A Projection of Extreme Precipitation Based on a Selection of CMIP5 GCMs over North Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Climate Change Scenarios
2.3. Theory
- For the first GCM, the model that is located closest to the centroid of the ensemble; i.e., the model with the lowest sum of squared errors (SSE) at the centroid across all of the climate variables is determined, as shown by Equation (1):For the second GCM, the model that lies farthest from the first model is selected. The p-space Euclidean distance is used to calculate the distance, , between the two models (the ith and jth GCMs):
- For selection of the rest of the GCMs (from the 3rd to the last selection)
- (i)
- the distances from each remaining model to the previously selected models are calculated;
- (ii)
- only the lowest distance among those calculated in step 3(i) for each remaining model is retained;
- (iii)
- the model with the maximum distance among those chosen in step 3(ii) is determined as the next model.
- Step 3 is repeated until all the models have been selected in order. Readers are referred to Seo and Kim [19] for an example of the step-by-step procedure used with a simple bi-variate case.
3. Scenario Selection and Evaluation
3.1. RCCS Selection
3.2. Evaluation of Performance during the Reference Period
4. Discussion
4.1. An Evaluation of the Performance for Future Analysis
4.2. Future Projections Based on RCCS
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, D.K.; Cha, D.H.; Kang, H.S. Regional climate simulation of the 1998 summer flood over East Asia. J. Meteorol. Soc. Jpn. 2004, 82, 1735–1753. [Google Scholar] [CrossRef]
- Kang, H.S.; Cha, D.H.; Lee, D.K. Evaluation of the mesoscale model/land surface model (MM5/LSM) coupled model for East Asian summer monsoon simulations. J. Geophys. Res.-Atmos. 2005, 110, D10105. [Google Scholar] [CrossRef]
- Hong, S.Y.; Lee, J.W. Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmos. Res. 2009, 93, 818–831. [Google Scholar] [CrossRef]
- Kim, Y.; Kang, B.; Adams, J.M. Opposite trends in summer precipitation in South and North Korea. Int. J. Climatol. 2012, 32, 2311–2319. [Google Scholar] [CrossRef]
- Sung, J.H.; Chung, E.-S.; Kim, Y.; Lee, B.R. Meteorological hazard assessment based on trends and abrupt changes in rainfall characteristics on the Korean peninsula. Theor. Appl. Climatol. 2017, 127, 305–326. [Google Scholar] [CrossRef]
- Harmeling, S.; Eckstein, D. Global Climate Risk Index 2013; Germanwatch: Bonn, Germany, 2012; ISBN 978-3-943704-04-4. [Google Scholar]
- Harmeling, S. Global Climate Risk Index 2009; Germanwatch: Bonn, Germany, 2008; ISBN 978-3-939846-45-1. [Google Scholar]
- Min, S.K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Chang. 2013, 119, 345–357. [Google Scholar] [CrossRef]
- Zhang, X.; Wan, H.; Zwiers, F.W.; Hegerl, G.C.; Min, S.K. Attributing intensification of precipitation extremes to human influence. Geophys. Res. Lett. 2013, 40, 5252–5257. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E.M.; Knutti, R. Observed heavy precipitation increase confirms theory and early models. Nat. Clim. Chang. 2016, 6, 986–991. [Google Scholar] [CrossRef]
- Zhang, X.; Zwiers, F.W.; Li, G.; Wan, H.; Cannon, A.J. Complexity in estimating past and future extreme short-duration rainfall. Nat. Geosci. 2017, 10, 255–259. [Google Scholar] [CrossRef]
- Raftery, A.E.; Gneiting, T.; Balabdaoui, F.; Polakowski, M. Using Bayesian model averaging to calibrate forecast ensemble. Mon. Weather Rev. 2005, 133, 1155–1174. [Google Scholar] [CrossRef]
- Raisanen, J.; Palmer, T.N. A probability and decision-model analysis of a multimodel ensemble of climate change simulation. J. Clim. 2001, 14, 3212–3226. [Google Scholar] [CrossRef]
- Rajagopalan, B.; Lall, U.; Zebiak, S.E. Categorical climate forecasts through regularization and optimal combination of multiple GCM ensembles. Mon. Weather Rev. 2002, 130, 1792–1811. [Google Scholar] [CrossRef]
- Sung, J.H.; Chung, E.-S.; Shahid, S. Reliability–Resiliency–Vulnerability Approach for Drought Analysis in South Korea Using 28 GCMs. Sustainability 2018, 10, 3043. [Google Scholar] [CrossRef]
- Sung, J.H.; Eum, H.-I.; Park, J.; Cho, J. Assessment of Climate Change Impacts on Extreme Precipitation Events: Applications of CMIP5 Climate Projections Statistically Downscaled over South Korea. Adv. Meteorol. 2018, 2018, 4720523. [Google Scholar] [CrossRef]
- Seo, S.B.; Kim, Y.-O.; Kim, Y.; Eum, H.-I. Selecting climate change scenarios for regional hydrologic impact studies based on climate extremes indices. Clim. Dyn. 2019, 52, 1595–1611. [Google Scholar] [CrossRef]
- Seo, S.B.; Kim, Y.-O. Impact of Spatial Aggregation Level of Climate Indicators on a National-Level Selection for Representative Climate Change Scenarios. Sustainability 2018, 10, 2409. [Google Scholar] [CrossRef]
- Tebaldi, C.; Sanso, B. Joint projections of temperature and precipitation change from multiple climate models: A hierarchical Bayesian approach. J. R. Stat. Soc. Ser. C Appl. Stat. 2009, 172, 83–106. [Google Scholar] [CrossRef]
- Watterson, I.; Whetton, P. Joint PDFs for Australian climate in future decades and an idealized application to wheat crop yield. Aust. Meteorol. Ocean. 2011, 61, 221–230. [Google Scholar] [CrossRef]
- Luo, L.; Wood, E.F. Use of Bayesian merging techniques in a multimodel seasonal hydrologic ensemble prediction system for the eastern United States. J. Hydrometeorol. 2008, 9, 866–884. [Google Scholar] [CrossRef]
- Wang, H.; Reich, B.; Lim, Y.H. A Bayesian approach to probabilistic streamflow forecasts. J. Hydroinform. 2013, 15, 381–391. [Google Scholar] [CrossRef]
- Seo, S.B.; Kim, Y.-O.; Kang, S.-U.; Chun, G.I. Improvement in long-range streamflow forecasting accuracy using the Bayesian method. Hydrol. Res. 2019. [Google Scholar] [CrossRef]
- McSweeney, C.F.; Jones, R.G.; Lee, R.W.; Rowell, D.P. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 2015, 44, 3237–3260. [Google Scholar] [CrossRef]
- Lee, J.-K.; Kim, Y.-O. Selecting climate change scenarios reflecting uncertainties. Atmosphere 2012, 22, 149–161. [Google Scholar] [CrossRef]
- Knutti, R.; Masson, D.; Gettelman, A. Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett. 2013, 40, 1194–1199. [Google Scholar] [CrossRef] [Green Version]
- Molteni, F.; Buizza, R.; Marsigli, C.; Montani, A.; Nerozzi, F.; Paccagnella, T. A strategy for high-resolution ensemble prediction. I: Definition of representative members and global-model experiments. Q. J. R. Meteorol. Soc. 2001, 127, 2069–2094. [Google Scholar] [CrossRef]
- Houle, D.; Bouffard, A.; Duchesne, L.; Logan, T.; Harvey, R. Projections of future soil temperature and water content for three southern Quebec forested sites. J. Clim. 2012, 25, 7690–7701. [Google Scholar] [CrossRef]
- Katsavounidis, I.; Kuo, C.C.J.; Zhang, Z. A new initialization technique for generalized Lloyd iteration. IEEE Signal Process. Lett. 1994, 1, 144–146. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Lucas-Picher, P. Transferability of optimally-selected climate models in the quantification of climate change impacts on hydrology. Clim. Dyn. 2016, 47, 3359–3372. [Google Scholar] [CrossRef]
- Eum, H.-I.; Cannon, A.J. Intercomparison of projected changes in climate extremes for South Korea: Application of trend preserving statistical downscaling methods to the CMIP5 ensemble. Int. J. Climatol. 2017, 37, 3381–3397. [Google Scholar] [CrossRef]
- Cannon, A.J. Selecting GCM scenarios that span the range of changes in a multimodel ensemble: Application to CMIP5 climate extremes indices. J. Clim. 2015, 28, 1260–1267. [Google Scholar] [CrossRef]
- Katz, R.W.; Parlange, M.B.; Naveau, P. Statistics of extremes in hydrology. Adv. Water Resour. 2002, 25, 1287–1304. [Google Scholar] [CrossRef] [Green Version]
- Kharin, V.V.; Zwiers, F.W. Estimating extremes in transient climate change simulations. J. Clim. 2005, 18, 1156–1173. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X. Intercomparison of near surface temperature and precipitation extremes in AMIP-2 simulations, reanalyses, and observations. J. Clim. 2006, 18, 5201–5223. [Google Scholar] [CrossRef]
- Stedinger, J.R.; Vogel, R.M.; Foufoula-Georgiou, E. Chapter 18: Frequency Analysis of Extreme Events. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis: An Approach Based on L-Moments; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Klein Tank, A.M.G.; Zwiers, F.W.; Zhang, X. Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation; Climate Data and Monitoring WCDMP-No. 72, WMO-TD 2009; No. 1500; World Meteorological Organization: Geneva, Switzerland, 2009; 56p. [Google Scholar]
- Kwon, M.; Sung, J.H.; Ahn, J. Change in Extreme Precipitation over North Korea Using Multiple Climate Change Scenarios. Water 2019, 11, 270. [Google Scholar] [CrossRef]
- Kwon, M.; Sung, J.H. Changes in Future Drought with HadGEM2-AO Projections. Water 2019, 11, 312. [Google Scholar] [CrossRef]
- Lee, H.; Moon, B.-K.; Wie, J. Future extreme temperature and precipitation mechanisms over the Korean peninsula using a regional climate model simulation. J. Korean Earth Sci. Soc. 2018, 39, 327–341. [Google Scholar] [CrossRef]
- Lee, D.; Min, S.-K.; Jin, J.; Lee, J.-W.; Cha, D.-H.; Suh, M.-S.; Joh, M. Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: A multi-RCM study. Clim. Dyn. 2017, 49, 4121–4139. [Google Scholar] [CrossRef]
No. | GCMs | Resolution (degree) | Institution |
---|---|---|---|
1 | CanESM2 | 2.813 × 2.791 | Canadian Centre for Climate Modelling and Analysis |
2 | CCSM4 | 1.250 × 0.942 | National Center for Atmospheric Research |
3 | CESM1-BGC | 1.250 × 0.942 | |
4 | CESM1-CAM5 | 1.250 × 0.942 | |
5 | CMCC-CM | 0.750 × 0.748 | Centro Euro-Mediterraneo per I Cambiamenti Climatici |
6 | CMCC-CMS | 1.875 × 1.865 | |
7 | CNRM-CM5 | 1.406 × 1.401 | Centre National de Recherches Meteorologiques |
8 | CSIRO-Mk3-6-0 | 1.875 × 1.865 | Commonwealth Scientific and Industrial Research Organisation and Queensland Climate Change Center of Excellence |
9 | FGOALS-g2 | 2.791 × 2.813 | LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences |
10 | FGOALS-s2 | 2.813 × 1.659 | |
11 | GFDL-CM3 | 2.500 × 2.000 | Geophysical Fluid Dynamics Laboratory |
12 | GFDL-ESM2G | 2.000 × 2.023 | |
13 | GFDL-ESM2M | 2.500 × 2.023 | |
14 | HadGEM2-AO | 1.875 × 1.250 | Met Office Hadley Centre |
15 | HadGEM2-CC | 1.875 × 1.250 | |
16 | INM-CM4 | 2.000 × 1.500 | Institute for Numerical Mathematics |
17 | IPSL-CM5A-LR | 3.750 × 1.895 | Institute Pierre-Simon Laplace |
18 | IPSL-CM5A-MR | 2.500 × 1.268 | |
19 | IPSL-CM5B-LR | 3.750 × 1.895 | |
20 | MIROC-ESM | 2.813 × 2.791 | Japan Agency for Marine-Earth Science and Technology |
21 | MIROC-ESM-CHEM | 2.813 × 2.791 | |
22 | MPI-ESM-LR | 1.875 × 1.865 | Max Planck Institute for Meteorology (MPI-M) |
23 | MPI-ESM-MR | 1.875 × 1.865 | |
24 | MRI-CGCM3 | 1.125 × 1.122 | Meteorological Research Institute |
25 | NorESM1-M | 2.500 × 1.895 | Norwegian Climate Centre |
Data | GEV Parameter | ||
---|---|---|---|
Location | Scale | Shape | |
Observation | 80.618 | 28.585 | −0.107 |
All CCS | 95.510 | 36.541 | −0.092 |
FGOALS−s2 | 92.094 | 34.936 | −0.177 |
GFDL-ESM2G | 91.938 | 38.509 | −0.107 |
HadGEM2-CC | 94.081 | 33.118 | −0.060 |
CanESM2 | 93.565 | 32.818 | −0.173 |
IPSL-CM5A-MR | 95.620 | 35.775 | −0.112 |
RCCS | 93.460 | 35.031 | −0.126 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, J.H.; Kwon, M.; Jeon, J.-J.; Seo, S.B. A Projection of Extreme Precipitation Based on a Selection of CMIP5 GCMs over North Korea. Sustainability 2019, 11, 1976. https://doi.org/10.3390/su11071976
Sung JH, Kwon M, Jeon J-J, Seo SB. A Projection of Extreme Precipitation Based on a Selection of CMIP5 GCMs over North Korea. Sustainability. 2019; 11(7):1976. https://doi.org/10.3390/su11071976
Chicago/Turabian StyleSung, Jang Hyun, Minsung Kwon, Jong-June Jeon, and Seung Beom Seo. 2019. "A Projection of Extreme Precipitation Based on a Selection of CMIP5 GCMs over North Korea" Sustainability 11, no. 7: 1976. https://doi.org/10.3390/su11071976
APA StyleSung, J. H., Kwon, M., Jeon, J. -J., & Seo, S. B. (2019). A Projection of Extreme Precipitation Based on a Selection of CMIP5 GCMs over North Korea. Sustainability, 11(7), 1976. https://doi.org/10.3390/su11071976