Examination on the Influence Area of Transit-Oriented Development: Considering Multimodal Accessibility in New Delhi, India
Abstract
:1. Introduction
2. Data Description
2.1. Study Area and Data
2.2. Rounding Problem of Reported Distance Data
3. Correcting Rounding Errors through Imputation
3.1. A Heaping Model to Account for Rounding Errors
3.2. Multiple Imputation to Obtain Exact Values of Reported Distances
- (1)
- Draw candidate values for from a truncated bivariate normal distribution with mean vector (5) and covariance matrix (6) using the estimated parameters , where the truncation points are provided by the maximum possible degree of rounding given the reported distance (e.g., for a reported distance value of 500 m with possible degrees of rounding of 100, 500 and 1000 m), ln() is bounded by ln(250) and ln(750), and has to be .
- (2)
- Accept the drawn values if they are consistent with the observed rounded distance (i.e., rounding the drawn value according to the drawn rounding indicator gives the observed distance ), and impute as the exact distant value.
- (3)
- Otherwise, draw again.
4. Estimating Influence Areas of Each Mode
4.1. Distance Decay Analysis
4.2. ROC Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cervero, R.; Bernick, M.; Jill, G. Market Opportunities and Barriers to Transit-Based Development in California (Working Paper); Transportation Center, The University of California: Berkeley, CA, USA, 1994. [Google Scholar]
- Bernick, M.; Cervero, R. Transit Villages for the 21st Century; McGraw Hill: New York, NY, USA, 1997. [Google Scholar]
- Guerra, E.; Cervero, R.; Tischler, D. The Half-Mile Circle: Does it best represent transit station catchments? Transp. Res. Board Natl. Acad. 2012, 2276, 101–109. [Google Scholar] [CrossRef]
- Calthrope, P. The Next American Metropolis: Ecology, Community and the American Dream; Princeton Architectural Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Untermann, R.K. Accommodating the Pedestrian: Adapting Towns and Neighborhoods for Walking and Biking; Van Nostrand Reginhold: New York, NY, USA, 1984. [Google Scholar]
- Dittamar, H.; Ohland, G. The New Transit Town—Best Practices in Transit Oriented Development; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Park, S.; Deakin, E.; Jang, K. Can Good Walkability Expand the Size of Transit-Oriented Developments? J. Transp. Res. Board 2015, 2519, 157–164. [Google Scholar] [CrossRef]
- Chia, J.C.S.; Lee, J.B. Variation in the walking time to bus stop by the degree of transit captivity. In Proceedings of the Australasian Transport Research Forum, Sydney, NSW, Australia, 30 September–2 October 2015. [Google Scholar]
- Zhao, F.; Chow, L.F.; Li, M.T.; Gan, A.; Ubaka, I. Forecasting transit walk accessibility: Regression model alternative to buffer method. J. Transp. Res. Board 2003, 1835, 34–41. [Google Scholar] [CrossRef]
- Agrawal, A.W.; Schlossberg, M.; Ir, K. How Far, by Which Route and Why? A Spatial Analysis of Pedestrian Preference. J. Urban Des. 2008, 13, 81–98. [Google Scholar]
- El-Geneidy, A.; Grimsrud, M.; Wasfi, R.; Tétreault, J.; Surprenant-Legault, J. New evidence on walking distances to transit stops: Identifying redundancies and gaps using variable service areas. Transportation 2014, 41, 193–210. [Google Scholar] [CrossRef]
- Flamm, B.J.; Rivasplata, C.R. Public transit Catchment areas—The curious case of cycle transit users. J. Transp. Res. Board 2014, 2419, 101–108. [Google Scholar] [CrossRef]
- Martens, K. The bicycle as a feedering mode: Experiences from three European countries. Transp. Res. Part D 2004, 9, 281–294. [Google Scholar] [CrossRef]
- MoUD. National Transit Oriented Development (TOD) Policy 2015; Government of India: New Delhi, India, 2015.
- Sung, H.; Oh, J.T. Transit-oriented development in a high-density city: Identifying its association with transit ridership in Seoul, Korea. Cities 2011, 28, 70–82. [Google Scholar] [CrossRef]
- Arasan, V.T.; Rengaraju, R.; Krishna Rao, K.V. Characteristics of trips by foot and bicycle modes in Indian city. J. Transp. Eng. 1994, 120, 283–294. [Google Scholar] [CrossRef]
- Rastogi, R.; Krishna Rao, K.V. Travel characteristics of commuters accessing transit: A case study. J. Transp. Eng. 2003, 129, 684–694. [Google Scholar] [CrossRef]
- Rastogi, R. Willingness to shift to walking or bicycling to access suburban rail: Case study of Mumbai, India. J. Urban Plan. Dev. 2010, 136, 3–10. [Google Scholar] [CrossRef]
- Rastogi, R. Promotion of non-motorized modes as a sustainable transportation option: Policy and planning issues. Curr. Sci. 2011, 100, 1340–1348. [Google Scholar]
- Johar, A.; Jain, S.S.; Garg, P.K.; Gundaliya, P.J. A study for commuter walk distance from bus stops to different destination along routes in Delhi. Eur. Transp. 2015, 59, 1–15. [Google Scholar]
- Kumar, M.; Singh, S.; Ghate, A.T.; Pal, S.; Ann, S. Informal public transport modes in India: A case study of five city regions. IATSS Res. 2016, 39, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Guillen, M.D.; Ishida, H.; Okamoto, N. Is the use of informal public transport modes in developing countries habitual? An empirical study in Davao City, Philippines. Transp. Policy 2013, 26, 31–42. [Google Scholar] [CrossRef]
- Heitjan, D.F.; Rubin, D.B. Inference from coarse data via multiple imputation with application to age heaping. J. Am. Stat. Assoc. 1990, 85, 304–314. [Google Scholar] [CrossRef]
- Drechsler, J.; Kiesl, H. Beat the heap: An imputation strategy for valid inferences from rounded income data. J. Surv. Stat. Methodol. 2016, 4, 22–42. [Google Scholar] [CrossRef]
- Yamamoto, T.; Madre, J.-L.; de Lapparent, M.; Collet, R. A random heaping model of annual vehicle kilometres travelled considering heterogeneous approximation in reporting. Transportation 2018. [Google Scholar] [CrossRef]
- Kimpel, T.; Dueker, K.; El-Geneidy, A. Using GIS to measure the effect of overlapping service areas on passenger boardings at bus stops. Urban Reg. Inf. Syst. Assoc. J. 2007, 19, 5–11. [Google Scholar]
- Larsen, L.; El-Geneidy, A.; Yasmin, F. Beyond the quarter mile: Examining travel distances by walking and cycling, Montréal, Canada. Can. J. Urban Res. Can. Plan. Policy (Suppl.) 2010, 19, 70–88. [Google Scholar]
- Halas, M.; Klapka, P.; Kladivo, P. Distance-decay functions for daily travel-to-work flows. J. Transp. Geogr. 2014, 35, 107–119. [Google Scholar] [CrossRef]
- Chillon, P.; Panter, J.; Corder, K.; Jones, A.P.; Sluijs, E.M.V. A longitudinal study of the distance that young people walk to school. Health Place 2015, 133, 133–137. [Google Scholar] [CrossRef]
- Rodríguez-López, C.; Salas-Fariña, Z.M.; Villa-González, E.; Borges-Cosic, M.; Herrador-Colmenero, M.; Medina-Casaubón, J.; Ortega, F.B.; Chillón, P. The threshold distance associated with walking from home to school. Health Educ. Behav. 2017, 44, 857–866. [Google Scholar] [CrossRef]
- Chillon, P.; Molina-Garcia, J.; Castillo, I.; Queralt, A. What distance do university students walk and bike daily to class in Spain? J. Transp. Health 2016, 3, 315–320. [Google Scholar] [CrossRef]
- UTTIPEC. Transit Oriented Development: Policy. Norms. Guidelines; Delhi Development Authority: New Delhi, India, 2012. [Google Scholar]
- Delhi Development Authority. Master Plan for Delhi—2021; Delhi Development Authority: New Delhi, India, 2007. [Google Scholar]
- Aptech. GAUSS V. 3.2.32; Aptech Systems: Maple Valley, WA, USA, 1997. [Google Scholar]
- Hochmair, H. Assessment of bicycle service areas around transit stations. Int. J. Sustain. Transp. 2015, 9, 15–29. [Google Scholar] [CrossRef]
- Gonen, M. A review of: “ROC curves for continuous data, by W.J. Krzanowski and D.J. Hand”. J. Biopharm. Stat. 2010, 20, 485–487. [Google Scholar]
Cases | Walking | Informal | Private | Bus | Bicycle | |
---|---|---|---|---|---|---|
Access distances | Multiples of 5000 m excluding multiples of 10,000 m | 2 | 45 | 19 | 31 | 2 |
Multiples of 1000 m excluding multiples of 5000 m | 129 | 240 | 67 | 69 | 11 | |
Multiples of 500 m excluding multiples of 1000 m | 131 | 51 | 11 | 7 | 0 | |
Multiples of 100 m excluding multiples of 500 m | 101 | 7 | 0 | 0 | 1 | |
Not multiples of 100 m | 1 | 0 | 2 | 0 | 0 | |
Total cases | 364 | 343 | 99 | 107 | 14 | |
Egress distances | Multiples of 5000 m excluding multiples of 10,000 m | 1 | 28 | 8 | 21 | 1 |
Multiples of 1000 m excluding multiples of 5000 m | 137 | 198 | 15 | 54 | 6 | |
Multiples of 500 m excluding multiples of 1000 m | 183 | 38 | 3 | 5 | 1 | |
Multiples of 100 m excluding multiples of 500 m | 147 | 5 | 0 | 1 | 1 | |
Not multiples of 100 m | 4 | 0 | 0 | 0 | 0 | |
Total cases | 472 | 269 | 26 | 81 | 9 |
Variable | Definition | Percentage of Value 1 for Access | Percentage of Value 1 for Egress | |||||
---|---|---|---|---|---|---|---|---|
Walking | Informal | Private | Bus | Walking | Informal | Bus | ||
Gender | Dummy: 1 if respondent is male; 0 if otherwise | 0.74 | 0.69 | 0.80 | 0.70 | 0.75 | 0.67 | 0.69 |
Under 30 years old | Dummy: 1 if respondent is younger than 30; 0 if otherwise | 0.67 | 0.72 | 0.48 | 0.73 | 0.66 | 0.69 | 0.69 |
Low household income | Dummy: 1 if monthly household income is less than 30,000 INR; 0 if otherwise | 0.29 | 0.32 | 0.15 | 0.29 | 0.27 | 0.32 | 0.23 |
Low individual income | Dummy: 1 if monthly individual income is less than 30,000 INR; 0 if otherwise | 0.74 | 0.79 | 0.53 | 0.76 | 0.71 | 0.78 | 0.81 |
Vehicle ownership | Dummy: 1 if there is a vehicle in the home; 0 if otherwise | 0.75 | 0.74 | 0.93 | 0.81 | 0.76 | 0.74 | 0.96 |
Variables | Access | Egress | ||||||
---|---|---|---|---|---|---|---|---|
Walking | Informal | Bus | Private | Walking | Informal | Bus | ||
Estimates (t-stat.) | Estimates (t-stat.) | Estimates (t-stat.) | Estimates (t-stat.) | Estimates (t-stat.) | Estimates (t-stat.) | Estimates (t-stat.) | ||
Coarseness function | ||||||||
Log-distance () | 1.081 (15.670) | 0.969 (8.505) | 0.982 (5.365) | 1.101 (9.784) | 1.149 (19.241) | 1.061 (11.106) | 0.809 (5.773) | |
Constant | −6.346 (−13.133) | −5.908 (−6.207) | −7.098 (−4.614) | −8.379 (−8.514) | −6.836 (−16.425) | −6.400 (−7.383) | −6.128 (−4.875) | |
Gender | −0.311 (−1.949) | 0.346 (1.963) | - | - | - | - | - | |
Low individual income | - | - | - | - | - | - | 0.838 (2.278) | |
Threshold () | 1.564 (8.871) | 1.499 (8.268) | 2.301 (7.463) | 2.119 (7.998) | 1.712 (9.266) | 1.336 (6.434) | 2.460 (7.588) | |
Threshold () | - | 3.629 (14.441) | - | - | - | 3.620 (13.298) | - | |
Distance function | ||||||||
Constant | 6.301 (46.412) | 7.677 (107.859) | 8.450 (102.551) | 8.126 (85.327) | 6.164 (57.366) | 7.816 (182.213) | 8.370 (72.098) | |
Gender | 0.306 (3.150) | - | - | - | 0.214 (2.683) | - | - | |
Young age | 0.262 (3.096) | 0.178 (2.267) | - | - | 0.212 (3.047) | - | - | |
Low household income | - | 0.173 (2.110) | - | 0.635 (2.803) | - | - | - | |
Vehicle ownership | −0.319 (−3.141) | - | - | - | −0.226 (−2.794) | - | - | |
Std. deviation () | 0.736 (24.923) | 0.647 (25.284) | 0.827 (13.063) | 0.828 (12.005) | 0.694 (27.797) | 0.682 (22.318) | 0.949 (10.462) | |
Sample size | 364 | 343 | 107 | 99 | 472 | 269 | 81 | |
Mean log-likelihood | −2.124 | −2.435 | −2.822 | −2.722 | −2.173 | −2.398 | −2.968 |
Walking | Informal | Bus | Private | |||||
---|---|---|---|---|---|---|---|---|
Before MI | After MI | Before MI | After MI | Before MI | After MI | Before MI | After MI | |
Coefficient (t-stat) | 0.00119 (25.14) | 0.00135 (34.68) | 0.00030 (46.95) | 0.00034 (44.03) | 7.70 × 10−6 (0.87) | 0.00016 (35.03) | 8.42 × 10−6 (0.91) | 0.00016 (36.79) |
R2 | 0.974 | 0.986 | 0.991 | 0.989 | 0.040 | 0.985 | 0.040 | 0.984 |
Adjusted R2 | 0.915 | 0.967 | 0.941 | 0.983 | −0.015 | 0.982 | −0.010 | 0.982 |
Sample size | 18 | 18 | 21 | 21 | 19 | 19 | 21 | 21 |
Walking | Informal | Bus | ||||
---|---|---|---|---|---|---|
Before MI | After MI | Before MI | After MI | Before MI | After MI | |
Coefficient (t-stat) | 0.00136 (23.45) | 0.00164 (35.72) | 0.00033 (41.77) | 0.00038 (27.99) | 0.00011 (27.56) | 0.00013 (25.94) |
R2 | 0.973 | 0.988 | 0.991 | 0.978 | 0.969 | 0.964 |
Adjusted R2 | 0.907 | 0.965 | 0.928 | 0.972 | 0.928 | 0.962 |
Sample size | 16 | 16 | 17 | 17 | 25 | 25 |
Walk | Informal | Bus | Private | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
From Dataset | From Decay Function | From Dataset | From Decay Function | From Dataset | From Decay Function | From Dataset | From Decay Function | |||||||||
Before MI | After MI | Before MI | After MI | Before MI | After MI | Before MI | After MI | Before MI | After MI | Before MI | After MI | Before MI | After MI | Before MI | After MI | |
Minimum | 100 | 50 | - | - | 500 | 269 | - | - | 500 | 253 | - | - | 500 | 253 | - | - |
Maximum | 5000 | 5497 | - | - | 20,000 | 20,982 | - | - | 35,000 | 37,488 | - | - | 40,000 | 42,477 | - | - |
Mean | 800 | 800 | 800 | 700 | 3300 | 3300 | 3300 | 2900 | 6600 | 6600 | - | 6200 | 5500 | 5700 | - | 6300 |
Median | 600 | 700 | 600 | 500 | 2500 | 2500 | 2300 | 2000 | 4000 | 4400 | - | 4300 | 3000 | 3500 | - | 4300 |
70th percentile | 1000 | 900 | 1000 | 900 | 3000 | 3400 | 4000 | 3500 | 7000 | 7200 | - | 7500 | 5000 | 5200 | - | 7500 |
75th percentile | 1000 | 1000 | 1200 | 1000 | 4000 | 3900 | 4600 | 4100 | 8000 | 8100 | - | 8700 | 6000 | 6100 | - | 8700 |
80th percentile | 1000 | 1200 | 1300 | 1200 | 5000 | 4400 | 5400 | 4700 | 10,000 | 9800 | - | 10,100 | 8000 | 8100 | - | 10,100 |
85th percentile | 1500 | 1400 | 1600 | 1400 | 5000 | 4900 | 6300 | 5600 | 12,000 | 11,900 | - | 11,900 | 12,000 | 11,700 | - | 11,900 |
90th percentile | 1500 | 1600 | 2000 | 1700 | 6000 | 6000 | 7700 | 6800 | 15,000 | 13,200 | - | 14,400 | 15,000 | 13,400 | - | 14,400 |
Walk | Informal | Bus | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
From Dataset | From Decay Function | From Dataset | From Decay Function | From Dataset | From Decay Function | |||||||
Before MI | After MI | Before MI | After MI | Before MI | After MI | Before MI | After MI | Before MI | After MI | Before MI | After MI | |
Minimum | 50 | 26 | - | - | 400 | 274 | - | - | 500 | 255 | - | - |
Maximum | 5000 | 5483 | - | - | 15,000 | 16,000 | - | - | 35,000 | 37,498 | - | - |
Mean | 700 | 700 | 700 | 600 | 3200 | 3200 | 3000 | 2600 | 7100 | 7000 | 9100 | 7700 |
Median | 500 | 700 | 500 | 400 | 2000 | 2400 | 2100 | 1800 | 3500 | 3500 | 6300 | 5300 |
70th percentile | 1000 | 800 | 900 | 700 | 3200 | 3500 | 3600 | 3200 | 7000 | 6700 | 11,000 | 9300 |
75th percentile | 1000 | 800 | 1000 | 800 | 4000 | 4000 | 4200 | 3600 | 7000 | 7400 | 12,600 | 10,700 |
80th percentile | 1000 | 900 | 1200 | 1000 | 4000 | 4400 | 4900 | 4200 | 10,000 | 8800 | 14,600 | 12,400 |
85th percentile | 1000 | 1000 | 1400 | 1200 | 5000 | 4800 | 5800 | 5000 | 12,000 | 12,400 | 17,200 | 14,600 |
90th percentile | 1000 | 1200 | 1700 | 1400 | 6000 | 6200 | 7000 | 6000 | 20,000 | 18,900 | 21,000 | 17,800 |
ROC Analysis | Access | Egress | ||
---|---|---|---|---|
Before MI | After MI | Before MI | After MI | |
Maximum Youden index | −0.688 | −0.757 | −0.739 | −0.831 |
Threshold (m) | 1700 | 1200 | 1100 | 1100 |
AUC | 0.918 | 0.942 | 0.932 | 0.933 |
Observations N | 51 | 56 | 51 | 55 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ann, S.; Jiang, M.; Mothafer, G.I.; Yamamoto, T. Examination on the Influence Area of Transit-Oriented Development: Considering Multimodal Accessibility in New Delhi, India. Sustainability 2019, 11, 2621. https://doi.org/10.3390/su11092621
Ann S, Jiang M, Mothafer GI, Yamamoto T. Examination on the Influence Area of Transit-Oriented Development: Considering Multimodal Accessibility in New Delhi, India. Sustainability. 2019; 11(9):2621. https://doi.org/10.3390/su11092621
Chicago/Turabian StyleAnn, Sangeetha, Meilan Jiang, Ghasak Ibrahim Mothafer, and Toshiyuki Yamamoto. 2019. "Examination on the Influence Area of Transit-Oriented Development: Considering Multimodal Accessibility in New Delhi, India" Sustainability 11, no. 9: 2621. https://doi.org/10.3390/su11092621
APA StyleAnn, S., Jiang, M., Mothafer, G. I., & Yamamoto, T. (2019). Examination on the Influence Area of Transit-Oriented Development: Considering Multimodal Accessibility in New Delhi, India. Sustainability, 11(9), 2621. https://doi.org/10.3390/su11092621