Combined Impact of Socioeconomic Forces and Policy Implications: Spatial-Temporal Dynamics of the Ecosystem Services Value in Yangtze River Delta, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Analytical Framework
2.3. Data Sources
2.3.1. LULC Data
2.3.2. Driving Factors Data
2.4. ESV Assessment
2.5. Exploratory Spatial Data Analysis
2.5.1. Global Spatial Autocorrelation
2.5.2. Local Spatial Autocorrelation
2.6. Spatial Regression Model
3. Results
3.1. Change of ESV
3.2. Spatial Pattern of Changes of ESV
3.3. Spatial Regression Model Estimation
4. Discussion
4.1. Inevitable ESV Loss in Urbanization
4.2. Spatial Spillover Effects
4.3. Driving Factors Related to ESV Loss
4.4. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reenberg, A. Land Systems Research in Denmark: Background and perspectives. Geogr. Tidsskr. Dan. J. Geogr. 2006, 106, 1–6. [Google Scholar] [CrossRef]
- Tuan, Y.F. Geography, Phenomenology, and the Study of Human Nature. Can. Geogr. 2010, 3, 181–192. [Google Scholar] [CrossRef]
- Hynes, S.; Campbell, D. Estimating the welfare impacts of agricultural landscape change in Ireland: A choice experiment approach. J. Environ. Plan. Manag. 2011, 54, 1019–1039. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J. Land-Use and Land-Cover Change. Ambio 1992, 21, 122. [Google Scholar] [CrossRef]
- Holzkämper, A.; Seppelt, R. A generic tool for optimising land-use patterns and landscape structures. Environ. Model. Softw. 2007, 22, 1801–1804. [Google Scholar] [CrossRef]
- Marull, J.; Pino, J.; Tello, E.; Cordobilla, M.J. Social metabolism, landscape change and land-use planning in the Barcelona Metropolitan Region. Land Use Policy 2010, 27, 497–510. [Google Scholar] [CrossRef]
- Burton, M.L.; Samuelson, L.J.; Mackenzie, M.D. Riparian woody plant traits across an urban–rural land use gradient and implications for watershed function with urbanization. Landsc. Urban Plan. 2009, 90, 42–55. [Google Scholar] [CrossRef]
- Peco, B.; de Pablos, I.; Traba, J.; Levassor, C. The effect of grazing abandonment on species composition and functional traits: The case of dehesa grasslands. Basic Appl. Ecol. 2005, 6, 175–183. [Google Scholar] [CrossRef]
- Momeni, R.; Aplin, P.; Boyd, D. Mapping Complex Urban Land Cover from Spaceborne Imagery: The Influence of Spatial Resolution, Spectral Band Set and Classification Approach. Remote Sens. 2016, 8, 88. [Google Scholar] [CrossRef]
- Wang, L.; Li, C.; Ying, Q.; Cheng, X.; Wang, X.; Li, X.; Hu, L.; Liang, L.; Yu, L.; Huang, H.; et al. China’s urban expansion from 1990 to 2010 determined with satellite remote sensing. Chin. Sci. Bull. 2012, 57, 2802–2812. [Google Scholar] [CrossRef] [Green Version]
- Estoque, R.C.; Murayama, Y. Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landsc. Urban Plan. 2013, 116, 60–72. [Google Scholar] [CrossRef]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Shao, X.; Zhang, Y.; Cao, Y. Land-use changes and policy dimension driving forces in China: Present, trend and future. Land Use Policy 2012, 29, 737–749. [Google Scholar] [CrossRef]
- Meyer, T.; Okin, G.S. Evaluation of spectral unmixing techniques using MODIS in a structurally complex savanna environment for retrieval of green vegetation, nonphotosynthetic vegetation, and soil fractional cover. Remote Sens. Environ. 2015, 161, 122–130. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Jokar Arsanjani, J.; Helbich, M.; Kainz, W.; Darvishi Boloorani, A. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment Board. Millennium Ecosystem Assessment: Frameworks; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Baral, H.; Keenan, R.J.; Sharma, S.K.; Stork, N.E.; Kasel, S. Economic evaluation of ecosystem goods and services under different landscape management scenarios. Land Use Policy 2014, 39, 54–64. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; Groot, R.D.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. World Environ. 1997, 25, 3–15. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Kroeger, T.; Wagner, J.E. Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef]
- Vejre, H.; Jensen, F.S.; Thorsen, B.J. Demonstrating the importance of intangible ecosystem services from peri-urban landscapes. Ecol. Complex. 2010, 7, 338–348. [Google Scholar] [CrossRef]
- Vihervaara, P.; Kumpula, T.; Tanskanen, A.; Burkhard, B. Ecosystem services—A tool for sustainable management of human–environment systems. Case study Finnish Forest Lapland. Ecol. Complex. 2010, 7, 410–420. [Google Scholar] [CrossRef]
- Xie, G.D.; Lin, Z.; Chun-Xia, L.U.; Yu, X.; Cao, C. Expert Knowledge Based Valuation Method of Ecosystem Services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Shi-Mei, L.I. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar] [CrossRef]
- Boyd, J.; Banzhaf, S. What are ecosystem services? The need for standardized environmental accounting units. Ecol. Econ. 2007, 63, 616–626. [Google Scholar] [CrossRef]
- Bj Rklund, J.; Limburg, K.E.; Rydberg, T.R. Impact of production intensity on the ability of the agricultural landscape to generate ecosystem services: An example from Sweden. Ecol. Econ. 1999, 29, 269–291. [Google Scholar] [CrossRef]
- Braat, L.C.; de Groot, R. The ecosystem services agenda: Bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosyst. Serv. 2012, 1, 4–15. [Google Scholar] [CrossRef]
- Kassa, H.; Dondeyne, S.; Poesen, J.; Frankl, A.; Nyssen, J. Transition from forest- to cereal-based agricultural systems: A review of the drivers of land-use change and degradation in southwest Ethiopia. Land Degrad. Dev. 2017, 28. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Yi, H.; Güneralp, B.; Filippi, A.M.; Kreuter, U.P.; Güneralp, I. Impacts of Land Change on Ecosystem Services in the San Antonio River Basin, Texas, from 1984 to 2010. Ecol. Econ. 2017, 135, 125–135. [Google Scholar] [CrossRef]
- You, H. Impact of urbanization on pollution-related agricultural input intensity in Hubei, China. Ecol. Indic. 2016, 62, 249–258. [Google Scholar] [CrossRef]
- Haase, D.; Nuissl, H.; Haase, D.; Nuissl, H. Special Issue: Assessing the impacts of land use change on transforming regions. J. Land Use Sci. 2010, 5, 67–72. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Pedroli, B.; Erb, K.-H.; Gramberger, M.; Busck, A.G.; Haberl, H.; Kristensen, S.; Kuemmerle, T.; Lavorel, S.; Lindner, M.; et al. Challenges for land system science. Land Use Policy 2012, 29, 899–910. [Google Scholar] [CrossRef]
- CBS. China Statistical Yearbook; Chinese Statistics Press: Beijing, China, 2016. [Google Scholar]
- Hu, C.X.; Guo, X.D.; Lian, G.; Zhang, Z.M. Effects of land use change on ecosystem service value in rapid urbanization areas in Yangtze river delta—A case study of Jiaxing city. Resour. Environ. Yangtze Basin 2017, 26, 333–340. [Google Scholar]
- Xu, X.; Chen, S. Spatial and temporal change in ecological assets in the Yangtze River Delta of China 1995—2007. Acta Ecol. Sin. 2012, 32, 7667–7675. [Google Scholar] [CrossRef]
- You, H. Quantifying megacity growth in response to economic transition: A case of Shanghai, China. Habitat Int. 2016, 53, 115–122. [Google Scholar] [CrossRef]
- Barragán, J.M.; de Andrés, M. Analysis and trends of the world’s coastal cities and agglomerations. Ocean Coast. Manag. 2015, 114, 11–20. [Google Scholar] [CrossRef]
- Troyer, M.E. A spatial approach for integrating and analyzing indicators of ecological and human condition. Ecol. Indic. 2002, 2, 211–220. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Holdren, J.P. Impact of population growth. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Fikadu, G.; Tsunekawa, A.; Tsubo, M.; Meshesha, D.T. The dynamics of urban expansion and its impacts on land use/land cover change and small-scale farmers living near the urban fringe: A case study of Bahir Dar, Ethiopia. Landsc. Urban Plan. 2012, 106, 149–157. [Google Scholar] [CrossRef]
- Smith, L.M.; Case, J.L.; Smith, H.M.; Harwell, L.C.; Summers, J.K. Relating ecoystem services to domains of human well-being: Foundation for a U.S. index. Ecol. Indic. 2013, 28, 79–90. [Google Scholar] [CrossRef]
- Dubovyk, O.; Sliuzas, R.; Flacke, J. Spatio-temporal modelling of informal settlement development in Sancaktepe district, Istanbul, Turkey. ISPRS J. Photogramm. Remote Sens. 2011, 66, 235–246. [Google Scholar] [CrossRef]
- Xie, H.; Liu, Z.; Wang, P.; Liu, G.; Lu, F. Exploring the Mechanisms of Ecological Land Change Based on the Spatial Autoregressive Model: A Case Study of the Poyang Lake Eco-Economic Zone, China. Int. J. Environ. Res. Public Health 2014, 11, 583–599. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Geist, H.; Rindfuss, R.R. Introduction: Local Processes with Global Impacts; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–8. [Google Scholar] [CrossRef]
- Turner, B.L.N.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wei, Y.D.; Meng, R. Spatiotemporal Dynamics and Spatial Determinants of Urban Growth in Suzhou, China. Sustainability 2017, 9, 393. [Google Scholar] [CrossRef]
- Herold, M.; Goldstein, N.C.; Clarke, K.C. The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sens. Environ. 2003, 86, 286–302. [Google Scholar] [CrossRef]
- Herold, M. Spatio-temporal dynamics in California’s Central Valley: Empirical links to urban theory. Int. J. Geogr. Inf. Sci. 2005, 19, 175–195. [Google Scholar] [CrossRef]
- Yuan, D.; Lei, H. High-Tech Industrial Agglomeration and Provincial Urbanization—Empirical Analysis Based on Spatial Panel Data Model. Sci. Technol. Prog. Policy 2015, 32, 45–49. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Helbich, M. Spatiotemporal variability of urban growth factors: A global and local perspective on the megacity of Mumbai. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 187–198. [Google Scholar] [CrossRef]
- Chen, M.; Liu, W.; Lu, D. Challenges and the way forward in China’s new-type urbanization. Land Use Policy 2016, 55, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Palomo, I.; Martín-López, B.; Zorrilla-Miras, P.; García Del Amo, D.; Montes, C. Deliberative mapping of ecosystem services within and around Doñana National Park (SW Spain) in relation to land use change. Reg. Environ. Chang. 2014, 14, 237–251. [Google Scholar] [CrossRef]
- Zorrilla-Miras, P.; Palomo, I.; Gómez-Baggethun, E.; Martín-López, B.; Lomas, P.L.; Montes, C. Effects of land-use change on wetland ecosystem services: A case study in the Doñana marshes (SW Spain). Landsc. Urban Plan. 2014, 122, 160–174. [Google Scholar] [CrossRef]
- Lu, X.; Shi, Y.; Chen, C.; Yu, M. Monitoring cropland transition and its impact on ecosystem services value in developed regions of China: A case study of Jiangsu Province. Land Use Policy 2017, 69, 25–40. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Zhong, T.; Qian, Z.; Huang, X.; Zhao, Y.; Zhou, Y.; Zhao, Z. Impact of the top-down quota-oriented farmland preservation planning on the change of urban land-use intensity in China. Habitat Int. 2018, 77, 71–79. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, X.; Xu, G.; Li, J. The coupling and driving forces between urban land expansion and population growth in Yangtze River Delta. Geogr. Res. 2016, 35, 313–324. [Google Scholar] [CrossRef]
- Braimoh, A.K.; Onishi, T. Spatial determinants of urban land use change in Lagos, Nigeria. Land Use Policy 2007, 24, 502–515. [Google Scholar] [CrossRef]
- Napton, D.E.; Auch, R.F.; Headley, R.; Taylor, J.L. Land changes and their driving forces in the Southeastern United States. Reg. Environ. Chang. 2010, 10, 37–53. [Google Scholar] [CrossRef]
- Ju, H.; Zhang, Z.; Zuo, L.; Wang, J.; Zhang, S.; Wang, X.; Zhao, X. Driving forces and their interactions of built-up land expansion based on the geographical detector—A case study of Beijing, China. Int. J. Geogr. Inf. 2016, 30, 2188–2207. [Google Scholar] [CrossRef]
- Song, W.; Deng, X.; Yuan, Y.; Wang, Z.; Li, Z. Impacts of land-use change on valued ecosystem service in rapidly urbanized North China Plain. Ecol. Model. 2015, 318, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Sun, X. Potential impact of land use change on ecosystem services in China. Environ. Monit. Assess. 2016, 188, 248. [Google Scholar] [CrossRef]
- Xie, G.; Lu, C.; Leng, Y.; Zheng, D.; Li, S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 2, 189–195. [Google Scholar] [CrossRef]
- Duan, R.; Jin, M.; Zhang, J. Land utilization and changes on ecoservice value in different locations in Beijing. Trans. CSAE 2006, 9, 21–28. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, Z.; Li, G.; Zhuo, Y.; Xu, Z. Spatial-Temporal Evolution of Sustainable Urbanization Development: A Perspective of the Coupling Coordination Development Based on Population, Industry, and Built-Up Land Spatial Agglomeration. Sustainability 2018, 10, 1766. [Google Scholar] [CrossRef]
- Gallo, J.L.; Ertur, C. Exploratory spatial data analysis of the distribution of regional per capita GDP in Europe, 1980−1995. Pap. Reg. Sci. 2010, 82, 175–201. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Nijkamp, P.; Xu, J. Space–time indicators in interdependent urban–environmental systems: A study on the Huai River Basin in China. Habitat Int. 2015, 45, 135–146. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association. Geogr. Anal. 1995, 93–115. [Google Scholar] [CrossRef]
- Lesage, J.P. What Regional Scientists Need to Know about Spatial Econometrics. Rev. Reg. Stud. 2014, 44, 13–32. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis; Wiley: New York, NY, USA, 1981; p. 83. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric analysis. Contrib. Manag. Sci. 2000, 89, 182–197. [Google Scholar] [CrossRef]
- Chi, G.; Zhu, J. Spatial Regression Models for Demographic Analysis. Popul. Res. Policy Rev. 2008, 27, 17–42. [Google Scholar] [CrossRef]
- Anselin, L.; Bera, A. Spatial Dependence in Linear Regression Models with an Introduction to Spatial Econometrics. In Handbook of Applied Economic Statistics; CRC Press: Boca Raton, FL, USA, 1998; pp. 237–289. [Google Scholar]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Economic Growth and the Expansion of Urban Land in China. Urban Stud. 2009, 47, 813–843. [Google Scholar] [CrossRef]
- Baltagi, B.H.; Yang, Z. Heteroskedasticity and non-normality robust LM tests for spatial dependence. Reg. Sci. Urban Econ. 2013, 43, 725–739. [Google Scholar] [CrossRef] [Green Version]
- Molyneux, N. Climate change in south-west Australia and north-west China: Challenges and opportunities for crop production. Crop Pastureence 2011, 62, 445–456. [Google Scholar] [CrossRef]
- Wang, H.; Shi, W.; Chen, X. The statistical significance test of regional climate change caused by land use and land cover variation in West China. Adv. Atmos. Sci. 2006, 23, 355–364. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, L.; Zhang, Q. Spatial and temporal dynamics of land use and its influence on ecosystem service value in Yangtze River Delta. Acta Ecol. 2014, 12, 3311–3319. [Google Scholar] [CrossRef]
- Du, X.; Jin, X.; Yang, X.; Yang, X.; Zhou, Y. Spatial Pattern of Land Use Change and Its Driving Force in Jiangsu Province. Int. J. Environ. Res. Public Health 2014, 11, 3215. [Google Scholar] [CrossRef]
- Baller, R.D.; Anselin, L.; Messner, S.F.; Deane, G.; Hawkins, D.F. Structural covariates of U.S. county homicide rates: Incoprorating spatial effects. Criminology 2010, 39, 561–588. [Google Scholar] [CrossRef]
- Huang, Z.; He, C.; Zhu, S. Do China’s economic development zones improve land use efficiency? The effects of selection, factor accumulation and agglomeration. Landsc. Urban Plan. 2017, 162, 145–156. [Google Scholar] [CrossRef]
- Shi, M.; Yang, J.; Long, W.; Wei, D.Y.; Management, S.O. Changes in geographical distribution of Chinese manufacturing sectors and its driving forces. Geogr. Res. 2013, 32, 1708–1720. [Google Scholar] [CrossRef]
- Jia, J.; Luo, W.; Tingting, D.U.; Zhonghe, L.I.; Yonglong, L. Valuation of changes of ecosystem services of Tai Lake in recent 10 years. Acta Ecol. Sin. 2015, 35, 2255–2264. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Wu, C.; Li, J.; Lu, Q.; Qi, X.; Zhang, M.; Zuo, T.; Lu, J. Land use and ecosystems services value changes and ecological land management in coastal Jiangsu, China. Habitat Int. 2016, 57, 164–174. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement. Soc. Sci. Electron. Publ. 1991, 8, 223–250. [Google Scholar] [CrossRef]
- Zhang, J.W. The Certification Analysis on the Relationship Between Economic Growth and Environmental Quality in Ningxia Province. J. Arid Land Resour. Environ. 2007, 10, 39–42. [Google Scholar] [CrossRef]
- Yang, Y.Y. Economics of Population, Resources and the Environment; China Economic Press: Beijing, China, 2004. [Google Scholar]
- Peter, H.; Stanley, W. Drivers of change in global agriculture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 495–515. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wang, Y.; Li, P.; Ji, Y.; Kong, S.; Li, Z.; Bai, Z. A land use regression model incorporating data on industrial point source pollution. J. Environ. Sci. 2012, 24, 1251–1258. [Google Scholar] [CrossRef]
- Brown, L.R. Who will Feed China? Wake-Up Call for a Small Planet; W. W. Norton & Co Inc.: New York, NY, USA, 1995; p. 25. [Google Scholar]
- Lichtenberg, E.; Ding, C. Chapter 5: Assessing Farmland Protection Policy in China. Land Use Policy 2008, 25, 59–68. [Google Scholar] [CrossRef]
- Tian, G.; Jiang, J.; Yang, Z.; Zhang, Y. The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China. Ecol. Model. 2011, 222, 865–878. [Google Scholar] [CrossRef]
- Zhong, T.; Huang, X.; Ye, L.; Scott, S. The Impacts on Illegal Farmland Conversion of Adopting Remote Sensing Technology for Land Inspection in China. Sustainability 2014, 6, 4426–4451. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Wang, R.; Huang, J.; Yang, W. An analysis of the spatial and temporal changes in Chinese terrestrial ecosystem service functions. Chin. Sci. Bull. 2012, 57, 2120–2131. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Liu, J.; Tian, X. The temporal and spatial variation of the value of ecosystem services of the Naoli River Basin ecosystem during the last 60 years. Acta Ecol. 2013, 33, 3169–3176. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, C.; Wang, G.; Bao, S. An integrated sustainable development approach to modeling the eco-environmental effects from urbanization. Ecol. Indic. 2011, 11, 1599–1608. [Google Scholar] [CrossRef]
- Hauck, J.; Görg, C.; Varjopuro, R.; Ratamäki, O.; Jax, K. Benefits and limitations of the ecosystem services concept in environmental policy and decision making: Some stakeholder perspectives. Environ. Sci. Policy 2012, 5, 13–21. [Google Scholar] [CrossRef]
Category | Dimensions | Factors | Abb | Max | Min | Mean | Std. | Skew | Kurt |
---|---|---|---|---|---|---|---|---|---|
Population factors | Population urbanization | Urban permanent residents (104) | UPP | 875.0 | 7.8 | 91.8 | 93.0 | 4.71 | 27.27 |
Population density (person/km2) | PD | 7925.0 | 65.1 | 802.0 | 866.0 | 3.86 | 20.69 | ||
Economic factors | Economic growth | GDP per capita (yuan) | GDPPC | 389,873.4 | 2030.5 | 42,053.9 | 43,321.3 | 2.57 | 11.00 |
Secondary and tertiary industries products (108 yuan) | STIP | 9674.7 | 1.37 | 469.9 | 1016.3 | 5.23 | 33.39 | ||
Industrial structure | Share of secondary industry in GDP (%) | S_share | 85.5 | 5.8 | 50.0 | 0.1 | −0.70 | 0.62 | |
Share of tertiary industry in GDP (%) | T_share | 88.5 | 2.9 | 36.5 | 0.1 | 1.10 | 4.04 | ||
Investment | Total investment of fixed asset (108 yuan) | TIFA | 4750.8 | 1.13 | 263.6 | 494.1 | 4.76 | 30.05 | |
Foreign direct investment (104 USD) | FDI | 1,011,101.0 | 8.0 | 30,262.6 | 80,780.5 | 6.47 | 55.80 | ||
Road density (102 m/km2) | RD | 350.0 | 31.7 | 103.6 | 51.4 | 1.40 | 2.54 | ||
Policy factors | Urban planning and land-use policy | 1 = optimized development; 0 = no such policy | Pol_1 | 1 | 0 | 0.3 | 0.5 | 0.86 | −1.28 |
1 = core development; 0 = no such policy | Pol_2 | 1 | 0 | 0.3 | 0.5 | 0.90 | −1.21 | ||
1 = limited development; 0 = no such policy | Pol_3 | 1 | 0 | 0.4 | 0.5 | 0.48 | −1.80 |
LULC Type | Farmland | Forest Land | Grassland | Water Body | Wetland | Unused Land |
---|---|---|---|---|---|---|
ESV equivalent factor a | 6.91 | 21.85 | 7.24 | 45.97 | 62.71 | 0.42 |
Nationwide ESV coefficient a | 6114 | 19,334 | 6406 | 40,676 | 55,489 | 371 b |
Revised ESV coefficient | 14,281 | 45,158 | 14,963 | 95,008 | 129,606 | 867 |
Model Type | Specified Formulation | Parameter Description |
---|---|---|
Standard Linear Regression | Y: (n × 1) vector of response variables X: (n × k) matrix of explanatory variables : regression coefficient W: (n × n) spatial weight matrix : spatial lag parameter to be estimated : error term vector of independent (indeterminate) error terms | |
Spatial Lag Model | ε~N (0, δ2) | |
Spatial Error Model | ε~N (0, δ2) |
Study Period | Max | Min | Mean | Std. | Median |
---|---|---|---|---|---|
Period 1 | 18.894 | −16.518 | −0.667 | 5.672 | 0.068 |
Period 2 | 17.775 | −24.966 | −2.690 | 6.590 | −1.876 |
Period 3 | 11.807 | −17.238 | −4.668 | 6.486 | −1.894 |
Period 1 | Period 2 | Period 3 | |
---|---|---|---|
LM (lag) | 8.661 *** (0.0032) | 4.682 ** (0.0329) | 6.472 ** (0.0108) |
LM (error) | 8.023 *** (0.0046) | 1.726 (0.1923) | 4.222 ** (0.0399) |
Robust LM (lag) | 4.559 *** (0.0035) | / | 4.059 *** (0.0069) |
Robust LM (error) | 2.197 (0.1681) | / | 1.809 (0.1786) |
Adjusted R2 (OLS) | 0.562 | 0.466 | 0.503 |
Adjusted R2 (lag) | 0.643 | 0.625 | 0.653 |
Adjusted R2 (error) | 0.566 | 0.592 | 0.534 |
Period 1 (2000–2005) | Period 2 (2005–2010) | Period 3 (2010–2015) | |||||||
---|---|---|---|---|---|---|---|---|---|
OLS | SLM | SEM | OLS | SLM | SEM | OLS | SLM | SEM | |
lnUPP | 0.238 *** | 0.249 *** | 0.250 *** | 0.039 ** | 0.040 ** | 0.041 ** | 0.059 | 0.060 | 0.062 |
lnPD | 0.109 ** | 0.083 *** | 0.081 ** | 0.171 *** | 0.171 *** | 0.174 *** | 0.086 * | 0.089 * | 0.081 |
lnGDPPC | 0.236 ** | 0.265 ** | 0.260 *** | 0.139 ** | 0.139 ** | 0.155 *** | 0.153 | 0.163 | 0.171 |
lnSTIP | 0.356 *** | 0.357 *** | 0.358 *** | 0.143 ** | 0.143 ** | 0.161 *** | 0.151 | 0.145 | 0.125 |
S_share | 0.255 * | 0.211 * | 0.172 | 0.053 ** | 0.053 ** | 0.049 ** | 0.130 ** | 0.131 ** | 0.131 ** |
T_share | 0.166 * | 0.158 * | 0.146 | 0.108 *** | 0.108 *** | 0.106 *** | 0.298 *** | 0.288 *** | 0.315 *** |
lnTIFA | 0.209 *** | 0.195 *** | 0.207 *** | 0.304 | 0.315 | 0.312 | 0.132 | 0.129 | 0.130 |
lnFDI | −0.028 | −0.020 | −0.016 | −0.003 | −0.004 | 0.001 | −0.111 *** | −0.111 *** | −0.108 *** |
lnRD | 0.080 ** | 0.065 ** | 0.071 ** | 0.032 | 0.045 * | 0.038 * | 0.158 *** | 0.154 *** | 0.155 *** |
Pol_1 | −0.096 | −0.122 | −0.122 | ||||||
Pol_2 | −0.224 *** | −0.238 *** | −0.249 *** | ||||||
Pol_3 | −0.262 *** | −0.269 *** | −0.281 *** | ||||||
W×lnY | 0.296 *** | 0.288 *** | 0.365 *** | ||||||
W×μ | 0.328 *** | 0.303 | 0.349 ** | ||||||
Constant | 0.309 *** | 0.465 ** | 0.274 ** | 0.785 *** | 0.792 ** | 0.769 *** | −0.397 ** | −0.156 | −0.392 ** |
Adjusted R2 | 0.562 | 0.643 | 0.566 | 0.466 | 0.625 | 0.592 | 0.503 | 0.653 | 0.534 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Li, G.; Xu, Z.; Zhuo, Y.; Wu, C.; Ye, Y. Combined Impact of Socioeconomic Forces and Policy Implications: Spatial-Temporal Dynamics of the Ecosystem Services Value in Yangtze River Delta, China. Sustainability 2019, 11, 2622. https://doi.org/10.3390/su11092622
Chen S, Li G, Xu Z, Zhuo Y, Wu C, Ye Y. Combined Impact of Socioeconomic Forces and Policy Implications: Spatial-Temporal Dynamics of the Ecosystem Services Value in Yangtze River Delta, China. Sustainability. 2019; 11(9):2622. https://doi.org/10.3390/su11092622
Chicago/Turabian StyleChen, Sha, Guan Li, Zhongguo Xu, Yuefei Zhuo, Cifang Wu, and Yanmei Ye. 2019. "Combined Impact of Socioeconomic Forces and Policy Implications: Spatial-Temporal Dynamics of the Ecosystem Services Value in Yangtze River Delta, China" Sustainability 11, no. 9: 2622. https://doi.org/10.3390/su11092622
APA StyleChen, S., Li, G., Xu, Z., Zhuo, Y., Wu, C., & Ye, Y. (2019). Combined Impact of Socioeconomic Forces and Policy Implications: Spatial-Temporal Dynamics of the Ecosystem Services Value in Yangtze River Delta, China. Sustainability, 11(9), 2622. https://doi.org/10.3390/su11092622