Carbon Emission Allocation in a Chinese Province-Level Region Based on Two-Stage Network Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preliminary
2.2. Carbon Emission Right Allocation Model Based on Two-Stage Structures
2.2.1. Two-Stage Network Structure
2.2.2. Carbon Emission Right Allocation Based on the Two-Stage DEA Model
2.2.3. Algorithm for Solving the Above Model
3. Results and Discussion
3.1. Variables and Data
3.2. Results Analysis
3.3. Policy Suggestions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Zhang, K.; Chen, H.H. Environmental Performance and Financing Decisions Impact on Sustainable Financial Development of Chinese Environmental Protection Enterprises. Sustainability 2017, 9, 2260. [Google Scholar] [CrossRef]
- Shi, X. Inequality of opportunity in energy consumption in China. Energy Policy 2019, 124, 371–382. [Google Scholar] [CrossRef]
- Bing, G.; Xiaochen, Z.; Qing, G.; Ordieres-Meré, J. Discovering the patterns of energy consumption, GDP, and CO2 emissions in China using the cluster method. Energy 2019, 166, 1149–1167. [Google Scholar]
- Yi, W.J.; Zou, L.L.; Guo, J.; Wang, K.; Wei, Y.M. How can China reach its CO intensity reduction targets by 2020? A regional allocation based on equity and development. Energy Policy 2011, 39, 2407–2415. [Google Scholar] [CrossRef]
- Li, A.; Lin, B. Comparing climate policies to reduce carbon emissions in China. Energy Policy 2013, 60, 667–674. [Google Scholar] [CrossRef]
- Dong, F.; Long, R.; Yu, B.; Wang, Y.; Li, J.; Wang, Y.; Dai, Y.; Yang, Q.; Chen, H. How can China allocate CO2 reduction targets at the provincial level considering both equity and efficiency? Evidence from its Copenhagen Accord pledge. Resour. Conserv. Recycl. 2018, 130, 31–43. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, M. Carbon dioxide emissions allocation: A review. Ecol. Econ. 2016, 125, 47–59. [Google Scholar] [CrossRef]
- Cramton, P.; Kerr, S. Tradeable carbon permit auctions: How and why to auction not grandfather. Energy Policy 2002, 30, 333–345. [Google Scholar] [CrossRef]
- Kampas, A.; White, B. Selecting permit allocation rules for agricultural pollution control: A bargaining solution. Ecol. Econ. 2003, 47, 135–147. [Google Scholar] [CrossRef]
- Daskalakis, G.; Psychoyios, D.; Markellos, R.N. Modeling CO2 emission allowance prices and derivatives: Evidence from the European trading scheme. J. Bank. Financ. 2009, 33, 1230–1241. [Google Scholar] [CrossRef]
- Oestreich, A.M.; Tsiakas, I. Carbon emissions and stock returns: Evidence from the EU Emissions Trading Scheme. J. Bank. Financ. 2015, 58, 294–308. [Google Scholar] [CrossRef]
- Martin, R.; Muûls, M.; Wagner, U.J. The impact of the European Union Emissions Trading Scheme on regulated firms: What is the evidence after ten years? Rev. Environ. Econ. Policy 2015, 10, 129–148. [Google Scholar] [CrossRef]
- Daskalakis, G. Temporal restrictions on emissions trading and the implications for the carbon futures market: Lessons from the EU emissions trading scheme. Energy Policy 2018, 115, 88–91. [Google Scholar] [CrossRef]
- Mardani, A.; Zavadskas, E.K.; Streimikiene, D.; Jusoh, A.; Khoshnoudi, M. A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renew. Sustain. Energy Rev. 2017, 70, 1298–1322. [Google Scholar] [CrossRef]
- Li, Y.; Li, F.; Emrouznejad, A.; Liang, L.; Xie, Q. Allocating the fixed cost: an approach based on data envelopment analysis and cooperative game. Ann. Oper. Res. 2019, 274, 373–394. [Google Scholar] [CrossRef]
- Xie, Q.; Li, Y.; Wang, L.; Chao, L. Improving discrimination in data envelopment analysis without losing information based on Renyi’s entropy. Cent. Eur. J. Oper. Res. 2018, 26, 1053–1068. [Google Scholar] [CrossRef]
- Feng, L.; Zhu, Q.; Liang, L. A new data envelopment analysis based approach for fixed cost allocation. Ann. Oper. Res. 2019, 274, 347–372. [Google Scholar]
- Sueyoshi, T.; Yuan, Y.; Goto, M. A literature study for DEA applied to energy and environment. Energy Econ. 2017, 62, 104–124. [Google Scholar] [CrossRef]
- Xie, Q.; Chen, X.; Li, L.; Rao, K.; Tao, L.; Ma, C. Image Fusion Based on Kernel Estimation and Data Envelopment Analysis. Int. J. Inf. Technol. Decis. Mak. 2019, 17. [Google Scholar] [CrossRef]
- Li, Y.; Yang, F.; Liang, L.; Hua, Z. Allocating the fixed cost as a complement of other cost inputs: A DEA approach. Eur. J. Oper. Res. 2009, 197, 389–401. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, L.; Zhou, D.; Xia, W. Modeling economic performance of interprovincial CO2 emission reduction quota trading in China. Appl. Energy 2013, 112, 1518–1528. [Google Scholar] [CrossRef]
- Yu, S.; Wei, Y.M.; Wang, K. Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition. Energy Policy 2014, 66, 630–644. [Google Scholar] [CrossRef]
- Miao, Z.; Geng, Y.; Sheng, J. Efficient allocation of CO2 emissions in China: A zero sum gains data envelopment model. J. Clean. Prod. 2016, 112, 4144–4150. [Google Scholar] [CrossRef]
- Cook, W.D.; Kress, M. Characterizing an equitable allocation of shared costs: A DEA approach1. Eur. J. Oper. Res. 1999, 119, 652–661. [Google Scholar] [CrossRef]
- Beasley, J. Allocating fixed costs and resources via data envelopment analysis. Eur. J. Oper. Res. 2003, 147, 198–216. [Google Scholar] [CrossRef] [Green Version]
- Nakabayashi, K.; Tone, K. Egoist’s dilemma: A DEA game. Omega 2006, 34, 135–148. [Google Scholar] [CrossRef]
- Li, F.; Zhu, Q.; Liang, L. Allocating a fixed cost based on a DEA-game cross efficiency approach. Expert Syst. Appl. 2018, 96, 196–207. [Google Scholar] [CrossRef]
- Gomes, E.; Lins, M.E. Modelling undesirable outputs with zero sum gains data envelopment analysis models. J. Oper. Res. Soc. 2008, 59, 616–623. [Google Scholar] [CrossRef]
- Lozano, S.; Villa, G.; Brännlund, R. Centralised reallocation of emission permits using DEA. Eur. J. Oper. Res. 2009, 193, 752–760. [Google Scholar] [CrossRef]
- Wei, C.; Ni, J.; Du, L. Regional allocation of carbon dioxide abatement in China. China Econ. Rev. 2012, 23, 552–565. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Wei, Y.M.; Yu, S. Regional allocation of CO2 emissions allowance over provinces in China by 2020. Energy Policy 2013, 54, 214–229. [Google Scholar] [CrossRef]
- Feng, C.; Chu, F.; Ding, J.; Bi, G.; Liang, L. Carbon emissions abatement (CEA) allocation and compensation schemes based on DEA. Omega 2015, 53, 78–89. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, C.; Zeng, X.; Jiang, Y.; Liu, W. Carbon emission performance evaluation and allocation in Chinese cities. J. Clean. Prod. 2018, 172, 1254–1272. [Google Scholar] [CrossRef]
- Yu, A.; You, J.; Rudkin, S.; Zhang, H. Industrial carbon abatement allocations and regional collaboration: Re-evaluating China through a modified data envelopment analysis. Appl. Energy 2019, 233, 232–243. [Google Scholar] [CrossRef]
- Färe, R. Measuring Farrell efficiency for a firm with intermediate inputs. Acad. Econ. Papers 1991, 19, 329–340. [Google Scholar]
- Wanke, P.; Barros, C. Two-stage DEA: An application to major Brazilian banks. Expert Syst. Appl. 2014, 41, 2337–2344. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. Impact of energy conservation policies on the green productivity in China’s manufacturing sector: Evidence from a three-stage DEA model. Appl. Energy 2016, 168, 351–363. [Google Scholar] [CrossRef]
- Yu, M.M.; Chen, L.H.; Hsiao, B. A fixed cost allocation based on the two-stage network data envelopment approach. J. Bus. Res. 2016, 69, 1817–1822. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Q.; Wang, H. Fixed costs and shared resources allocation in two-stage network DEA. Ann. Oper. Res. 2017, 1–18. [Google Scholar] [CrossRef]
- Ding, T.; Zhu, Q.; Zhang, B.; Liang, L. Centralized fixed cost allocation for generalized two-stage network DEA. INFOR Inf. Syst. Oper. Res. 2017, 1–18. [Google Scholar] [CrossRef]
- Li, F.; Zhu, Q.; Chen, Z. Allocating a fixed cost across the decision making units with two-stage network structures. Omega 2019, 83, 139–154. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Zhang, N.; Wei, X. Dynamic total factor carbon emissions performance changes in the Chinese transportation industry. Appl. Energy 2015, 146, 409–420. [Google Scholar] [CrossRef]
- Kong, Y.; Zhao, T.; Yuan, R.; Chen, C. Allocation of carbon emission quotas in Chinese provinces based on equality and efficiency principles. J. Clean. Prod. 2019, 211, 222–232. [Google Scholar] [CrossRef]
- Guajardo, M.; Jörnsten, K. Common mistakes in computing the nucleolus. Eur. J. Oper. Res. 2015, 241, 931–935. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.T.; Wang, Q.; Li, R. Investigating factors affecting carbon emission in China and the USA: A perspective of stratified heterogeneity. J. Clean. Prod. 2018, 199, 85–92. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, Y.E.; Wu, B.W. Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China. Renew. Sustain. Energy Rev. 2016, 54, 1563–1579. [Google Scholar] [CrossRef]
- Ma, X.; Wang, C.; Dong, B.; Gu, G.; Chen, R.; Li, Y.; Zou, H.; Zhang, W.; Li, Q. Carbon emissions from energy consumption in China: Its measurement and driving factors. Sci. Total Environ. 2019, 648, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lovell, C.K.; Pasurka, C. Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. Rev. Econ. Stat. 1989, 71, 90–98. [Google Scholar] [CrossRef]
- Seiford, L.M.; Zhu, J. Modeling undesirable factors in efficiency evaluation. Eur. J. Oper. Res. 2002, 142, 16–20. [Google Scholar] [CrossRef]
- Hailu, A.; Veeman, T.S. Non-parametric productivity analysis with undesirable outputs: An application to the Canadian pulp and paper industry. Am. J. Agric. Econ. 2001, 83, 605–616. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Y. Influencing factors and regional discrepancies of the efficiency of carbon dioxide emissions in Jiangsu, China. Ecol. Indic. 2018, 90, 460–468. [Google Scholar] [CrossRef]
- Jun, Z.; Guiying, W.; Jipeng, Z. The Estimation of China’s provincial capital stock: 1952–2000. Econ. Res. J. 2004, 10, 35–44. [Google Scholar]
- Chang, N. Sharing responsibility for carbon dioxide emissions: A perspective on border tax adjustments. Energy Policy 2013, 59, 850–856. [Google Scholar] [CrossRef]
- Chung, W.S.; Tohno, S.; Shim, S.Y. An estimation of energy and GHG emission intensity caused by energy consumption in Korea: An energy IO approach. Appl. Energy 2009, 86, 1902–1914. [Google Scholar] [CrossRef]
- Tang, X.; Yongjun, L.I.; Wang, M.; Liang, L.; Management, S.O. A DEA efficiency probability dominance method. Syst. Eng. Theory Pract. 2016, 36, 2641–2647. [Google Scholar]
Energy Types | The Net Calorific Value | Carbon Emission Factors | |
---|---|---|---|
Unit | Value | ||
coal | kJ/kg | 20,908 | 25.8 |
gasoline | kJ/kg | 43,070 | 18.9 |
kerosene | kJ/kg | 43,070 | 19.5 |
diesel | kJ/kg | 42,652 | 20.2 |
fuel oil | kJ/kg | 41,816 | 21.1 |
natural gas | kJ/m | 38,931 | 15.3 |
Descriptive Statistics | Average | SD | Maximum | Minimum |
---|---|---|---|---|
Capital stock | 91,033.16 | 56,517.92 | 237,203.21 | 14,362.83 |
Labor force | 595.22 | 423.18 | 1957.57 | 63.09 |
Energy consumption | 15,665.73 | 11,388.68 | 47,772.59 | 1393.82 |
Carbon emission | 32,617.88 | 23,409.29 | 102,669.79 | 3139.03 |
Urbanization rate | 0.59 | 0.11 | 0.88 | 0.44 |
Private car ownership | 543.30 | 401.75 | 1550.65 | 72.96 |
GDP | 25,963.95 | 19,937.99 | 80,854.91 | 2572.49 |
Province | BCC.Eff | BCC.Rank | Stage1.Eff | Stage2.Eff | Overall.Eff | Overall.Rank |
---|---|---|---|---|---|---|
Beijing | 1 | 1 | 1 | 0.7692 | 0.9054 | 4 |
Tianjin | 1 | 1 | 0.8143 | 0.7657 | 0.7925 | 6 |
Hebei | 0.9557 | 22 | 1 | 0.3016 | 0.6508 | 21 |
Shanxi | 0.7910 | 29 | 0.8932 | 0.3478 | 0.6359 | 23 |
Inner Mongolia | 1 | 1 | 0.7613 | 0.5136 | 0.6542 | 20 |
Liaoning | 0.7551 | 30 | 0.6601 | 0.4358 | 0.5709 | 30 |
Jilin | 0.9067 | 26 | 0.7202 | 0.5513 | 0.6495 | 22 |
Heilongjiang | 0.8761 | 27 | 0.7374 | 0.5474 | 0.6568 | 19 |
Shanghai | 1 | 1 | 0.7380 | 1 | 0.8493 | 5 |
Jiangsu | 1 | 1 | 0.6786 | 0.6543 | 0.6688 | 17 |
Zhejiang | 0.9399 | 24 | 0.9835 | 0.4487 | 0.7183 | 8 |
Anhui | 0.9463 | 23 | 0.6825 | 0.4840 | 0.6020 | 27 |
Fujian | 1 | 1 | 0.7258 | 0.6153 | 0.6793 | 14 |
Jiangxi | 0.9705 | 20 | 0.6746 | 0.5753 | 0.6346 | 24 |
Shandong | 1 | 1 | 0.8043 | 0.4748 | 0.6574 | 18 |
Henan | 1 | 1 | 0.7119 | 0.4312 | 0.5952 | 28 |
Hubei | 1 | 1 | 0.6306 | 0.6068 | 0.6214 | 26 |
Hunan | 1 | 1 | 0.7738 | 0.5638 | 0.6822 | 13 |
Guangdong | 1 | 1 | 0.9744 | 0.5853 | 0.7824 | 7 |
Guangxi | 1 | 1 | 0.8263 | 0.5372 | 0.6955 | 10 |
Hainan | 1 | 1 | 1 | 0.9718 | 1 | 1 |
Chongqing | 0.9596 | 21 | 0.6763 | 0.6671 | 0.6726 | 15 |
Sichuan | 1 | 1 | 0.9937 | 0.3962 | 0.6959 | 9 |
Guizhou | 1 | 1 | 0.8006 | 0.5387 | 0.6841 | 12 |
Yunnan | 1 | 1 | 1 | 0.3871 | 0.6936 | 11 |
Shaanxi | 0.8729 | 28 | 0.6297 | 0.5072 | 0.5823 | 29 |
Gansu | 1 | 1 | 0.7045 | 0.6200 | 0.6696 | 16 |
Qinghai | 1 | 1 | 1 | 1 | 1 | 1 |
Ningxia | 1 | 1 | 1 | 0.8954 | 0.9510 | 3 |
Xinjiang | 0.9394 | 25 | 0.7067 | 0.5302 | 0.6336 | 25 |
Province | Actual Carbon Emissions | Stage 1 Allocation | Stage 2 Allocation | Overall Allocation | Carbon Emission Space |
---|---|---|---|---|---|
Beijing | 5825.54 | 9220.17 | 11,844.07 | 21,064.24 | 15,238.69 |
Tianjin | 10,918.08 | 10,014.64 | 10,111.02 | 20,125.66 | 9207.58 |
Hebei | 60,150.40 | 47,892.50 | 1088.81 | 48,981.31 | −11,169.09 |
Shanxi | 73,066.16 | 23,885.34 | 79.16 | 23,964.50 | −49,101.66 |
Inner Mongolia | 75,158.71 | 25,141.85 | 7356.64 | 32,498.49 | −42,660.23 |
Liaoning | 40,263.77 | 26,521.46 | 6550.22 | 33,071.68 | −7192.09 |
Jilin | 20,477.66 | 13,092.27 | 5993.15 | 19,085.42 | −1392.23 |
Heilongjiang | 30,376.18 | 13,555.96 | 5683.94 | 19,239.90 | −11,136.28 |
Shanghai | 16,686.64 | 6331.69 | 19,833.42 | 26,165.10 | 9478.46 |
Jiangsu | 62,239.03 | 54,698.20 | 42,451.31 | 97,149.51 | 34,910.48 |
Zhejiang | 34,570.89 | 38,748.05 | 16,548.67 | 55,296.71 | 20,725.82 |
Anhui | 34,802.07 | 24,804.37 | 10,418.32 | 35,222.69 | 420.61 |
Fujian | 17,400.95 | 16,955.25 | 16,313.37 | 33,268.62 | 15,867.68 |
Jiangxi | 17,773.41 | 14,345.57 | 8871.92 | 23,217.49 | 5444.08 |
Shandong | 102,669.79 | 71,214.80 | 25,463.87 | 96,678.67 | −5991.12 |
Henan | 51,235.04 | 41,066.02 | 13,592.93 | 54,658.96 | 3423.92 |
Hubei | 28,889.45 | 23,236.92 | 18,089.68 | 41,326.60 | 12,437.15 |
Hunan | 27,141.81 | 23,832.39 | 16,556.78 | 40,389.17 | 13,247.37 |
Guangdong | 44,437.55 | 44,489.44 | 39,439.08 | 83,928.52 | 39,490.97 |
Guangxi | 15,978.49 | 14,217.72 | 8184.25 | 22,401.96 | 6423.48 |
Hainan | 3139.03 | 206.16 | 1568.58 | 1774.75 | −1364.29 |
Chongqing | 13,991.02 | 10,921.45 | 9613.73 | 20,535.17 | 6544.15 |
Sichuan | 24,729.43 | 29,454.77 | 11,626.97 | 41,081.74 | 16,352.31 |
Guizhou | 29,718.19 | 11,652.60 | 3631.38 | 15,283.99 | −14,434.20 |
Yunnan | 18,010.10 | 16,016.66 | 1576.54 | 17,593.20 | −416.90 |
Shaanxi | 41,315.73 | 20,707.80 | 7241.73 | 27,949.53 | −13,366.19 |
Gansu | 14,272.06 | 6183.35 | 1847.25 | 8030.61 | −6241.46 |
Qinghai | 4557.27 | 61.23 | 584.19 | 645.42 | −3911.84 |
Ningxia | 17,931.76 | 3150.05 | 165.03 | 3315.07 | −14,616.68 |
Xinjiang | 40,810.31 | 12,048.27 | 2543.59 | 14,591.85 | −26,218.45 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Zou, B.; Wang, C.; Rao, K.; Tang, X. Carbon Emission Allocation in a Chinese Province-Level Region Based on Two-Stage Network Structures. Sustainability 2019, 11, 1369. https://doi.org/10.3390/su11051369
Jin X, Zou B, Wang C, Rao K, Tang X. Carbon Emission Allocation in a Chinese Province-Level Region Based on Two-Stage Network Structures. Sustainability. 2019; 11(5):1369. https://doi.org/10.3390/su11051369
Chicago/Turabian StyleJin, Xi, Bin Zou, Chan Wang, Kaifeng Rao, and Xiaowen Tang. 2019. "Carbon Emission Allocation in a Chinese Province-Level Region Based on Two-Stage Network Structures" Sustainability 11, no. 5: 1369. https://doi.org/10.3390/su11051369
APA StyleJin, X., Zou, B., Wang, C., Rao, K., & Tang, X. (2019). Carbon Emission Allocation in a Chinese Province-Level Region Based on Two-Stage Network Structures. Sustainability, 11(5), 1369. https://doi.org/10.3390/su11051369