Evaluation of the Relation between Lean Manufacturing, Industry 4.0, and Sustainability
Abstract
:1. Introduction
2. Literature Review
2.1. Lean Manufacturing and Sustainability
2.1.1. Influence of Lean Manufacturing in Economic Dimension
2.1.2. Influence of Lean Manufacturing in Environmental Dimension
2.1.3. Influence of Lean Manufacturing in Social Dimension
2.2. Industry 4.0 and Sustainability
2.2.1. Influence of I4.0 in Economic Dimension of Sustainability
2.2.2. Influence of I4.0 in Environmental Dimension of Sustainability
2.2.3. Influence of I4.0 in Social Dimension of Sustainability
2.3. Main Remarks from State-of-the-Art Research
- -
- -
- The second remark is that none of the works analyzed treats this subject through SEM;
- -
- The third remark is that some criteria’s influence are more considered than others, namely, for few of them were not found any reference.
3. Research Model
3.1. General Model
3.2. Survey and Data Collection
4. Evaluation Models
- Absolute indices: these indices compare a specific model of adjustment with its saturated model.
- Relative indices: relative adjustment indices compare the specific adjustment model to the worst possible adjustment (without relations between the manifested variables) and to the best possible adjustment (saturated model).
- Parsimony-adjusted indices: penalize the relative indices by complexity and perform an improvement in the model so as to bring it closer to the saturated model, through the inclusion of free parameters.
- Population discrepancy index: this index reflects the adjustment of the model at the sampling moments (means and sample variances) with the population moments (means and population variances) by the comparison effect.
- ○
- Root Mean Square Error of Approximation (RMSEA) [92];
- Information theory-based index: this index is pertinent to compare several alternative models with data adjustments.
- ○
- Akaike Information Criterion (AIC) [96].
5. Results Discussion and Practical Implications
5.1. Results Discussion
5.2. Practical Implications
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Womack, J.P.; Jones, D.T.; Roos, D. The Machine That Changed the World; Harper Perennial: New York, NY, USA, 1990. [Google Scholar]
- Sriparavastu, L.; Gupta, T. An empirical study of just-in- time and total quality management principles implementation in manufacturing firms in the USA. Int. J. Oper. Prod. Manag. 1997, 17, 1215–1232. [Google Scholar] [CrossRef]
- Drath, R.; Horch, A. Industrie 4.0: Hit or hype? [industry forum]. IEEE Ind. Electron. Mag. 2014, 8, 56–58. [Google Scholar] [CrossRef]
- Shrouf, F.; Ordieres, J.; Miragliotta, G. Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In Proceedings of the 2014 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Bandar Sunway, Malaysia, 9–12 December 2014; pp. 697–701. [Google Scholar]
- Erol, S.; Jäger, A.; Hold, P.; Ott, K.; Sihn, W. Tangible Industry 4.0: A scenario-based approach to learning for the future of production. Procedia CIRP 2016, 54, 13–18. [Google Scholar] [CrossRef]
- Lu, Y. Industry 4.0: A survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Gilchrist, A. Industry 4.0: The Industrial Internet of Things; Apress: New York, NY, USA, 2016. [Google Scholar]
- Hozdić, E. Smart factory for industry 4.0: A review. Int. J. Modern Manuf. Technol. 2015, 7, 28–35. [Google Scholar]
- Kang, H.S.; Lee, J.Y.; Choi, S.; Kim, H.; Park, J.H.; Son, J.Y.; Do Noh, S. Smart manufacturing: Past research, present findings, and future directions. Int. J. Precis. Eng. Manuf. Green Technol. 2016, 3, 111–128. [Google Scholar] [CrossRef]
- Schlechtendahl, J.; Keinert, M.; Kretschmer, F.; Lechler, A.; Verl, A. Making existing production systems Industry 4.0-ready. Prod. Eng. 2015, 9, 143–148. [Google Scholar] [CrossRef]
- Iqbal, T.; Riek, L.D. Human-robot teaming: Approaches from joint action and dynamical systems. Hum. Robot. A Ref. 2019, 2293–2312. Available online: https://link.springer.com/referenceworkentry/10.1007%2F978-94-007-6046-2_137 (accessed on 5 March 2019).
- Thoben, K.D.; Wiesner, S.; Wuest, T. Industrie 4.0” and smart manufacturing–a review of research issues and application examples. Int. J. Autom. Technol. 2017, 11, 4–16. [Google Scholar] [CrossRef]
- Lee, J.; Kao, H.A.; Yang, S. Service innovation and smart analytics for industry 4.0 and big data environment. Procedia CIRP 2014, 16, 3–8. [Google Scholar] [CrossRef]
- World Commissionon Environmentand Development (WCED). Our Common Future; The Brundtland Report; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Putnik, G.; Ávila, P. Governance and Sustainability (Special Issue Editorial). Int. J. Ind. Syst. Eng. 2016, 24, 137–143. [Google Scholar]
- Nidumolu, R.; Prahalad, C.; Rangaswami, M. Why Sustainability is Now the Key Driver of Innovation. Harvard Bus. Rev. 2009, 87, 56–64. [Google Scholar]
- Almeida, A.; Bastos, J.; Francisco, R.; Azevedo, A.; Ávila, P. Sustainability Assessment Framework for Proactive Supply Chain Management. Int. J. Ind. Syst. Eng. 2016, 24, 198–222. [Google Scholar] [CrossRef]
- Miller, G. The development of indicators for sustainable tourism: Results of a Delphi survey of tourism researchers. Tour. Manag. 2001, 22, 351–362. [Google Scholar] [CrossRef]
- Linton, J.; Klassen, R.; Jayaraman, V. Sustainable supply chains: An introduction. J. Oper. Manag. 2007, 25, 1075–1082. [Google Scholar] [CrossRef]
- Wang, Z.; Subramanian, N.; Gunasekaran, A.; Abdulrahman, M.; Liu, C. Composite sustainable manufacturing practice and performance framework: Chinese auto-parts suppliers' perspective. Int. J. Prod. Econ. 2015, 170, 219–233. [Google Scholar] [CrossRef]
- Leoneti, A.; Nirazawa, A.; Oliveira, S. Proposal of sustainability index as a self-assessment tool for micro and small enterprises (MSEs). REGE Revista de Gestão 2016, 23, 349–361. [Google Scholar] [CrossRef]
- Rizos, V.; Behrens, A.; Van der Gaast, W.; Hofman, E.; Ioannou, A.; Kafyeke, T.; Flamos, A.; Rinaldi, R.; Papadelis, S.; Hirschnitz-Garbers, M.; et al. Implementation of Circular Economy Business Models by Small and Medium-Sized Enterprises (SMEs): Barriers and Enablers. Sustainability 2016, 8, 1212. [Google Scholar] [CrossRef]
- Schöggl, J.; Fritz, M.; Baumgartner, R. Sustainability Assessment in Automotive and Electronics Supply Chains—A Set of Indicators Defined in a Multi-Stakeholder Approach. Sustainability 2016, 8, 1185. [Google Scholar] [CrossRef]
- Zenya, A.; Nystad, Ø. Assessing Corporate Sustainability with the Enterprise Sustainability Evaluation Tool (E-SET). Sustainability 2018, 10, 4661. [Google Scholar] [CrossRef]
- Waas, T.; Hugé, J.; Block, T.; Wright, T.; Benitez-Capistros, F.; Verbruggen, A. Sustainability Assessment and Indicators: Tools in a Decision-Making Strategy for Sustainable Development. Sustainability 2014, 6, 5512–5534. [Google Scholar] [CrossRef] [Green Version]
- Souza, J.; Alves, J. Lean-integrated management system: A model for sustainability improvement. J. Clean. Prod. 2017, 172, 2667–2682. [Google Scholar] [CrossRef]
- Martínez-Jurado, P.; Moyano-Fuentes, J. Lean management, supply chain management and sustainability: A literature review. J. Clean. Prod. 2014, 85, 134–150. [Google Scholar] [CrossRef]
- Pampanelli, A.B.; Found, P.; Bernardes, A.M. A lean & green model for a production cell. J. Clean. Prod. 2014, 85, 19–35. [Google Scholar]
- Wilson, A. Sustainable Manufacturing: Comparing Lean, Six Sigma, and Total Quality Manufacturing; Strategic Sustainability Consulting: Washington, DC, USA, 2010. [Google Scholar]
- Zhu, Q.; Sarkis, J.; Kee-hung, L. Confirmation of a measurement model for green supply chain management practices implementation. Int. J. Prod. Econ. 2008, 111, 261–273. [Google Scholar] [CrossRef]
- Mollenkopf, D.; Stolze, H.; Tate, W.L.; Ueltschy, M. Green, lean, and global supply chains. Int. J. Phys. Distrib. Logist. Manag. 2010, 40, 14–41. [Google Scholar] [CrossRef]
- Sezen, B.; Karakadilar, I.; Buyukozkan, G. Proposition of a model for measuring adherence lean practices: Applied to Turkish automotive part suppliers. Int. J. Prod. Res. 2011, 50, 3878–3894. [Google Scholar] [CrossRef]
- Lozano, R.; Huishingh, D. Inter-linking issues and dimensions in sustainability reporting. J. Clean. Prod. 2011, 19, 99–107. [Google Scholar] [CrossRef]
- Azevedo, S.; Carvalho, H.; Duarte, S.; Cruz-Machado, V. Influence of green and lean upstream supply chain management practices on business sustainability. IEEE Trans. Eng. Manag. 2012, 59, 753–765. [Google Scholar] [CrossRef]
- Díaz-Reza, J.; García-Alcaraz, J.; Martínez-Loya, V.; Blanco-Fernández, J.; Jiménez-Macías, E.; Avelar-Sosa, L. The Effect of SMED on Benefits Gained in Maquiladora Industry. Sustainability 2016, 8, 1237. [Google Scholar] [CrossRef]
- Gupta, V.; Narayanamurthy, G.; Acharya, P. Can lean lead to green? Assessment of radial tyre manufacturing processes using system dynamics modelling. Comput. Oper. Res. 2018, 89, 284–306. [Google Scholar] [CrossRef]
- Shah, R.; Ward, P. Defining and developing measures of lean production. J. Oper. Manag. 2007, 25, 785–805. [Google Scholar] [CrossRef] [Green Version]
- Jabbour, C.J.C.; de Sousa Jabbour, A.B.L.; Govindan, K.; Teixeira, A.A.; de Souza Freitas, W.R. Environmental management and operational performance in automotive companies in Brazil: The role of human resource management and lean manufacturing. J. Clean. Prod. 2013, 47, 129–140. [Google Scholar] [CrossRef]
- Jabbour, A.; Jabbour, C.; Teixeira, A.; Freitas, W. Adoption of lean thinking practices at Brazilian auto part companies. Int. J. Lean Think. 2012, 3, 47–53. [Google Scholar]
- De Sousa Jabbour, A.B.L.; Jabbour, C.J.C.; Foropon, C.; Godinho Filho, M. When titans meet–Can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors. Technol. Forecast. Soc. Change 2018, 132, 18–25. [Google Scholar] [CrossRef]
- Ng, R.; Low, J.; Song, S. Integrating and implementing lean and green practices based on proposition of carbon–value efficiency metric. J. Clean. Prod. 2015, 95, 242–255. [Google Scholar] [CrossRef]
- Yang, M.; Hong, P.; Modi, S. Impact of lean manufacturing and environmental management on business performance: An empirical study of manufacturing firms. Int. J. Prod. Econ. 2011, 129, 251–261. [Google Scholar] [CrossRef]
- Torielli, R.; Abrahams, R.; Smillie, R.; Voigt, R. Using lean methodologies for economically and environmentally sustainable foundries. China Foundry 2011, 8, 74–88. [Google Scholar]
- Vinodh, S.; Arvind, K.; Somanaathan, M. Tools and techniques for enabling sustainability through lean initiatives. Clean Technol. Environ. Policy 2011, 13, 469–479. [Google Scholar] [CrossRef]
- Hajmohammad, S.; Vachon, S.; Klassen, R.D.; Gavronski, I. Lean management and supply management: Their role in green practices and performance. J. Clean. Prod. 2013, 39, 312–320. [Google Scholar] [CrossRef]
- Ioppolo, G.; Cucurachi, S.; Salomone, R.; Saija, G.; Ciraolo, L. Industrial Ecology and Environmental Lean Management: Lights and Shadows. Sustainability 2014, 6, 6362–6376. [Google Scholar] [CrossRef] [Green Version]
- Nunes, B.; Bennett, D. Green operations initiatives in the automotive industry: An environmental reports analysis and benchmarking study. Benchmark. Int. J. 2010, 17, 396–420. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, M. Acomparison of ELV recycling system in China and Japan and China’s strategies. Resour. Conserv. Recycl. 2011, 57, 15–21. [Google Scholar] [CrossRef]
- Ming, C.; Xiang, W. Implementing extended producer responsibility: Vehicle remanufacturing in China. J. Clean. Prod. 2011, 19, 680–686. [Google Scholar]
- Ashish, K.; Rejesh, B.; Sarbijit, S.; Anish, S. Study of green supply chain management in the Indian manufacturing industries: A literature review cum an analytical approach for the measurement of performance. Int. J. Comput. Eng. Manag. 2011, 13, 84–99. [Google Scholar]
- Liao, K.; Deng, X.; Marsillac, E. Factors that influence Chinese automotive suppliers’ mass customization capability. Int. J. Prod. Econ. 2013, 146, 25–36. [Google Scholar] [CrossRef]
- Cherrafi, A.; Elfezazi, S.; Chiarini, A.; Mokhlis, A.; Benhida, K. The integration of lean manufacturing, Six Sigma and sustainability: A literature review and future research directions for developing a specific model. J. Clean. Prod. 2016, 139, 828–846. [Google Scholar] [CrossRef]
- Taubitz, M. Lean, green & safe: Integrating safety into the lean, green and sustainability movement. Prof. Saf. 2010, 55, 39–46. [Google Scholar]
- James, J.; Ikuma, L.; Nahmens, H.; Aghazadeh, F. The impact of Kaizen on safety in modular home manufacturing. Int. J. Adv. Manuf. Technol. 2013, 70, 725–734. [Google Scholar] [CrossRef]
- Kiel, D.; Müller, J.M.; Arnold, C.; Voigt, K.I. Sustainable industrial value creation: Benefits and challenges of industry 4.0. Int. J. Innov. Manag. 2017, 21, 1740015. [Google Scholar] [CrossRef]
- Müller, J.M.; Voigt, K.I. Sustainable Industrial Value Creation in SMEs: A Comparison between Industry 4.0 and Made in China 2025. Int. J. Precis. Eng. Manuf. Green Technol. 2018, 5, 659–670. [Google Scholar] [CrossRef]
- Nagy, J.; Oláh, J.; Erdei, E.; Máté, D.; Popp, J. The Role and Impact of Industry 4.0 and the Internet of Things on the Business Strategy of the Value Chain—The Case of Hungary. Sustainability 2018, 10, 3491. [Google Scholar] [CrossRef]
- Laudien, S.M.; Daxböck, B. Business model innovation processes of average market players: A qualitative-empirical analysis. R&D Manag. 2017, 47, 420–430. [Google Scholar]
- Rennung, F.; Luminosu, C.T.; Draghici, A. Service provision in the framework of Industry 4.0. Procedia Soc. Behav. Sci. 2016, 221, 372–377. [Google Scholar] [CrossRef]
- Rehage, G.; Bauer, F.; Gausemeier, J.; Jurke, B.; Pruschek, P. Intelligent manufacturing operations planning, scheduling and dispatching on the basis of virtual machine tools. In Digital Product and Process Development Systems; Springer: Berlin/Heidelberg, Germany, 2013; pp. 391–400. [Google Scholar]
- Rudtsch, V.; Gausemeier, J.; Gesing, J.; Mittag, T.; Peter, S. Pattern-based business model development for cyber-physical production systems. Procedia CIRP 2014, 25, 313–319. [Google Scholar] [CrossRef]
- Brettel, M.; Klein, M.; Friederichsen, N. The relevance of manufacturing flexibility in the context of Industrie 4.0. Procedia CIRP 2016, 41, 105–110. [Google Scholar] [CrossRef]
- Stock, T.; Seliger, G. Opportunities of sustainable manufacturing in industry 4.0. Procedia CIRP 2016, 40, 536–541. [Google Scholar] [CrossRef]
- Arnold, J.M.; Javorcik, B.; Lipscomb, M.; Mattoo, A. Services reform and manufacturing performance: Evidence from India. Econ. J. 2015, 126, 1–39. [Google Scholar] [CrossRef]
- Burmeister, C.; Lüttgens, D.; Piller, F.T. Business Model Innovation for Industrie 4.0: Why the Industrial Internet Mandates a New Perspective on Innovation. Die Unternehmung 2016, 70, 124–152. [Google Scholar] [CrossRef]
- Hofmann, E.; Rüsch, M. Industry 4.0 and the current status as well as future prospects on logistics. Comput. Ind. 2017, 89, 23–34. [Google Scholar] [CrossRef]
- Duarte, S.; Cruz-Machado, V. Exploring linkages between lean and green supply chain and the industry 4.0. In Proceedings of the International Conference on Management Science and Engineering Management, Kanazawa, Japan, 28–31 July 2017; pp. 1242–1252. [Google Scholar]
- Bechtsis, D.; Tsolakis, N.; Vlachos, D.; Iakovou, E. Sustainable supply chain management in the digitalisation era: The impact of Automated Guided Vehicles. J. Clean. Prod. 2017, 142, 3970–3984. [Google Scholar] [CrossRef]
- Branke, J.; Farid, S.S.; Shah, N. Industry 4.0: A vision for personalized medicine supply chains? Cell Gene Ther. Insights 2016, 2, 263–270. [Google Scholar] [CrossRef]
- Schmidt, R.; Möhring, M.; Härting, R.C.; Reichstein, C.; Neumaier, P.; Jozinović, P. Industry 4.0-potentials for creating smart products: Empirical research results. In Proceedings of the International Conference on Business Information Systems, Poznan, Poland, 24–26 June 2015; pp. 16–27. [Google Scholar]
- Glas, A.H.; Kleemann, F.C. The impact of industry 4.0 on procurement and supply management: A conceptual and qualitative analysis. Int. J. Bus. Manag. Invent. 2016, 5, 55–66. [Google Scholar]
- Dubey, R.; Gunasekaran, A.; Papadopoulos, T.; Childe, S.J.; Shibin, K.T.; Wamba, S.F. Sustainable supply chain management: Framework and further research directions. J. Clean. Prod. 2017, 142, 1119–1130. [Google Scholar] [CrossRef]
- Tjahjono, B.; Esplugues, C.; Ares, E.; Pelaez, G. What does industry 4.0 mean to supply chain? Procedia Manuf. 2017, 13, 1175–1182. [Google Scholar] [CrossRef]
- Sommer, L. Industrial revolution-industry 4.0: Are German manufacturing SMEs the first victims of this revolution? J. Ind. Eng. Manag. 2015, 8, 1512–1532. [Google Scholar] [CrossRef]
- Luthra, S.; Mangla, S.K. When strategies matter: Adoption of sustainable supply chain management practices in an emerging economy’s context. Resour. Conserv. Recycl. 2018, 138, 194–206. [Google Scholar] [CrossRef]
- Waibel, M.W.; Steenkamp, L.P.; Moloko, N.; Oosthuizen, G.A. Investigating the effects of smart production systems on sustainability elements. Procedia Manuf. 2017, 8, 731–737. [Google Scholar] [CrossRef]
- Oettmeier, K.; Hofmann, E. Additive manufacturing technology adoption: An empirical analysis of general and supply chain-related determinants. J. Bus. Econ. 2017, 87, 97–124. [Google Scholar] [CrossRef]
- Zawadzki, P.; Żywicki, K. Smart product design and production control for effective mass customization in the Industry 4.0 concept. Manag. Prod. Eng. Rev. 2016, 7, 105–112. [Google Scholar] [CrossRef]
- Fritzsche, K.; Niehoff, S.; Beier, G. Industry 4.0 and Climate Change—Exploring the Science-Policy Gap. Sustainability 2018, 10, 4511. [Google Scholar] [CrossRef]
- Lund, H.; Mathiesen, B.V. Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050. Energy 2009, 34, 524–531. [Google Scholar] [CrossRef]
- Tseng, M.L.; Tan, R.R.; Chiu, A.S.; Chien, C.F.; Kuo, T.C. Circular economy meets industry 4.0: Can big data drive industrial symbiosis? Resour. Conserv. Recycl. 2018, 131, 146–147. [Google Scholar] [CrossRef]
- Shamim, S.; Cang, S.; Yu, H.; Li, Y. Management approaches for Industry 4.0: A human resource management perspective. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 5309–5316. [Google Scholar]
- Hirsch-Kreinsen, H. Wandel von Produktionsarbeit–Industrie 4.0. WSI-Mitteilungen 2014, 67, 421–429. [Google Scholar] [CrossRef]
- Pfohl, H.C.; Yahsi, B.; Kurnaz, T. Concept and diffusion-factors of industry 4.0 in the supply chain. In Dynamics in Logistics; Springer: Cham, Switzerland, 2017; pp. 381–390. [Google Scholar]
- Schumacker, R.E.; Lomax, R.G. A Beginner’s Guide to Structural Equation Modeling. Technometrics 2010, 47. [Google Scholar] [CrossRef]
- Bollen, K.A. Structural Equations with Latent Variables; Wiley: Hoboken, NJ, USA, 1989. [Google Scholar]
- Marcoulides, G.A.; Schumacker, R.E. Advanced Structural Equation Modelling; Erlbaum: Mahwah, NJ, USA, 1996. [Google Scholar]
- Hoyle, R.H. Structural Equation Modeling: Concepts, Issues, and Applications; Hoyle, R.H., Ed.; Sage: Thousand Oaks, CA, USA, 1995. [Google Scholar]
- IBM Corp. IBM SPSS Amos; Version 24; IBM Corp.: Armonk, NY, USA, 2016. [Google Scholar]
- Anderson, E.; Weitz, B. Determinants of continuity in conventional industrial channel dyads. Mark. Sci. 1989, 8, 310–323. [Google Scholar] [CrossRef]
- Westland, J.C. Lower bounds on sample size in structural equation modeling. Electron. Commer. Res. Appl. 2010, 9, 476–487. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Eq. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Wei, P.-L.; Huang, J.-H.; Tzeng, G.-H.; Wu, S.-I. Causal modeling of web-advertising effects by improving SEM based on dematel technique. Int. J. Inf. Technol. Decis. Mak. 2010, 9, 799–829. [Google Scholar] [CrossRef]
- Satorra, A.; Bentler, P.M. Model conditions for asymptotic robustness in the analysis of linear relations. Comput. Stat. Data Anal. 1990, 10, 235–249. [Google Scholar] [CrossRef] [Green Version]
- Mulaik, S.A.; James, L.R.; Van Alstine, J.; Bennett, N.; Lind, S.; Stilwell, C.D. Evaluation of goodness-of-fit indices for structural equation models. Psychol. Bull. 1989, 105, 430–445. [Google Scholar] [CrossRef]
- Schmitt, T.A. Current methodological considerations in exploratory and confirmatory factor analysis. J. Psychoeduc. Assess. 2011, 29, 304–321. [Google Scholar] [CrossRef]
- Singh, R. Does my structural model represent the real phenomenon? A review of the appropriate use of Structural Equation Modelling (SEM) model fit indices. Mark. Rev. 2009, 9, 199–212. [Google Scholar] [CrossRef]
Dimension | Influence | References |
---|---|---|
Economic | Increase profits | Pampanelli et al. (2014) [28] |
Increase turnover | Not identified | |
Increase market share of the products | Wilson (2010) [29] | |
Decrease operational costs | Zhu, et al., 2008 [30]; Mollenkopf et al., 2010 [31]; Sezen et al., 2011 [32]; Lozano and Huishingh, 2011 [33]; Azevedo et al., 2012 [34]; Díaz-Reza, et al., 2016 [35]; Gupta, et al., 2018 [36]; | |
Increase process performance | Shah and Ward, 2007 [37]; Sezen, et al., 2011 [38]; Ng, et al., 2015; Díaz-Reza, et al., 2016 [35]. |
Sustainability Dimension | Influence | References |
---|---|---|
Environmental | Decrease industrial waste | Souza and Alves, 2017 [26]; Wilson, 2010 [29]; Torielli, et al., 2011 [43]; Vinodh, et al., 2011 [44]; Gupta, et al., 2018 [36]; Azevedo, et al., 2012 [34]; Hajmohammad, et al., 2013 [45]. |
Decrease energy consumption of non-renewal energy sources | Ioppolo, et al., 2014 [46]. | |
Increase the production of renewal energy | Not identified | |
Increase the practice of circular economy | Nunes and Bennett, 2010 [47]; Zhao and Chen, 2011 [48]; Ming and Xiang, 2011 [49]; Ashish, et al., 2011 [50]; Liao, et al., 2013 [51]. | |
Increase the collaboration with partners that follow good environmental practices | Not identified |
Dimension | Influence | References |
---|---|---|
Social | Increase the number of employees | Not identified |
Increase the salary remuneration | Not identified | |
Increase the quality of work conditions | Ng, et al., 2015 [41]; Taubitz, 2010 [53]; Lozano and Huishingh, 2011 [33]; Vinodh, et al., 2011 [44]; Ioppolo, et al., 2014 [46]; | |
Increase the conditions of the surrounding society | Not identified | |
Decrease working accidents | James, et al., 2013 [54]; | |
Increase the participation of its employees in decision-making | Taubitz, 2010 [53]; Vinodh, et al., 2011 [44]; Jabbour, et al., 2012 [39]. | |
Increase the number of employees with some degree of disability. | Not identified | |
Increase the contract duration of its collaborators | Not identified |
Dimension | Influence | References |
---|---|---|
Economic | Increase: profits, value creation, efficiency, flexibility, and competitiveness | Müller, et al., 2018 [56]; Nagy, et al., 2018 [57]; Laudien, et al., 2017 [58]; Rennung, et al., 2016 [59]; Erol, et al., 2016 [5]; Rehage, et al., 2013 [60]; Rudtsch, et al., 2014 [61]; Brettel, Klein, and Friederichsen, 2016 [62]; Stock and Seliger, 2016 [63]; |
Increase turnover, and create new business models | Arnold, et al., 2015 [64]; Brettel, et al., 2014 [62]; Burmeister, et al., 2016 [65]; Hofmann and Rüsch, 2017 [66]; Duarte and Cruz-Machado, 2017 [67]; Bechtsis, et al., 2017 [68]; de Sousa Jabbour, et al., 2018 [40]; Gilchrist, 2016 [7]; Branke, et al., 2016 [66]; Schmidt, et al., 2015 [67]; Schmidt, et al., Branke, et al., 2016 [69]; 2015 [70]; Nagy, et al., 2018 [57]; Glas, et al., 2016 [71]; | |
Improve: market share of the products, supply chains, and its management performance and security | Dubey, et al., 2017 [72]; Branke, et al., 2016 [69]; Hofmann and Rüsch, 2017 [66]; Stock and Seliger, 2016 [63]; Tjahjono, et al., 2017 [73]; Sommer, 2015 [74]; Wang, et al., 2015 [20]; Lee, Kao, and Yang, 2014 [13]; Luthra and Mangla, 2018 [75]; Nagy, et al., 2018 [57]; | |
Decrease operational costs | Shrouf, et al., 204 [4]; Waibel, et al., 2017 [76]; Yang, 2014 [13]; Schmidt, et al., 2015 [70]; Stock and Seliger, 2016 [63]; | |
Improve processes performance, increase renewable resources, and improve circular economy | Jabbour, et al., 2017 [40]; Oettmeier and Hofmann, 2017 [77]. |
Sustainability Dimension | Influence | References |
---|---|---|
Environmental | Decrease industrial waste | Shrouf, et al., 2014 [4]; Waibel, et al., 2017 [76]; Yang, 2014 [13]; Oettmeier and Hofmann, 2017 [77]; Stock and Seliger, 2016 [63]; Wang, et al., 2015 [20]; |
Decrease energy consumption of non-renewal energy sources | Hofmann and Rusch, 2017 [66]; Fritzsche, et al., 2018 [79]; | |
Increase production of renewal energy | Lund, and Mathiesen, 2019 [80]; | |
Increase practice of circular economy | Jabbour, et al. (2017) [40]; Branke, et al., 2016 [66]; | |
Increase collaboration with partners that follow good environmental practices | Zawadzki and Żywicki, 2016 [78]; Hofmann and Rüsch, 2017 [66]; | |
Decrease resources consumption, global warming, climate changes, and energy requirements | Tseng, et al., 2018 [81]; Fritzsche, et al., 2018 [79]. |
Dimension | Influence | References |
---|---|---|
Social | Increase number of employees | Branke, et al., 2016 [69]; Brettel, Klein, and Friederichsen, 2016 [62]; |
Improve working conditions (e.g., for employees with some disability, training courses, salary, among others) | Shamim, et al., 2016 [82]; Hirsch-Kreinsen, 2014 [83]; Kiel, et al., 2017 [55]; | |
Improve conditions of the surrounding society | Branke, et al., 2016 [66]; Shamim, et al., 2016 [82]; | |
Decrease working accidents | Brettel, Klein, and Friederichsen, 2016 [62]; | |
Increase participation of employees in decision-making | Branke, et al., 2016 [69]; Brettel, Klein, and Friederichsen, 2016 [62]. | |
Increase contract duration of employee and collaboration among stakeholders | Yang, 2014 [13]; Duarte and Cruz-Machado, 2017 [67]; Pfohl, et al., 2017 [84]; Shamim, et al., 2016 [82]. |
Constructs | Manifested Variables |
---|---|
Exogenous | |
Lean Manufacturing (1) | Pull production (X1) |
Product defects (X2) | |
Failures (X3) | |
Industry 4.0 (2) | Big data (X4) |
Autonomous robots (X5) | |
Digitalization (X6) | |
Endogenous | |
Economic Sustainability (1) | Profits (Y1) |
Turnover (Y2) | |
Market share (Y3) | |
Environmental Sustainability (2) | Energy consumption (Y4) |
Circular economy (Y5) | |
Environmental practices with partners (Y6) | |
Social Sustainability () | Salary remuneration (Y7) |
Work conditions (Y8) | |
Surrounding society (Y9) |
Adjustment Indices | Adjustment Measures | Macro in Amos SW | References |
---|---|---|---|
χ2/df | <3 | \cmindf | (Hu and Bentler, 1999), (Wei et al., 2010) [92,93]; |
GFI | >0.9 | \gfi | (Hu and Bentler, 1999), (Wei et al., 2010) [92,93]; |
CFI | >0.9 | \cfi | (Hu and Bentler, 1999) [92]; (Wei et al., 2010), (Singh, 2009) [93,97]; |
TLI | >0.9 | \tli | (Hu and Bentler, 1999), (Singh, 2009) [92,97]; |
IFI | >0.9 | \ifi | (Santora and Bentley, 1990), (Wei et al., 2010) [93,94]; |
PCFI | >0.6 | \pcfi | (Mulaik et al., 1989) [95]; |
PGFI | >0.6 | \pgfi | (Mulaik et al., 1989) [95]; |
RMSEA | <0.08; p > 0.05 | \rmsea \pclose | (Hu and Bentler, 1999), (Wei et al., 2010) [92,93]; |
AIC | Smaller than the independent model | \aic | (Schmitt, 2011) [96]. |
Adjustment Measures | Adjustment Obtained Value | Adjustment Criterion |
---|---|---|
χ2/df | 2.015 | <3 |
GFI | 0.923 | >0.9 |
CFI | 0.951 | >0.9 |
TLI | 0.936 | >0.9 |
IFI | 0.952 | >0.9 |
PCFI | 0.724 | >0.6 |
PGFI | 0.615 | >0.6 |
RMSEA | 0.064 (p = 0.058) | <0.08; p > 0.05 |
AIC | 241.163 < 1787.589 | Smaller than the independent model |
Adjustment Measures | Adjustment Obtained Value | Adjustment Criterion |
---|---|---|
χ2/df | 2.273 | <3 |
GFI | 0.908 | >0.9 |
CFI | 0.936 | >0.9 |
TLI | 0.919 | >0.9 |
IFI | 0.937 | >0.9 |
PCFI | 0.740 | >0.6 |
PGFI | 0.628 | >0.6 |
RMSEA | 0.071 (p = 0.006) | <0.08; p > 0.05 |
AIC | 262.657 < 1787.589 | Smaller than the independent model |
Hypothesis | Exogenous Construct | Endogenous Construct | Est. | SE | CR | p-Value | Conclusion |
---|---|---|---|---|---|---|---|
H1. | Lean | Economic Sustainability | 0.187 | 0.133 | 1.405 | 0.16 | Not confirmed |
H2. | Lean | Environmental Sustainability | −0.167 | 0.365 | −0.457 | 0.648 | Not confirmed |
H3. | Lean | Social Sustainability | −0.142 | 0.280 | −0.508 | 0.611 | Not confirmed |
H4. | Industry 4.0 | Economic Sustainability | 0.457 | 0.132 | 3.466 | <0.001 | Confirmed |
H5. | Industry 4.0 | Environmental Sustainability | 1.482 | 0.477 | 3.108 | 0.002 | Confirmed |
H6. | Industry 4.0 | Social Sustainability | 0.994 | 0.297 | 3.341 | <0.001 | Confirmed |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varela, L.; Araújo, A.; Ávila, P.; Castro, H.; Putnik, G. Evaluation of the Relation between Lean Manufacturing, Industry 4.0, and Sustainability. Sustainability 2019, 11, 1439. https://doi.org/10.3390/su11051439
Varela L, Araújo A, Ávila P, Castro H, Putnik G. Evaluation of the Relation between Lean Manufacturing, Industry 4.0, and Sustainability. Sustainability. 2019; 11(5):1439. https://doi.org/10.3390/su11051439
Chicago/Turabian StyleVarela, Leonilde, Adriana Araújo, Paulo Ávila, Hélio Castro, and Goran Putnik. 2019. "Evaluation of the Relation between Lean Manufacturing, Industry 4.0, and Sustainability" Sustainability 11, no. 5: 1439. https://doi.org/10.3390/su11051439
APA StyleVarela, L., Araújo, A., Ávila, P., Castro, H., & Putnik, G. (2019). Evaluation of the Relation between Lean Manufacturing, Industry 4.0, and Sustainability. Sustainability, 11(5), 1439. https://doi.org/10.3390/su11051439