The Sustainability Conundrum of Fishmeal Substitution by Plant Ingredients in Shrimp Feeds
Abstract
:1. Introduction
2. Aquafeed Interactions with Marine and Terrestrial Resources
3. Materials and Methods
3.1. Feed Formulations and Scenarios
3.2. Resource Demand Values
3.3. Model Simulations and Runs
4. Results
4.1. Freshwater Demand
4.2. Land Demand
4.3. Nitrogen Demand
4.4. Phosphorus Demand
4.5. Fish Demand
5. Discussion
5.1. The Sustainability Conundrum of Fishmeal Substitution
5.2. Nutritional Limitations of Plant Ingredients in Aquafeeds
5.3. Limitations of the Model
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. World Aquaculture Performance Indicators (WAPI)—Fish Consumption Module (WAPI-FISHCSP v.2018.1). In FAO Fisheries and Aquaculture Department. Rome. Updated 2018. 2018. Available online: www.fao.org/fishery/statistics/software/wapi/en (accessed on 23 January 2019).
- FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals. Rome. Licence: CC BY-NC-SA 3.0 IGO. 2018. Available online: http://www.fao.org/3/i9540en/I9540EN.pdf (accessed on 21 July 2018).
- World Bank. Fish to 2030: Prospects for Fisheries and Aquaculture; World Bank Report Number 83177-GLB; The World Bank: Washington, DC, USA, 2013; Available online: http://www.fao.org/docrep/019/i3640e/i3640e.pdf (accessed on 26 July 2018).
- Anderson, J.L.; Valderrama, D.; Jory, D. Shrimp Production Review. Global Outlook for Aquaculture Leadership (GOAL): Dublin, Ireland, 2017. Available online: https://www.aquaculturealliance.org/wp-content/uploads/2018/01/Global-Shrimp-Production-Data-Analysis-Dr.-James-Anderson-GOAL-2017.pdf (accessed on 1 February 2018).
- Tacon, A.G.J.; Metian, M. Feed Matters: Satisfying the Feed Demand of Aquaculture. Rev. Fish. Sci. Aquac. 2015, 23, 1–10. [Google Scholar] [CrossRef]
- Naylor, R.L.; Hardy, R.W.; Bureau, D.P.; Chiu, A.; Elliott, M.; Farrell, A.P.; Forster, I.; Gatlin, D.M.; Goldburg, R.J.; Hua, K.; et al. Feeding aquaculture in an era of finite resources. Proc. Natl Acad. Sci. USA 2009, 106, 15103–15110. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, C.J.; Jackson, A.J. Global fishmeal and fish-oil supply: Inputs, outputs and markets. J. Fish Biol. 2013, 83, 1046–1066. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, N.; Klinger, D.H.; Sims, N.A.; Yoshioka, J.N.; Kittinger, J.N. Nutritional attributes, Substitutability, Scalability, and Environmental Intensity of an Illustrative Subset of Current and Future Protein Sources for Aquaculture Feeds: Joint Consideration of Potential Synergies and Trade-offs. Environ. Sci. Technol. 2018, 52, 5532–5544. [Google Scholar] [CrossRef] [PubMed]
- Froehlich, H.E.; Jacobsen, N.S.; Essington, T.E.; Clavelle, T.; Halpern, B.S. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Sustain. 2018, 1, 298–303. [Google Scholar] [CrossRef]
- Gatlin, D.M.; Barrows, F.T.; Brown, P.; Dabrowski, K.; Gaylord, T.G.; Hardy, R.W.; Herman, E.; Hu, G.; Krogdahl, Å.; Nelson, R.; Overturf, K. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquac. Res. 2007, 38, 551–579. [Google Scholar] [CrossRef]
- Salin, K.R.; Arun, V.V.; Nair, C.M.; Tidwell, J.H. Sustainable Aquafeed, Part of Sustainable Aquaculture in Applied Environmental Science and Engineering for a Sustainable Future; Springer: Cham, Switzerland, 2018; pp. 123–151. [Google Scholar]
- Huntington, T.C.; Hasan, M.R. Fish as Feed Inputs for Aquaculture—Practices, Sustainability and Implications: A Global Synthesis. FAO Fisheries and Aquaculture Technical Paper. No. 518, Rome. 2009, pp. 1–61. Available online: http://www.fao.org/docrep/012/i1140e/i1140e01.pdf (accessed on 2 March 2018).
- Boissy, J.; Aubin, J.; Drissi, A.; van der Werf, H.M.; Bell, G.J.; Kaushik, S.J. Environmental impacts of plant-based salmonid diets at feed and farm scales. Aquaculture 2011, 321, 61–70. [Google Scholar] [CrossRef]
- Fry, J.P.; Love, D.C.; MacDonald, G.K.; West, P.C.; Engstrom, P.M.; Nachman, K.E.; Lawrence, R.S. Environmental health impacts of feeding crops to farmed fish. Environ. Int. 2016, 91, 201–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pahlow, M.; van Oel, P.R.; Mekonnen, M.M.; Hoekstra, A.Y. Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production. Sci. Total Environ. 2015, 536, 847–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troell, M.; Naylor, R.L.; Metian, M.; Beveridge, M.; Tyedmers, P.H.; Folke, C.; Arrow, K.J.; Barrett, S.; Crépin, A.S.; Ehrlich, P.R.; Gren, Å. Does aquaculture add resilience to the global food system? Proc. Natl Acad. Sci. USA 2014, 111, 13257–13263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchard, J.L.; Watson, R.A.; Fulton, E.A.; Cottrell, R.S.; Nash, K.L.; Bryndum-Buchholz, A.; Büchner, M.; Carozza, D.A.; Cheung, W.W.; Elliott, J.; et al. Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol. 2017, 1, 1240–1249. [Google Scholar] [CrossRef] [PubMed]
- Spiertz, J.H.J.; Ewert, F. Crop production and resource use to meet the growing demand for food, feed and fuel: Opportunities and constraints. NJAS Wagen. J. Life Sci. 2009, 56, 281–300. [Google Scholar] [CrossRef]
- Runge, C.F.; Senauer, B. How biofuels could starve the poor. Foreign Aff. 2007, 86, 41–53. [Google Scholar]
- FAO. Sustainable diets and biodiversity. Directions and solutions for policy, research and action. In Proceedings of the International Scientific Symposium Biodiversity and Sustainable Diets United Against Hunger, FAO Headquarters, Rome, Italy, 3–5 November 2010. [Google Scholar]
- OECD/FAO. OECD-FAO Agricultural Outlook 2016–2025; OECD Publishing: Paris, France, 2016. [Google Scholar] [CrossRef]
- Little, D.C.; Young, J.A.; Zhang, W.; Newton, R.W.; Al Mamun, A.; Murray, F.J. Sustainable intensification of aquaculture value chains between Asia and Europe: A framework for understanding impact and challenges. Aquaculture 2018, 493, 338–354. [Google Scholar] [CrossRef]
- Ytrestøyl, T.; Aas, T.S.; Åsgård, T. Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture 2015, 448, 365–374. [Google Scholar] [CrossRef]
- Froehlich, H.E.; Runge, C.A.; Gentry, R.R.; Gaines, S.D.; Halpern, B.S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Nat. Acad. Sci. USA 2018, 115, 5295–5300. [Google Scholar] [CrossRef] [PubMed]
- Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Chang. 2017, 42, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Zabel, F.; Putzenlechner, B.; Mauser, W. Global Agricultural Land Resources—A High Resolution Suitability Evaluation and Its Perspectives until 2100 under Climate Change Conditions. PLoS ONE 2014, 9, e0107522. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.P.; Thornton, P.K.; Franceschini, G.; Kruska, R.L.; Chiozza, F.; Notenbaert, A.; Cecchi, G.; Herrero, M.; Epprecht, M.; Fritz, S.; et al. Global Livestock Production Systems; Rome, Food and Agriculture Organization of the United Nations (FAO) and International Livestock Research Institute (ILRI): Rome, Italy, 2011; p. 152. Available online: http://www.fao.org/docrep/014/i2414e/i2414e.pdf (accessed on 2 September 2018).
- Godfray, H.C.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Nisbett, N.; Pretty, J.; Robinson, S.; Toulmin, C.; Whiteley, R. The future of the global food system. Philos. Trans. R. Soc. B 2010, 365, 2769–2777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galloway, J.N.; Burke, M.; Bradford, G.E.; Naylor, R.; Falcon, W.; Chapagain, A.K.; Gaskell, J.C.; McCullough, E.; Mooney, H.A.; Oleson, K.L.; et al. International trade in meat: The tip of the pork chop. Ambio 2007, 36, 622–629. [Google Scholar] [CrossRef]
- Roy, E.D.; Richards, P.D.; Martinelli, L.A.; Della Coletta, L.; Lins, S.R.; Vazquez, F.F.; Willig, E.; Spera, S.A.; VanWey, L.K.; Porder, S. The phosphorus cost of agricultural intensification in the tropics. Nat. Plants 2016, 2, 16043. [Google Scholar] [CrossRef] [PubMed]
- Kraan, S. Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig. Adapt. Strateg. Glob. Chang. 2010, 18, 27–46. [Google Scholar] [CrossRef]
- Diaz, R.J.; Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef] [PubMed]
- Hardin, G. The Tragedy of the Commons. Science 1968, 162, 1243–1248. [Google Scholar] [PubMed]
- Krause, G.; Brugere, C.; Diedrich, A.; Ebeling, M.W.; Ferse, S.C.; Mikkelsen, E.; Agúndez, J.A.; Stead, S.M.; Stybel, N.; Troell, M. A revolution without people? Closing the people–policy gap in aquaculture development. Aquaculture 2015, 447, 44–55. [Google Scholar] [CrossRef]
- Rahman, R.A.; Ang, C.L.; Ramli, R. Investigating feed mix problem approaches: An overview and potential solution. World Acad. Scie. Eng. Technol. 2010, 46, 466–474. [Google Scholar]
- NRC. Nutrient Requirements of Fish and Shrimp; National Academies Press: Washington, DC, USA, 2011; pp. 376, XVI. [Google Scholar]
- International Hammersmith Commodity Index Database. 2018. Available online: https://hammersmithltd.blogspot.com/ (accessed on 1 September 2018).
- Chowdhury, M.A.; Talib, A.; Yahya, K. A review on marine shrimp aquaculture production trend and sustainability in Malaysia and the world perspective. In Proceedings of the Conference: International Fisheries Symposium, Can Tho University, Can Tho, Vietnam, 6–8 December 2012. [Google Scholar]
- Davis, A.; Roy, L.; Sookying, D. Improving the Cost Effectiveness of Shrimp Feeds. In Proceedings of the Avances en Nutrición Acuícola IX. IX Simposio Internacional de Nutrición Acuícola, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico, 24–27 November 2008; pp. 271–280. [Google Scholar]
- Boyd, C.E.; Lim, C.; Queiroz, J.; Salie, K.; De Wet, L.; McNevin, A. Best Management Practices for Responsible Aquaculture. 2014. Available online: https://www.researchgate.net/publication/255574369_Best_Management_Practices_for_Responsible_Aquaculture?_esc=publicationCoverPdf&el=1_x_2&enrichId=rgreq-e108bf408c13e66025e032d719844149-XXX&enrichSource=Y292ZXJQYWdlOzI1NTU3NDM2OTtBUzoxNjAyMTkxNTM4MzgwODFAMTQxNTIxMDYzMTkwMw%3D%3D (accessed on 15 May 2018).
- FAO. Cultured Aquatic Species Information Programme. Penaeus Vannamei (Boone 1931). Available online: http://www.fao.org/fishery/culturedspecies/Penaeus_vannamei/en (accessed on 1 February 2018).
- Tacon, A.G.J. Thematic Review of Feeds and Feed Management Practices in Shrimp Aquaculture. Report Prepared under the World Bank, NACA, WWF and FAO Consortium Program on Shrimp Farming and the Environment. Work in Progress for Public Discussion. Published by the Consortium. 2002. 69p. Available online: https://pdfs.semanticscholar.org/b530/841bdabb9cdad8dbd1a4c15bb9f437be151e.pdf (accessed on 10 January 2019).
- Tantikikki, C. Feed palatability and the alternative protein sources in shrimp feed. Songklanakarin J. Sci. Technol. 2014, 36, 51–55. [Google Scholar]
- Rana, K.J.; Siriwardena, S.; Hasan, M.R. Impact of Rising Feed Ingredient Prices on Aquafeeds and Aquaculture Production. FAO Fisheries and Aquaculture Technical Paper. No. 541. Rome, Italy, 2009. p. 63. Available online: http://www.fao.org/docrep/012/i1143e/i1143e.pdf (accessed on 26 May 2018).
- Hasan, M.R.; New, M.B. On-Farm Feeding and Feed Management in Aquaculture. FAO Fisheries and Aquaculture Technical Paper No. 583. Rome, Italy, 2013. p. 67. Available online: http://www.fao.org/docrep/019/i3481e/i3481e.pdf (accessed on 3 May 2018).
- Chatvijitkul, S.; Boyd, C.E.; Davis, D.A.; Mcnevin, A.A. Embodied Resources in Fish and Shrimp Feeds. J. World Aquac. Soc. 2017, 48, 7–19. [Google Scholar] [CrossRef]
- DePeters, E.J.; Bath, D.L. Canola Meal versus Cottonseed Meal as the Protein Supplement in Dairy Diets. J. Dairy Sci. 1986, 69, 148–154. [Google Scholar] [CrossRef]
- Allan, G.L.; Rowland, S.J.; Mifsud, C.; Glendenning, D.; Stone, D.A.; Ford, A. Replacement of fish meal in diets for Australian silver perch, bidyanus bidyanus. V. Least-cost formulation of practical diets. Aquaculture 2000, 186, 327–340. [Google Scholar] [CrossRef]
- Moretti, C.; Moro, A.; Edwards, R.; Rocco, M.V.; Colombo, E. Analysis of standard and innovative methods for allocating upstream and refinery GHG emissions to oil products. Appl. Energy 2017, 206, 372–381. [Google Scholar] [CrossRef]
- Cherubini, E.; Franco, D.; Zanghelini, G.M.; Soares, S.R. Uncertainty in LCA case study due to allocation approaches and life cycle impact assessment methods. Int. J. Life Cycle Assess. 2018, 23, 2055–2070. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products; Main Report; Value of Water Research Report Series No. 47; UNESCO-IHE: Delft, The Netherlands, 2010; Volume 1. [Google Scholar]
- FAO. Consumption of Fuel, Electric Power and Water. Available online: http://www.fao.org/docrep/003/X6899e/X6899E08.htm (accessed on 1 July 2018).
- Factfish. Data. Data Based on FAOSTAT. Available online: www.factfish.com (accessed on 1 February 2018).
- Rosas, F. Centre for Agricultural and Rural Development (CARD). Iowa State University. Ames, Iowa 50011-1070. Fertilizer use by crop at the country level (1990–2010). CARD Working Papers 12-WP 535, November 2012. (Appendix to Fertilizer Use by Crop at the Country Level: 1990–2010). Available online: https://www.card.iastate.edu/products/publications/synopsis/?p=1178 (accessed on 5 February 2018).
- FAO Crop Information: Pea. 2018. Available online: http://www.fao.org/land-water/databases-and-software/crop-information/pea/en/ (accessed on 10 April 2018).
- FAO Crop Information: Soybean. 2018. Available online: http://www.fao.org/land-water/databases-and-software/crop-information/soybean/en/ (accessed on 10 April 2018).
- Rosas, F. Centre for Agricultural and Rural Development (CARD). Iowa State University. Ames, Iowa 50011-1070. World Fertilizer Model—The World NPK Model. CARD Working Papers 11-WP 520, April 2011. Available online: https://lib.dr.iastate.edu/cgi/viewcontent.cgi?referer=https://www.google.co.uk/&httpsredir=1&article=1539&context=card_workingpapers (accessed on 1 April 2018).
- FAO Crop Information: Maize. 2018. Available online: http://www.fao.org/land-water/databases-and-software/crop-information/maize/en/ (accessed on 10 April 2018).
- FAO Crop Information: Wheat. 2018. Available online: http://www.fao.org/land-water/databases-and-software/crop-information/wheat/en/ (accessed on 10 April 2018).
- Jackson, A.J. Fish in-fish out, ratios explained. Aquac. Eur. 2009, 34, 5–10. [Google Scholar]
- Kaushik, S.; Troell, M. Taking the Fish-in Fish-out Ratio a Step Further. Aquac. Eur. 2010, 35, 15–17. [Google Scholar]
- Glencross, B.D. Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev. Aquac. 2009, 1, 71–124. [Google Scholar] [CrossRef] [Green Version]
- Hardy, R.W.; Gatlin, D. Nutritional strategies to reduce nutrient losses in intensive aquaculture. In Proceedings of the Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola, Cancún, Quintana Roo, Mexico, 3–6 de September 2002. [Google Scholar]
- Dalsgaard, J.; Knudsen, K.E.B.; Verlhac, V.; Ekmann, K.S.; Pedersen, P.B. Supplementing enzymes to extruded, soybean-based diet improves breakdown of non-starch polysaccharides in rainbow trout (Oncorhynchus mykiss). Aquac. Nutr. 2016, 22, 419–426. [Google Scholar] [CrossRef]
- Castillo, S.; Gatlin, D.M. Dietary supplementation of exogenous carbohydrase enzymes in fish nutrition: A review. Aquaculture 2015, 435, 286–292. [Google Scholar] [CrossRef]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.S.; De Boeck, G.; Becker, K. Phytate and phytase in fish nutrition. J. Anim. Physiol. Anim. Nutr. 2012, 96, 335–364. [Google Scholar] [CrossRef] [PubMed]
- Song, H.-L.; Liu, Y.; Dong, X.-H.; Chowdhury, K.M.A. Dietary Protease Improves Immune Responses in Pacific White Shrimp, Litopenaeus Vannamei. International Aquafeed May-June 2015. Available online: https://www.slideshare.net/IntAquafeed/iaf1503-f7 (accessed on 1 June 2018).
- Pauly, D.; Zeller, D. Comments on FAO’s State of World Fisheries and Aquaculture (SOFIA 2016). Mar. Policy 2017, 77, 176–181. [Google Scholar] [CrossRef]
- Stevens, J.R.; Newton, R.W.; Tlusty, M.; Little, D.C. The rise of aquaculture by-products: Increasing food production, value, and sustainability through strategic utilisation. Mar. Policy 2018, 90, 115–124. [Google Scholar] [CrossRef]
- Glencross, B.; Irvin, S.; Arnold, S.; Blyth, D.; Bourne, N.; Preston, N. Effective use of microbial biomass products to facilitate the complete replacement of fishery resources in diets for the black tiger shrimp Penaeus monodon. Aquaculture 2014, 431, 12–19. [Google Scholar] [CrossRef]
- Stamer, A. Insect proteins—A new source for animal feed. The use of insect larvae to recycle food waste in high-quality protein for livestock and aquaculture feeds is held back largely owing to regulatory hurdles. EMBO Rep. 2015, 16, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Wan, A.H.L.; Davies, S.J.; Soler-Villa, A.; Fitzgerald, R.; Johnson, M.P. Macroalgae as a sustainable aquafeed ingredient. Rev. Aquac. 2018, 1–35. [Google Scholar] [CrossRef]
- Romano, N. Aquamimicry: A Revolutionary Concept for Shrimp Farming. Global Aquaculture Advocate 2017. Available online: https://www.aquaculturealliance.org/advocate/aquamimicry-a-revolutionary-concept-for-shrimp-farming/ (accessed on 5 August 2018).
- Poli, M.A.; Legarda, E.C.; de Lorenzo, M.A.; Martins, M.A.; do Nascimento Vieira, F. Pacific white shrimp and Nile tilapia integrated in a biofloc system under different fish-stocking densities. Aquaculture 2019, 498, 83–89. [Google Scholar] [CrossRef]
- Valenti, W.C.; Kimpara, J.M.; de Lima Preto, B.; Moraes-Valenti, P. Indicators of sustainability to assess aquaculture systems. Ecol. Indic. 2018, 88, 402–413. [Google Scholar] [CrossRef]
Price (€/MT) * | Fishmeal (%) | Fish oil (%) | Wheat Feed (%) | Soybean Meal Concentrate (%) | Rapeseed Meal Concentrate (%) | Pea Protein Concentrate (%) | Corn Gluten Meal ** (%) | Corn Oil ** (%) | Vitamin and Mineral Premix (%) | |
---|---|---|---|---|---|---|---|---|---|---|
Scenario 1: Fishmeal substitution by common plant ingredients (common-plant scenario) | ||||||||||
L. vannamei (LV1) | 754 | 20.0 | 2.0 | 72.8 | 0.0 | - | - | 2.0 | 0.7 | 1.0 |
729 | 16.0 | 2.0 | 75.5 | 0.9 | - | - | 2.0 | 1.1 | 1.0 | |
720 | 12.0 | 2.0 | 73.7 | 6.3 | - | - | 2.0 | 1.5 | 1.0 | |
711 | 8.0 | 2.0 | 72.0 | 11.6 | - | - | 2.0 | 1.9 | 1.0 | |
701 | 4.0 | 2.0 | 70.3 | 16.9 | - | - | 2.0 | 2.2 | 1.0 | |
692 | 0.0 | 2.0 | 68.6 | 22.3 | - | - | 2.0 | 2.6 | 1.0 | |
P. monodon (PM1) | 858 | 30.0 | 0.0 | 47.4 | 13.1 | - | - | 5.0 | 1.0 | 2.0 |
875 | 24.0 | 2.0 | 42.7 | 21.8 | - | - | 5.0 | 1.0 | 2.0 | |
857 | 18.0 | 2.0 | 41.0 | 29.5 | - | - | 5.0 | 1.0 | 2.0 | |
839 | 12.0 | 2.0 | 39.3 | 37.2 | - | - | 5.0 | 1.0 | 2.0 | |
821 | 6.0 | 2.0 | 37.5 | 45.0 | - | - | 5.0 | 1.0 | 2.0 | |
806 | 0.0 | 2.0 | 35.1 | 52.9 | - | - | 5.0 | 1.0 | 2.5 | |
Scenario 2: Fishmeal substitution by alternative plant ingredients (alternative-plant scenario) | ||||||||||
L. vannamei (LV2) | 675 | 20.0 | 2.0 | 14.2 | - | 40.5 | 9.2 | 10.0 | 2.0 | 1.0 |
661 | 16.0 | 2.0 | 14.3 | - | 38.6 | 14.4 | 10.2 | 2.3 | 1.0 | |
647 | 12.0 | 2.0 | 14.3 | - | 37.0 | 19.5 | 10.5 | 2.5 | 1.0 | |
635 | 8.0 | 2.0 | 14.0 | - | 35.6 | 24.5 | 10.7 | 2.8 | 1.0 | |
626 | 4.0 | 2.0 | 11.1 | - | 36.0 | 27.8 | 13.5 | 3.2 | 1.0 | |
617 | 0.0 | 2.0 | 7.8 | - | 36.7 | 30.8 | 16.7 | 3.6 | 1.0 | |
P. monodon (PM2) | 741 | 30.0 | 0.0 | 34.0 | - | 7.7 | 13.5 | 10.4 | 1.0 | 2.3 |
724 | 24.0 | 0.0 | 31.3 | - | 7.0 | 19.4 | 13.3 | 1.0 | 2.8 | |
710 | 18.0 | 0.0 | 26.5 | - | 7.9 | 24.0 | 18.0 | 1.0 | 3.4 | |
697 | 12.0 | 0.0 | 21.7 | - | 8.8 | 28.6 | 22.7 | 1.0 | 4.0 | |
683 | 6.0 | 0.0 | 16.9 | - | 9.7 | 33.2 | 27.4 | 1.0 | 4.6 | |
686 | 0.0 | 2.0 | 12.0 | - | 10.7 | 37.8 | 32.0 | 1.0 | 3.3 | |
Resource demand values | ||||||||||
Freshwater (m3/MT) | Green | - | - | 1277.0 | 2397.0 | 837.0 | 2906.0 | 1101.2 | 1996.0 | - |
Blue | 100.0 | 100.0 | 342.0 | 83.0 | 114.0 | 66.0 | 174.2 | 171.0 | 100.0 | |
Grey | - | - | 207.0 | 44.0 | 165.0 | 986.0 | 225.6 | 409.0 | - | |
Land (ha/MT) | Min | - | - | 0.2 | 0.4 | 0.5 | 0.8 | 0.1 | 0.1 | - |
Mean | - | - | 0.3 | 0.5 | 0.9 | 1.2 | 0.2 | 0.2 | - | |
Max | - | - | 0.4 | 1.1 | 1.6 | 2.2 | 0.7 | 0.7 | - | |
Nitrogen (kg/MT) | Min | - | - | 8.8 | 1.4 | 62.8 | 25.2 | 15.0 | 15.0 | - |
Mean | - | - | 28.2 | 3.8 | 87.3 | 34.5 | 18.7 | 18.7 | - | |
Max | - | - | 37.2 | 35.3 | 151.1 | 66.4 | 35.3 | 35.3 | - | |
Phosphorus (kg/MT) | Min | - | - | 3.5 | 5.5 | 14.5 | 33.5 | 1.4 | 1.4 | - |
Mean | - | - | 11.4 | 15.1 | 25.1 | 46.0 | 3.7 | 3.7 | - | |
Max | - | - | 16.3 | 29.9 | 49.6 | 88.5 | 7.2 | 7.2 | - | |
Fish (MTfish/MTfeed) | Min | 4.4 | 10.0 | - | - | - | - | - | - | - |
Mean | 4.5 | 20.0 | - | - | - | - | - | - | - | |
Max | 4.6 | 50.0 | - | - | - | - | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malcorps, W.; Kok, B.; van‘t Land, M.; Fritz, M.; van Doren, D.; Servin, K.; van der Heijden, P.; Palmer, R.; Auchterlonie, N.A.; Rietkerk, M.; et al. The Sustainability Conundrum of Fishmeal Substitution by Plant Ingredients in Shrimp Feeds. Sustainability 2019, 11, 1212. https://doi.org/10.3390/su11041212
Malcorps W, Kok B, van‘t Land M, Fritz M, van Doren D, Servin K, van der Heijden P, Palmer R, Auchterlonie NA, Rietkerk M, et al. The Sustainability Conundrum of Fishmeal Substitution by Plant Ingredients in Shrimp Feeds. Sustainability. 2019; 11(4):1212. https://doi.org/10.3390/su11041212
Chicago/Turabian StyleMalcorps, Wesley, Björn Kok, Mike van‘t Land, Maarten Fritz, Davy van Doren, Kurt Servin, Paul van der Heijden, Roy Palmer, Neil A. Auchterlonie, Max Rietkerk, and et al. 2019. "The Sustainability Conundrum of Fishmeal Substitution by Plant Ingredients in Shrimp Feeds" Sustainability 11, no. 4: 1212. https://doi.org/10.3390/su11041212
APA StyleMalcorps, W., Kok, B., van‘t Land, M., Fritz, M., van Doren, D., Servin, K., van der Heijden, P., Palmer, R., Auchterlonie, N. A., Rietkerk, M., Santos, M. J., & Davies, S. J. (2019). The Sustainability Conundrum of Fishmeal Substitution by Plant Ingredients in Shrimp Feeds. Sustainability, 11(4), 1212. https://doi.org/10.3390/su11041212