Assessing the Heat Vulnerability of Different Local Climate Zones in the Old Areas of a Chinese Megacity
Abstract
:1. Introduction
- (1)
- what the typical distribution rules of LCZ classes in the old areas of the Chinese megacity are;
- (2)
- how to assess urban heat vulnerabilities based on LCZ classification;
- (3)
- what the relationship between LCZ classes and heat vulnerability indicators is; and
- (4)
- what the distribution rule of the heat vulnerabilities in the old areas, according to LCZ classes, is.
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.2.1. Date Source and Preprocessing
2.2.2. Identifying Spatial Scale
2.2.3. Identifying Heat Vulnerability Indicators
Exposure
Sensitivity
Adaptability
2.2.4. Land Cover Classification
2.2.5. LCZ Classification
2.3. Assessment Method
3. Results
3.1. Distribution of Local Climate Zone Classes
3.2. Land Surface Temperature of LCZ Classes
3.3. Building Age of LCZ Classes
3.4. Housing Price of LCZ Classes
3.5. The Vulnerability of Different LCZ Classes
4. Discussion
4.1. Reducing the Heat Vulnerability by Water Bodies and Green Spaces
4.2. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
LCZ | Sky View Factor | Aspect Ratio | Building Surface Fraction (%) | Impervious Surface Fraction (%) | Pervious Surface Fraction (%) | Height of Roughness Elements (m) | Terrain Roughness Class | Surface Admittance (J m−2s−1/2K−1) | Surface Albedo | Anthropogenic Heat Output (W m−2) |
---|---|---|---|---|---|---|---|---|---|---|
LCZ 1 Compact High-Rise (CHR) | 0.2–0.4 | >2 | 40–60 | 40–60 | <10 | >25 | 8 | 1500–1800 | 0.10–0.20 | 50–300 |
LCZ 2 Compact Mid-rise (CMR) | 0.3–0.6 | 0.75–2 | 40–70 | 30–50 | <20 | 10–25 | 6–7 | 1500–2200 | 0.10–0.20 | <75 |
LCZ 3 Compact Low-rise (CLR) | 0.2–0.6 | 0.75–1.5 | 40–70 | 20–50 | <30 | 3–10 | 6 | 1200–1800 | 0.10–0.20 | <75 |
LCZ 4 Open High-rise (OHR) | 0.5–0.7 | 0.75–1.25 | 20–40 | 30–40 | 30–40 | >25 | 7–8 | 1400–1800 | 0.12–0.25 | <50 |
LCZ 5 Open Mid-rise (OMR) | 0.5–0.8 | 0.3–0.75 | 20–40 | 30–50 | 20–40 | 10–25 | 5–6 | 1400–2000 | 0.12–0.25 | <25 |
LCZ 6 Open Low-rise (OLR) | 0.6–0.9 | 0.3–0.75 | 20–40 | 20–50 | 30–60 | 3–10 | 5–6 | 1200–1800 | 0.12–0.25 | <25 |
LCZ 7 Lightweight Low-rise | 0.2–0.5 | 1–2 | 60–90 | <20 | <30 | 2–4 | 4–5 | 800–1500 | 0.15–0.35 | <35 |
LCZ 8 Large Low-rise | >0.7 | 0.1–0.3 | 10–20 | 40–50 | <20 | 3–10 | 5 | 1200–1800 | 0.15–0.25 | <50 |
LCZ 9 Sparsely Built (SB) | >0.8 | 0.1–0.25 | 20–30 | <20 | 60–80 | 3–10 | 5–6 | 1000–1800 | 0.12–0.25 | <10 |
LCZ 10 Heavy Industry (HI) | 0.6–0.9 | 0.2–0.5 | <10 | 20–40 | 40–50 | 5–15 | 5–6 | 1000–2500 | 0.12–0.20 | 0 |
LCZ A Dense Trees | <0.4 | >1 | <10 | <10 | >90 | 3–30 | 8 | - | 0.10–0.20 | 0 |
LCZ B Scattered Trees | 0.5–0.8 | 0.25–0.75 | <10 | <10 | >90 | 3–15 | 5–6 | 700–1500 | 0.15–0.25 | 0 |
Lcz C Bush, Scrub | 0.7–0.9 | 0.25–1.0 | <10 | <10 | >90 | <2 | 4–5 | 1200–1600 | 0.15–0.25 | 0 |
LCZ D Low Plants | >0.9 | <0.1 | <10 | <10 | >90 | <1 | 3–4 | 1200–2500 | 0.15–0.30 | 0 |
LCZ E Bare Rock or Paved | >0.9 | <0.1 | <10 | >90 | <10 | <0.25 | 1–2 | 600–1400 | 0.20–0.35 | 0 |
LCZ F Bare Soil or Sand | >0.9 | <0.1 | <10 | <10 | >90 | <0.25 | 1–2 | 600–1400 | 0.20–0.35 | 0 |
LCZ G Water | >0.9 | <0.1 | <10 | <10 | >90 | - | 1 | 1500 | 0.02–0.10 | 0 |
References
- Sailor, D.J.; Fan, H. Modeling the diurnal variability of effective albedo for cities. Atmos. Environ. 2002, 36, 713–725. [Google Scholar] [CrossRef]
- Kalisa, E.; Fadlallah, S.; Amani, M.; Nahayo, L.; Habiyaremye, G. Temperature and air pollution relationship during heatwaves in Birmingham, UK. Sustain. Cities Soc. 2018, 43, 111–120. [Google Scholar] [CrossRef]
- Mayrhuber, E.A.S.; Dückers, M.L.; Wallner, P.; Arnberger, A.; Allex, B.; Wiesböck, L.; Kutalek, R. Vulnerability to heatwaves and implications for public health interventions—A scoping review. Environ. Res. 2018, 166, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhou, C.; Zhuo, Y.; Xu, L.; Jiang, Y. Outdoor thermal environments and activities in open space: an experiment study in humid subtropical climates. Build. Environ. 2016, 103, 238–249. [Google Scholar] [CrossRef]
- Dye, C. Health and urban living. Science 2008, 319, 766–769. [Google Scholar] [CrossRef]
- Khalaj, B.; Lloyd, G.; Sheppeard, V.; Dear, K. The health impacts of heat waves in five regions of New South Wales, Australia: A case-only analysis. Int. Arch. Occup. Environ. Health 2010, 83, 833–842. [Google Scholar] [CrossRef] [PubMed]
- CDC. Asthma in the US Growing Every Year. CDC Vital Signs; 2011. Available online: http://www.cdc.gov/vitalsigns/asthma/ (accessed on 15 January 2019).
- Yeganeh, A.J.; Reichard, G.; McCoy, A.P.; Bulbul, T.; Jazizadeh, F. Correlation of ambient air temperature and cognitive performance: A systematic review and meta-analysis. Build. Environ. 2018. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Brunner, J.L. Climate change and Ixodes tick-borne diseases of humans. Philos. Trans. R. Soc. B: Biol. Sci. 2015, 370, 20140051. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Lu, Y.; Zhou, S.; Chen, L.; Xu, B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ. Int. 2016, 86, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Schinasi, L.H.; Benmarhnia, T.; de Roos, A.J. Modification of the association between high ambient temperature and health by urban microclimate indicators: A systematic review and meta-analysis. Environ. Res. 2018, 161, 168–180. [Google Scholar] [CrossRef]
- Rovers, V.; Bosch, P.R.; Albers, R. Final Report Climate Proof Cities 2010–2014. KFC 129/2014. 2014. Available online: http://edepot.wur.nl/351021 (accessed on 15 January 2019).
- Robine, J.M.; Cheung, S.L.K.; Le Roy, S.; van Oyen, H.; Griffiths, C.; Michel, J.P.; Herrmann, F.R. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biol. 2008, 331, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Center for Disease Control and Prevention (CDC) US. Climate Change and Extreme Heat Events; Center for Disease Control and Prevention: Atlanta, GA, USA, 2013. [Google Scholar]
- IPCC. Summary for policymakers. In Climate Change 2014, Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; In, O., Edenhofer, R., Pichs-Madruga, Y., Sokona, E., Farahani, S., Kadner, K., Seyboth, A., Adler, I., Baum, S., Brunner, P., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1–33. [Google Scholar]
- Leal Filho, W.; Icaza, L.E.; Neht, A.; Klavins, M.; Morgan, E.A. Coping with the impacts of urban heat islands. A literature based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context. J. Clean. Prod. 2018, 171, 1140–1149. [Google Scholar] [CrossRef]
- Füssel, H.M. Vulnerability: A generally applicable conceptual framework for climate change research. Glob. Environ. Change 2007, 17, 155–167. [Google Scholar] [CrossRef]
- Madrigano, J.; Ito, K.; Johnson, S.; Kinney, P.L.; Matte, T. A case-only study of vulnerability to heat wave–related mortality in New York City (2000–2011). Environ. Health Perspect. 2015, 123, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Inostroza, L.; Palme, M.; de la Barrera, F. A heat vulnerability index: spatial patterns of exposure, sensitivity and adaptive capacity for Santiago de Chile. PloS ONE 2016, 11, e0162464. [Google Scholar] [CrossRef] [PubMed]
- van der Hoeven, F.; Wandl, A. Amsterwarm: Mapping the landuse, health and energy-efficiency implications of the Amsterdam urban heat island. Build. Serv. Eng. Res. Technol. 2015, 36, 67–88. [Google Scholar] [CrossRef]
- Wolf, T.; McGregor, G. The development of a heat wave vulnerability index for London, United Kingdom. Weather Clim. Extremes 2013, 1, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Birkmann, J. Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies; No. Sirsi i9789280811353; TERI Press: New Dehli, India, 2006. [Google Scholar]
- Ma, M.; Cai, W.; Cai, W.; Dong, L. Whether carbon intensity in the commercial building sector decouples from economic development in the service industry? Empirical evidence from the top five urban agglomerations in China. Journal of Cleaner Production. 2019, 222, 193–205. [Google Scholar] [CrossRef]
- Walton, Z.L.; Poudyal, N.C.; Hepinstall-Cymerman, J.; Gaither, C.J.; Boley, B.B. Exploring the role of forest resources in reducing community vulnerability to the heat effects of climate change. For. Policy Econ. 2016, 71, 94–102. [Google Scholar] [CrossRef]
- Dong, W.; Liu, Z.; Zhang, L.; Tang, Q.; Liao, H.; Li, X.E. Assessing heat health risk for sustainability in Beijing’s urban heat island. Sustainability 2014, 6, 7334–7357. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Yang, X.; Yao, L.; Jin, T.; Peng, L.L.; Jiang, Z.; Hu, Z.; Ye, Y. Assessing the thermal behavior of different local climate zones in the Nanjing metropolis, China. Build. Environ. 2018, 137, 171–184. [Google Scholar] [CrossRef]
- Mushore, T.D.; Dube, T.; Manjowe, M.; Gumindoga, W.; Chemura, A.; Rousta, I.; Mutanga, O. Remotely sensed retrieval of local climate zones and their linkages to land surface temperature in Harare metropolitan city, Zimbabwe. Urban Clim. 2019, 27, 259–271. [Google Scholar] [CrossRef]
- Cai, Z.; Han, G.F. Assessing land surface temperature in the mountain city with different urban spatial form based on local climate zone scheme. J. Mt. Res. 2018, 36, 617–627. (In Chinese) [Google Scholar]
- Brousse, O.; Georganos, S.; Demuzere, M.; Vanhuysse, S.; Wouters, H.; Wolff, E.; Dujardin, S. using local climate zones in Sub-Saharan Africa to tackle urban health issues. Urban Clim. 2019, 27, 227–242. [Google Scholar] [CrossRef]
- Verdonck, M.L.; Demuzere, M.; Hooyberghs, H.; Beck, C.; Cyrys, J.; Schneider, A.; Van Coillie, F. The potential of local climate zones maps as a heat stress assessment tool, supported by simulated air temperature data. Landsc. Urban Plann. 2018, 178, 183–197. [Google Scholar] [CrossRef]
- Shi, Y.; Lau, K.K.L.; Ren, C.; Ng, E. Evaluating the local climate zone classification in high-density heterogeneous urban environment using mobile measurement. Urban Clim. 2018, 25, 167–186. [Google Scholar] [CrossRef]
- Demuzere, M.; Bechtel, B.; Mills, G. Global transferability of local climate zone models. Urban Clim. 2019, 27, 46–63. [Google Scholar] [CrossRef]
- Li, C.; Yu, C.W. Mitigation of urban heat development by cool island effect of green space and water body. In Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning; Springer: Berlin, Germany, 2014; pp. 551–561. [Google Scholar]
- Han, G.F.; Cai, Z.; Xie, Y.S.; Zeng, W. Correlation between urban construction and urban heat island: A case study in Kaizhou District, Chongqing. J. Civ. Arch. Env. Eng. 2016, 38, 138–147. (In Chinese) [Google Scholar] [CrossRef]
- Chun, B.; Guldmann, J.M. Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landsc. Urban Plan. 2014, 125, 76–88. [Google Scholar] [CrossRef]
- Song, J.; Du, S.; Feng, X.; Guo, L. The relationships between landscape compositions and land surface temperature: Quantifying their resolution sensitivity with spatial regression models. Landsc. Urban Plann. 2014, 123, 145–157. [Google Scholar] [CrossRef]
- Masoudi, M.; Tan, P.Y. Multi-year comparison of the effects of spatial pattern of urban green spaces on urban land surface temperature. Landsc. Urban Plan. 2019, 184, 44–58. [Google Scholar] [CrossRef]
- Klok, L.; Zwart, S.; Verhagen, H.; Mauri, E. The surface heat island of Rotterdam and its relationship with urban surface characteristics. Resour. Conserv. Recycl. 2012, 64, 23–29. [Google Scholar] [CrossRef]
- Nichol, J.E.; Fung, W.Y.; Lam, K.S.; Wong, M.S. Urban heat island diagnosis using ASTER satellite images and ‘in situ’air temperature. Atmos. Res. 2009, 94, 276–284. [Google Scholar] [CrossRef]
- Schwarz, N.; Schlink, U.; Franck, U.; Großmann, K. Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—An application for the city of Leipzig (Germany). Ecol. Indic. 2012, 18, 693–704. [Google Scholar] [CrossRef]
- Sheng, L.; Tang, X.; You, H.; Gu, Q.; Hu, H. Comparison of the urban heat island intensity quantified by using air temperature and Landsat land surface temperature in Hangzhou, China. Ecol. Indic. 2017, 72, 738–746. [Google Scholar] [CrossRef]
- Cai, Z.; Han, G.; Chen, M. Do water bodies play an important role in the relationship between urban form and land surface temperature? Sustain. Cities Soc. 2018, 39, 487–498. [Google Scholar] [CrossRef]
- Zhou, S.; Xie, M.; Kwan, M.P. Ageing in place and ageing with migration in the transitional context of urban China: A case study of ageing communities in Guangzhou. Habitat Int. 2015, 49, 177–186. [Google Scholar] [CrossRef]
- Scott, P. Urban population structure: an Australian case study. Geographer 1971, 18, 1–16. [Google Scholar]
- Waddicor, D.A.; Fuentes, E.; Sisó, L.; Salom, J.; Favre, B.; Jiménez, C.; Azar, M. Climate change and building ageing impact on building energy performance and mitigation measures application: A case study in Turin, northern Italy. Build. Environ. 2016, 102, 13–25. [Google Scholar] [CrossRef]
- Atalay, K.; Edwards, R.; Liu, B.Y. Effects of house prices on health: New evidence from Australia. Soc. Sci. Med. 2017, 192, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the ‘local climate zone’scheme using temperature observations and model simulations. Int. J. Climatol. 2014, 34, 1062–1080. [Google Scholar] [CrossRef]
- Oke, T.R. Canyon geometry and the nocturnal urban heat island: comparison of scale model and field observations. J. Climatol. 1981, 1, 237–254. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Depietri, Y.; Welle, T.; Renaud, F.G. Social vulnerability assessment of the Cologne urban area (Germany) to heat waves: Links to ecosystem services. Int. J. Disaster Risk Reduct. 2013, 6, 98–117. [Google Scholar] [CrossRef]
- Weber, S.; Sadoff, N.; Zell, E.; de Sherbinin, A. Policy-relevant indicators for mapping the vulnerability of urban populations to extreme heat events: A case study of Philadelphia. Appl. Geograph. 2015, 63, 231–243. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, T.; Lin, H.; Xiao, J.; Luo, Y.; Zeng, W.; Du, Y. The spatial distribution of health vulnerability to heat waves in Guangdong Province, China. Glob. Health Action 2014, 7, 25051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinner, C.; Patychuk, D.; Bassil, K.; Nasr, S.; Gower, S.; Campbell, M. The role of maps in neighborhood-level heat vulnerability assessment for the city of Toronto. Cartogr. Geogr. Inf. Sci. 2010, 37, 31–44. [Google Scholar] [CrossRef]
- Qiang, Y.; Shen, S.; Chen, Q. Visibility analysis of oceanic blue space using digital elevation models. Landsc. Urban Plan. 2019, 181, 92–102. [Google Scholar] [CrossRef]
- Luttik, J. The value of trees, water and open space as reflected by house prices in the Netherlands. Landsc. Urban Plan. 2000, 48, 161–167. [Google Scholar] [CrossRef]
- Coccolo, S.; Pearlmutter, D.; Kaempf, J.; Scartezzini, J.L. Thermal comfort maps to estimate the impact of urban greening on the outdoor human comfort. Urban For. Urban Green. 2018, 35, 91–105. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, G.E.; Lee, J.S.; Choi, Y. Understanding the local impact of urban park plans and park typology on housing price: A case study of the Busan metropolitan region, Korea. Landsc. Urban Plan. 2019, 184, 1–11. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Tang, Y.; Chen, K.; Han, G. Assessing the Heat Vulnerability of Different Local Climate Zones in the Old Areas of a Chinese Megacity. Sustainability 2019, 11, 2032. https://doi.org/10.3390/su11072032
Cai Z, Tang Y, Chen K, Han G. Assessing the Heat Vulnerability of Different Local Climate Zones in the Old Areas of a Chinese Megacity. Sustainability. 2019; 11(7):2032. https://doi.org/10.3390/su11072032
Chicago/Turabian StyleCai, Zhi, Yan Tang, Kai Chen, and Guifeng Han. 2019. "Assessing the Heat Vulnerability of Different Local Climate Zones in the Old Areas of a Chinese Megacity" Sustainability 11, no. 7: 2032. https://doi.org/10.3390/su11072032
APA StyleCai, Z., Tang, Y., Chen, K., & Han, G. (2019). Assessing the Heat Vulnerability of Different Local Climate Zones in the Old Areas of a Chinese Megacity. Sustainability, 11(7), 2032. https://doi.org/10.3390/su11072032