | 6.97 | neutral | redundant | 23.8 a | 16.3 a | 10.3 a |
Experimental plot | 7.22 | alkaline | redundant | 42.17 b | 53.17 b | 13.75 b | |
NPK | Control | 7.06 | alkaline | redundant | 21.1 c | 15.7 a | 9.5 a |
Experimental plot | 5.51 | acidic | necessary | 23.57 a | 20.55 c | 14.05 b | |
After harvest | |||||||
Digestate | Control | 6,99 | neutral | redundant | 25.1 d | 20.04 c | 9.6 a |
Experimental plot | 7.52 | alkaline | redundant | 64.5 e | 60.5 e | 21.8 c | |
NPK | Control | 7.06 | alkaline | redundant | 21.6 c | 16.7 a | 9.55 a |
Experimental plot | 5.37 | acidic | necessary | 26.5 d | 23.3 d | 17.2 b |
Variety | Kind of Cultivar | Mean Value (N) | Standard Deviation (N) | Minimum Value (N) | Maximum Value (N) | CV (%) | Mean Diameter of Seeds (mm) |
---|---|---|---|---|---|---|---|
Bios | Control | 13.34 | 6.05 | 3.99 | 25.49 | 45.35 | 1.95 ± 0.149 |
NPK | 14.75 | 5.46 | 6.31 | 26.71 | 37.02 | 1.89 ± 0.126 | |
Digestate | 16.40 | 5.14 | 6.14 | 29.81 | 31.34 | 1.89 ± 0.144 | |
Feliks | Control | 12.95 | 4.95 | 3.89 | 22.23 | 38.22 | 1.91 ± 0.151 |
NPK | 16.25 | 5.12 | 3.86 | 26.45 | 31.51 | 1.85 ± 0.181 | |
Digestate | 18.53 | 5.11 | 5.63 | 27.72 | 27.58 | 1.90 ± 0.158 | |
Markus | Control | 12.50 | 5.67 | 3.19 | 24.40 | 45.36 | 1.89 ± 0.152 |
NPK | 13.27 | 6.06 | 4.34 | 24.77 | 45.67 | 1.81 ± 0.158 | |
Digestate | 13.62 | 4.20 | 8.96 | 25.49 | 30.84 | 1.81 ± 0.145 |
Variety | Parameter | Code | Valid N | Sum of Ranks | Mean of Rank | p |
---|---|---|---|---|---|---|
Bios | Compressive force (N) | Control | 100 | 1586.000 | 52.866 | 0.101 |
NPK | 100 | 1356.000 | 45.200 | |||
Digestate | 100 | 1153.000 | 38.433 | |||
Mass (mg) | Control | 100 | 1311.500 | 43.716 | 0.881 | |
NPK | 100 | 1372.000 | 45.733 | |||
Digestate | 100 | 1411.500 | 47.050 | |||
Feliks | Compressive force (N) | Control | 100 | 1737.500 | 57.916 | 0.001 |
NPK | 100 | 1407.500 | 46.916 | |||
Digestate | 100 | 950.000 | 31.666 | |||
Mass (mg) | Control | 100 | 1561.000 | 52.033 | 0.181 | |
NPK | 100 | 1195.000 | 39.833 | |||
Digestate | 100 | 1339.000 | 44.633 | |||
Markus | Compressive force (N) | Control | 100 | 1260.000 | 42.000 | 0.638 |
NPK | 100 | 1386.500 | 46.216 | |||
Digestate | 100 | 1448.500 | 48.283 | |||
Mass (mg) | Control | 100 | 1468.500 | 48.950 | 0.360 | |
NPK | 100 | 1426.000 | 47.533 | |||
Digestate | 100 | 1200.500 | 40.016 |
Group | Interdependence | Spearman’s Rank Correlation Coefficient (Rs) | Level of Significance P |
---|---|---|---|
Bios | CF/CONTROL and M/CONTROL | 0.158 | 0.403 |
CF/CONTROL and M/NPK | 0.009 | 0.963 | |
CF/CONTROL and M/DIGESTATE | −0.123 | 0.518 | |
CF/NPK and M/CONTROL | 0.327 | 0.078 | |
CF/NPK and M/NPK | 0.448 | 0.014 | |
CF/NPK and M/DIGESTATE | 0.175 | 0.355 | |
CF/DIGESTATE and M/CONTROL | 0.184 | 0.331 | |
CF/DIGESTATE and M/NPK | 0.140 | 0.463 | |
CF/DIGESTATE and M/DIGESTATE | 0.621 | 0.001 | |
Feliks | CF/CONTROL and M/CONTROL | 0.377 | 0.040 |
CF/CONTROL and M/NPK | 0.197 | 0.298 | |
CF/CONTROL and M/DIGESTATE | −0.303 | 0.103 | |
CF/NPK and M/CONTROL | −0.270 | 0.149 | |
CF/NPK and M/NPK | 0.370 | 0.044 | |
CF/NPK and M/DIGESTATE | −0.265 | 0.156 | |
CF/DIGESTATE and M/CONTROL | −0.012 | 0.948 | |
CF/DIGESTATE and M/NPK | 0.119 | 0.529 | |
CF/DIGESTATE and M/DIGESTATE | 0.379 | 0.038 | |
Markus | CF/CONTROL and M/CONTROL | 0.069 | 0.717 |
CF/CONTROL and M/NPK | 0.221 | 0.239 | |
CF/CONTROL and M/DIGESTATE | 0.023 | 0.902 | |
CF/NPK and M/CONTROL | −0.178 | 0.346 | |
CF/NPK and M/NPK | 0.103 | 0.588 | |
CF/NPK and M/DIGESTATE | −0.279 | 0.135 | |
CF/DIGESTATE and M/CONTROL | 0.208 | 0.270 | |
CF/DIGESTATE and M/NPK | 0.040 | 0.833 | |
CF/DIGESTATE and M/DIGESTATE | 0.293 | 0.115 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przywara, A.; Kachel, M.; Koszel, M.; Leszczyński, N.; Kraszkiewicz, A.; Anifantis, A.S. The Influence of Digestate on the Static Strength of Spring Rapeseeds (Brassica napus var. arvensis). Sustainability 2019, 11, 2133. https://doi.org/10.3390/su11072133
Przywara A, Kachel M, Koszel M, Leszczyński N, Kraszkiewicz A, Anifantis AS. The Influence of Digestate on the Static Strength of Spring Rapeseeds (Brassica napus var. arvensis). Sustainability. 2019; 11(7):2133. https://doi.org/10.3390/su11072133
Chicago/Turabian StylePrzywara, Artur, Magdalena Kachel, Milan Koszel, Norbert Leszczyński, Artur Kraszkiewicz, and Alexandros Sotirios Anifantis. 2019. "The Influence of Digestate on the Static Strength of Spring Rapeseeds (Brassica napus var. arvensis)" Sustainability 11, no. 7: 2133. https://doi.org/10.3390/su11072133
APA StylePrzywara, A., Kachel, M., Koszel, M., Leszczyński, N., Kraszkiewicz, A., & Anifantis, A. S. (2019). The Influence of Digestate on the Static Strength of Spring Rapeseeds (Brassica napus var. arvensis). Sustainability, 11(7), 2133. https://doi.org/10.3390/su11072133