Metallurgical Wastes Employed as Catalysts and Photocatalysts for Water Treatment: A Review
Abstract
:1. Introduction
2. Photocatalytic and Advanced Oxidation Processes in Water Treatment
3. Development of Photocatalysts from Specific Slags
3.1. Photocatalysis Based on Ferrous Slag
3.2. Use of Copper Slag as a Photocatalyst
3.3. Photocatalysis Based on Magnesium Slag
3.4. Photocatalysis Based on Silicomanganese Slag
3.5. Summary of the Use of Metallurgical Slags in Photocatalysis
4. Hydrogen Production by Wastewater Treatment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sabbas, T.; Polettini, A.; Pomi, R.; Astrup, T.; Hjelmar, O.; Mostbauer, P.; Cappai, G.; Magel, G.; Salhofer, S.; Speiser, C.; et al. Management of municipal solid waste incineration residues. Waste Manag. 2003, 23, 61–88. [Google Scholar] [CrossRef]
- Sakai, S.I.; Hiraoka, M. Municipal solid waste incinerator residue recycling by thermal processes. Waste Manag. 2000, 20, 249–258. [Google Scholar] [CrossRef]
- Ecke, H.; Sakanakura, H.; Matsuto, T.; Tanaka, N.; Lagerkvist, A. State-of-the-art treatment processes for municipal solid waste incineration residues in Japan. Waste Manag. Res. 2000, 18, 41–51. [Google Scholar] [CrossRef]
- Biswas, S.; Satapathy, A. Use of copper slag in glass-epoxy composites for improved wear resistance. Waste Manag. Res. 2010, 28, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Skjevrak, G.; Hustad, J.E.; Grønli, M.G. Effects of sewage sludge and marble sludge addition on slag characteristics during wood waste pellets combustion. Energy Fuels 2011, 25, 5775–5785. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Z.; Zhang, Y.; Wang, Y.; Yu, Y.; Ji, F.; Ahmad, R.; Dong, R. A comprehensive review on densified solid biofuel industry in China. Renew. Sustain. Energy Rev. 2016, 54, 1412–1428. [Google Scholar] [CrossRef]
- Rodríguez-Galán, M.; Alonso-Fariñas, B.; Baena-Moreno, F.M.; Leiva, C.; Navarrete, B.; Vilches, L.F. Synthetic Slag Production Method Based on a Solid Waste Mix Vitrification for the Manufacturing of Slag-Cement. Materials 2019, 12, 208. [Google Scholar] [CrossRef]
- Worldsteel Association: Steel Industry by-Products. Available online: https://www.worldsteel.org/en/dam/jcr:1b916a6d-06fd-4e84-b35d-c1d911d18df4/Fact_By-products_2018.pdf (accessed on 1 September 2018).
- Qasrawi, H.; Shalabi, F.; Asi, I. Use of low CaO unprocessed steel slag in concrete as fine aggregate. Constr. Build. Mater. 2009, 23, 1118–1125. [Google Scholar] [CrossRef]
- Abu-Eishah, S.I.; El-Dieb, A.S.; Bedir, M.S. Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region. Constr. Build. Mater. 2012, 34, 249–256. [Google Scholar] [CrossRef]
- Maslehuddin, M.; Sharif, A.M.; Shameem, M.; Ibrahim, M.; Barry, M.S. Comparison of properties of steel slag and crushed limestone aggregate concretes. Constr. Build. Mater. 2003, 17, 105–112. [Google Scholar] [CrossRef]
- Yüksel, İ. A review of steel slag usage in construction industry for sustainable development. Environ. Dev. Sustain. 2017, 19, 369–384. [Google Scholar] [CrossRef]
- Tsakiridis, P.E.; Papadimitriou, G.D.; Tsivilis, S.; Koroneos, C. Utilization of steel slag for Portland cement clinker production. J. Haz. Mater. 2008, 152, 805–811. [Google Scholar] [CrossRef]
- Thomas, M.D.; Bamforth, P.B. Modelling chloride diffusion in concrete: Effect of fly ash and slag. Cem. Concr. Res. 1999, 29, 487–495. [Google Scholar] [CrossRef]
- Shi, C. Steel slag—Its production, processing, characteristics, and cementitious properties. J. Mater. Civ. Eng. 2004, 16, 230–236. [Google Scholar] [CrossRef]
- Vohla, C.; Kõiv, M.; Bavor, H.J.; Chazarenc, F.; Mander, Ü. Filter materials for phosphorus removal from wastewater in treatment wetlands—A review. Ecol. Eng. 2011, 37, 70–89. [Google Scholar] [CrossRef]
- Chazarenc, F.; Kacem, M.; Gerente, C.; Andres, Y. Active filters: A mini-review on the use of industrial by-products for upgrading phosphorus removal from treatment wetlands. In Proceedings of the 11th International Conference on Wetland Systems for Water Pollution Control, Indore, India, 1–7 November 2008. [Google Scholar]
- Mercado-Borrayo, B.M.; González-Chávez, J.L.; Ramírez-Zamora, R.M.; Schouwenaars, R. Valorization of Metallurgical Slag for the Treatment of Water Pollution: An Emerging Technology for Resource Conservation and Re-utilization. J. Sust. Metal. 2018, 4, 50–67. [Google Scholar] [CrossRef]
- Mercado-Borrayo, B.M.; Schouwenaars, R.; González-Chávez, J.L.; Ramírez-Zamora, R.M. Multi-analytical assessment of iron and steel slag characteristics to estimate the removal of metalloids from contaminated water. J. Environ. Sci. Health A 2013, 48, 887–895. [Google Scholar] [CrossRef]
- Schouwenaars, R.; Montoya-Bautista, C.V.; Isaacs-Páez, E.D.; Solís-López, M.; Ramírez-Zamora, R.M. Removal of arsenic III and V from laboratory solutions and contaminated groundwater by metallurgical slag through anion-induced precipitation. Environ. Sci. Pollut. Res. 2017, 4, 25034–25046. [Google Scholar] [CrossRef]
- Mercado-Borrayo, B.M.; Schouwenaars, R.; Litter, M.I.; Ramirez-Zamora, R.M. Adsorption of boron by metallurgical slag and iron nanoparticles. Adsorpt. Sci. Technol. 2014, 32, 117–123. [Google Scholar] [CrossRef]
- Mercado-Borrayo, B.M.; Contreras, R.; Sánchez, A.; Font, X.; Schouwenaars, R.; Ramírez-Zamora, R.M. Optimisation of the removal conditions for heavy metals from water: A comparison between steel furnace slag and CeO2 nanoparticles. Arab. J. Chem. 2018. [Google Scholar] [CrossRef]
- Shatokha, V.; Sokur, I.; Kamkina, L.J. Study on water splitting potential of some metallurgical wastes for production of hydrogen. Sustain. Metall. 2016, 2, 116–122. [Google Scholar] [CrossRef]
- Das, B.; Mishra, B.K.; Angadi, S.; Pradhan, S.K.; Prakash, S.; Mohanty, J. Characterization and recovery of copper values from discarded slag. Waste Manag. Res. 2010, 28, 561–567. [Google Scholar] [CrossRef]
- Behnood, A.; Modiri Gharehveran, M.; Gozali Asl, F.; Ameri, M. Effects of copper slag and recycled concrete aggregate on the properties of CIR mixes with bitumen emulsion, rice husk ash, Portland cement and fly ash. Constr. Building Mater. 2015, 96, 172–180. [Google Scholar] [CrossRef]
- Sharma, R.; Khan, R.A. Sustainable use of copper slag in self compacting concrete containing supplementary cementitious materials. J. Clean. Prod. 2017, 151, 179–192. [Google Scholar] [CrossRef]
- Sarfo, P.; Wyss, G.; Ma, G.; Das, A.; Young, C. Carbothermal reduction of copper smelter slag for recycling into pig iron and glass. Miner. Eng. 2017, 107, 8–19. [Google Scholar] [CrossRef]
- Shanmuganathan, P.; Lakshmipathiraj, P.; Srikanth, S.; Nachiappan, A.L.; Sumathy, A. Toxicity characterization and long-term stability studies on copper slag from the ISASMELT process. Resour. Conserv. Recycl. 2008, 52, 601–611. [Google Scholar] [CrossRef]
- Alter, H. The composition and environmental hazard of copper slags in the context of the Basel Convention. Resour. Conserv. Recycl. 2005, 43, 353–360. [Google Scholar] [CrossRef]
- Kaksonen, A.H.; Särkijärvi, S.; Peuraniemi, E.; Junnikkala, S.; Puhakka, J.A.; Tuovinen, O.H. Chemical and bacterial leaching of metals from a smelter slag in acid solutions. Hydrometallurgy 2017, 168, 135–140. [Google Scholar] [CrossRef]
- Heo, J.H.; Chung, Y.; Park, J.H. Recovery of iron and removal of hazardous elements from waste copper slag via a novel aluminothermic smelting reduction (ASR) process. J. Clean. Prod. 2016, 137, 777–787. [Google Scholar] [CrossRef]
- Dos Anjos, M.A.G.; Sales, A.T.C.; Andrade, N. Blasted copper slag as fine aggregate in Portland cement concrete. J. Environ. Manag. 2017, 196, 607–613. [Google Scholar] [CrossRef]
- Shi, C.; Meyer, C.; Behnood, A. Utilization of copper slag in cement and concrete. Resour. Conserv. Recycl. 2008, 52, 1115–1120. [Google Scholar] [CrossRef]
- Al-Jabri, K.S.; Al-Saidy, A.H.; Taha, R. Effect of copper slag as a fine aggregate on the properties of cement mortars and concrete. Construct. Build. Mater. 2011, 25, 933–938. [Google Scholar] [CrossRef]
- Ambily, P.S.; Umarani, C.; Ravisankar, K.; Prem, P.R.; Bharatkumar, B.H.; Iyer, N.R. Studies on ultra-high performance concrete incorporating copper slag as fine aggregate. Construct. Build. Mater. 2015, 77, 233–240. [Google Scholar] [CrossRef]
- Murari, K.; Siddique, R.; Jain, K.K. Use of waste copper slag, a sustainable material. J. Mater. Cycles Waste Manag. 2014, 17, 13–26. [Google Scholar] [CrossRef]
- Gorai, B.; Jana, R.K. Characteristics and utilisation of copper slag—A review. Resour. Conserv. Recycl. 2003, 39, 299–313. [Google Scholar] [CrossRef]
- United States Geological Survey. Magnesium Statistics and Information. Available online: https://minerals.usgs.gov/minerals/pubs/commodity/magnesium/ (accessed on 30 August 2018).
- Cherubini, F.; Raugei, M.; Ulgiati, S. LCA of magnesium production: Technological overview and worldwide estimation of environmental burdens. Resour. Conserv. Recycl. 2008, 52, 1093–1100. [Google Scholar] [CrossRef]
- Jia, L.; Fan, B.G.; Huo, R.P.; Li, B.; Yao, Y.X.; Han, F.; Qiao, X.L.; Jin, Y. Study on quenching hydration reaction kinetics and desulfurization characteristics of magnesium slag. J. Clean. Prod. 2018, 190, 12–23. [Google Scholar] [CrossRef]
- Nath, S.K.; Kumar, S. Evaluation of the suitability of ground granulated silico-manganese slag in Portland slag cement. Construct. Build. Mater. 2016, 125, 127–134. [Google Scholar] [CrossRef]
- Nath, S.K.; Kumar, S. Reaction kinetics, microstructure and strength behavior of alkali activated silico-manganese (SiMn) slag–Fly ash blends. Construct. Build. Mater. 2017, 147, 371–379. [Google Scholar] [CrossRef]
- Kozyrev, N.A.; Kryukov, R.E.; Kozyreva, O.E.; Lipatova, U.I.; Filonov, A.V. Production of welding fluxes using waste slag formed in silicomanganese smelting. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2016; Volume 125, p. 012034. [Google Scholar]
- Kozyrev, N.A.; Mikhno, A.R.; Kryukov, R.E.; Yakushevich, N.F.; Provodova, A.A. Use of barium–strontium modifier in manufacturing welding flux based on silicomanganese slag for welding and surfacing mining equipment. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2018; Volume 206, p. 012033. [Google Scholar]
- Yi, H.; Xu, G.; Cheng, H.; Wang, J.; Wan, Y.; Chen, H. An overview of utilization of steel slag. Procedia Environ. Sci. 2012, 16, 791–801. [Google Scholar] [CrossRef]
- Ameta, R.; Chohadia, A.K.; Jain, A.; Punjabi, P.B. Fenton and Photo-Fenton Processes; Ameta, R., Ed.; Elsevier and Academic Press: Rajastan, India, 2018; pp. 49–87. [Google Scholar]
- Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Crit. Rev. Env. Sci. Technol. 2006, 36, 1–84. [Google Scholar] [CrossRef]
- Morales-Pérez, A.A.; Maravilla, P.; Solís-López, M.; Schouwenaars, R.; Durán-Moreno, A.; Ramírez-Zamora, R.M. Optimization of the synthesis process of an iron oxide nanocatalyst supported on activated carbon for the inactivation of Ascaris eggs in water using the heterogeneous Fenton-like reaction. Water Sci. Technol. 2016, 73, 1000–1009. [Google Scholar]
- Huanosta-Gutiérrez, T.; Dantas, R.F.; Ramírez-Zamora, R.M.; Esplugas, S. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water. J. Haz. Mater. 2012, 213, 325–330. [Google Scholar] [CrossRef]
- Solís-López, M.; Durán-Moreno, A.; Rigas, F.; Morales, A.A.; Navarrete, M.; Ramírez-Zamora, R.M. Assessment of copper slag as a sustainable Fenton-type photo-catalyst for water disinfection. Water Reclam. Sustain. 2014, 199–227. [Google Scholar]
- Arzate-Salgado, S.Y.; Morales-Pérez, A.A.; Solís-López, M.; Ramírez-Zamora, R.M. Evaluation of metallurgical slag as a Fenton-type photocatalyst for the degradation of an emerging pollutant: Diclofenac. Catal. Today 2016, 266, 126–135. [Google Scholar] [CrossRef]
- Saravanan, R.; Gracia, F.; Stephen, A. Basic principles, mechanism and challenges of photocatalysis. In Nanocomposites for Visible Light-induced Photocatalysis; Khan, M., Pradhan, D., Sohn, Y., Eds.; Springer Series on Polymer and Composite Materials; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Liqiang, J.; Xiaojun, S.; Jing, S.; Weimin, C.; Zili, X.; Yaoguo, D.; Honggang, F. Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis. Sol. Energy Mater. Sol. Cells 2003, 79, 133–151. [Google Scholar] [CrossRef]
- Chiarello, G.-L.; Aguirre, M.; Selli, E. Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. J. Catal. 2010, 273, 182–190. [Google Scholar] [CrossRef]
- Herrmann, J.M. Fundamentals and misconceptions in photocatalysis. J. Photochem. Photobiol. A Chem. 2010, 216, 85–93. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef] [PubMed]
- Spasiano, D.; Marotta, R.; Malato, S.; Fernandez-Ibañez, P.; Somma, I.D. A review of solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl. Catal. B Environ. 2015, 170–171, 90–123. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef] [PubMed]
- Dozzi, M.V.; Chiarello, G.L.; Pedroni, M.; Livraghi, S.; Giamello, E.; Selli, E. High photocatalytic hydrogen production on Cu(II) pre-grafted Pt/TiO2. Appl. Catal. B 2017, 209, 417–428. [Google Scholar] [CrossRef]
- Wang, W.; Qu, Y.; Yang, B.; Liu, X.; Su, W. Lactate oxidation in pyrite suspension: A Fenton-like process in situ generating H2O2. Chemosphere 2012, 86, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Hakamizadeh, M.; Afshar, S.; Tadjarodi, A.; Khajavian, R.; Fadaie, M.R.; Bozorgi, B. Improving hydrogen production via water splitting over Pt/TiO2/activated carbon nanocomposite. Int. J. Hydrogen Energy 2014, 39, 7262–7269. [Google Scholar] [CrossRef]
- Onsuratoom, S.; Chavadej, S.; Sreethawong, T. Hydrogen production from water splitting under UV light irradiation over Ag-loaded mesoporous-assembled TiO2–ZrO2 mixed oxide nanocrystal photocatalysts. Int. J. Hydrogen Energy 2011, 36, 5246–5261. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, J.-Y.; Su, K.-Y.; Wu, R.-J. Efficient hydrogen production by water-splitting over Pt-deposited C–HS–TiO2 hollow spheres under visible light. J. Taiwan Inst. Chem. Eng. 2016, 60, 222–228. [Google Scholar] [CrossRef]
- Rivas, G.; Carra, I.; Sánchez, J.G.; López, J.C.; Malato, S.; Pérez, J.S. Modelling of the operation of raceway pond reactors for micropollutant removal by solar photo-Fenton as a function of photon absorption. Appl. Catal. B Environ. 2015, 178, 210–217. [Google Scholar] [CrossRef]
- De la Obra, I.; Ponce-Robles, L.; Miralles-Cuevas, S.; Oller, I.; Malato, S.; Pérez, J.S. Microcontaminant removal in secondary effluents by solar photo-Fenton at circumneutral pH in raceway pond reactors. Catal. Today 2017, 287, 10–14. [Google Scholar] [CrossRef]
- Freitas, A.M.; Rivas, G.; Campos-Mañas, M.C.; López, J.C.; Agüera, A.; Pérez, J.S. Ecotoxicity evaluation of a WWTP effluent treated by solar photo-Fenton at neutral pH in a raceway pond reactor. Environ. Sci. Pollut. Res. 2017, 24, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.F.; Robinson, P.T.; Lesher, C.M.; Keays, R.R.; Zhang, C.J.; Malpas, J. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe–Ti–V oxide deposits, Sichuan Province, SW China. J. Petrol. 2005, 46, 2253–2280. [Google Scholar] [CrossRef]
- Taylor, P.R.; Shuey, S.A.; Vidal, E.E.; Gomez, J.C. Extractive metallurgy of vanadium-containing titaniferrous magnetite ores: A review. Miner. Metall. Proc. 2006, 23, 80–86. [Google Scholar]
- Liu, S.L.; Yang, S.L.; Gao, S.Z. The trend of technology progress and development on extraction of Panzhihua high titanium blast furnace slag. Panzhihua Sci. Technol. Inf. 2006, 31, 10. [Google Scholar]
- Liu, H.; Xia, T.; Shon, H.K.; Vigneswaran, S. Preparation of titania-containing photocatalyst from metallurgical slag waste and photodegradation of 2,4-dichlorophenol. J. Ind. Eng. Chem. 2011, 117, 461–467. [Google Scholar] [CrossRef]
- Li, Y.; Yue, Y.; Que, Z.Q.; Zhang, M.; Guo, M. Preparation and visible-light photocatalytic property of nanostructured Fe-doped TiO2 from titanium containing electric furnace molten slag. Int. J. Miner. Metall. Mater. 2013, 20, 1012–1020. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Guo, M.; Zhang, M. Synthesis of TiO2 visible light catalysts with controllable crystalline phase and morphology from Ti-bearing electric arc furnace molten slag. J. Environ. Sci. 2016, 47, 14–22. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Guo, M.; Zhang, M. Influence of acid type and concentration on the synthesis of nanostructured titanium dioxide photocatalysts from titanium-bearing electric arc furnace molten slag. RSC Adv. 2015, 5, 13478–13487. [Google Scholar] [CrossRef]
- Shi, J.; Kuwahara, Y.; An, T.; Yamashita, H. The fabrication of TiO2 supported on slag-made calcium silicate as low-cost photocatalyst with high adsorption ability for the degradation of dye pollutants in water. Catal. Today 2017, 281, 21–28. [Google Scholar] [CrossRef]
- Li, Y.S. The use of waste basic oxygen furnace slag and hydrogen peroxide to degrade 4-chlorophenol. Waste Manag. 1999, 19, 495–502. [Google Scholar] [CrossRef]
- Nasuha, N.; Ismail, S.; Hameed, B.H. Activated electric arc furnace slag as an efficient and reusable heterogeneous Fenton-like catalyst for the degradation of Reactive Black 5. J. Taiwan Inst. Chem. Eng. 2016, 67, 235–243. [Google Scholar] [CrossRef]
- Nasuha, N.; Ismail, S.; Hameed, B.H. Activated electric arc furnace slag as an effective and reusable Fenton-like catalyst for the photodegradation of methylene blue and acid blue 29. J. Environ. Manag. 2017, 196, 323–329. [Google Scholar] [CrossRef]
- Wang, X.; Geysen, D.; Padilla Tinoco, S.V.; D’Hoker, N.V.G.T.; Van Gerven, T.; Blanpain, B. Characterisation of copper slag in view of metal recovery. Miner. Proc. Extract. Metall. 2015, 124, 83–87. [Google Scholar] [CrossRef]
- Escobedo, A.; Sánchez, E.; Pal, U. Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mex. De Física 2007, 53, 18–22. [Google Scholar]
- López, R.; Gómez, R. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: A comparative study. J. Sol-Gel Sci. Technol. 2011, 61, 1–7. [Google Scholar] [CrossRef]
- Ramírez-Ortega, D.; Meléndez, A.; Acevedo-Peña, P.; González, I.; Arroyo, R. Semiconducting properties of ZnO/TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity. Electrochim. Acta 2014, 140, 541–549. [Google Scholar] [CrossRef]
- Cococcioni, M.; De Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+ U method. Phys. Rev. B 2005, 71, 035105. [Google Scholar] [CrossRef]
- Williams, Q.; Knittle, E.; Reichlin, R.; Martin, S.; Jeanloz, R. Structural and electronic properties of Fe2SiO4-fayalite at ultrahigh pressures: Amorphization and gap closure. J. Geophys. Res. Solid Earth 1990, 95, 21549–21563. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Kang, L.; Liu, L. A Novel Magnesium Slag-Based Cementitious Nano-Composite for Photocatalytic Degradation of Dye. Rare Met. Mater. Eng. 2015, 44, 3032–3036. [Google Scholar]
- Zhang, Y.J.; Kang, L.; Liu, L.C.; Si, H.X.; Zhang, J.F. Synthesis of a novel alkali-activated magnesium slag-based nanostructural composite and its photocatalytic performance. App. Surf. Sci. 2015, 331, 399–406. [Google Scholar] [CrossRef]
- Zhang, Y.J.; He, P.Y.; Chen, H.; Liu, L.C. Green transforming metallurgical residue into alkali-activated silicomanganese slag-based cementitious materials as photocatalyst. Materials 2018, 11, 1773. [Google Scholar] [CrossRef]
- He, P.Y.; Zhang, Y.J.; Chen, H.; Liu, C.L. Development of an eco-efficient CaMoO4/electroconductive geopolymer composite for recycling silicomanganese slag and degradation of dye wastewater. J. Clean. Prod. 2019, 208, 1476–1487. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Kamegawa, T.; Mori, K.; Yamashita, H. Fabrication of hydrophobic zeolites using triethoxyfluorosilane and their application as supports for TiO2 photocatalysts. Chem. Commun. 2008, 4783–4785. [Google Scholar] [CrossRef]
- Lei, X.-F.; Xue, X.-X.; Yang, H. Preparation of UV/Visible light responsive photocatalyst from titania-bearing blast furnance slag modified with (NH4)2SO4. Trans. Nonferr. Metal. Soc. China 2012, 22, 1771–1777. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Yang, M.Y.; Zhang, L.; Zhang, K.; Kang, L. A new graphene/geopolymer nanocomposite for degradation of dye wastewater. Integr. Ferroelectr. 2015, 171, 38–45. [Google Scholar] [CrossRef]
- Bowker, M.; Bahruji, H.; Kennedy, J.; Jones, W.; Hartley, G.; Morton, C. The Photocatalytic Window: Photo-Reforming of Organics and Water Splitting for Sustainable Hydrogen Production. Catal. Lett. 2015, 145, 214–219. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy 2014, 40, 11094–11111. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Chai, Q. Alkali-activaded blast furnace slag-based nanomaterial as a novel catalyst for synthesis of hydrogen fuel. Fuel 2014, 115, 84–87. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhang, L.; Kang, L.; Yang, M.Y.; Zhang, K. A new CaWO4/alkali-activated blast furnace slag-based cementitious composite for production of hydrogen. Int. J. Hydrogen Energy 2017, 42, 3690–3697. [Google Scholar] [CrossRef]
- Kang, L.; Zhang, Y.J.; Zhang, L.; Zhang, K. Preparation, characterization and photocatalytic activity of novel CeO2 loaded porus alkali-activated steel slag-based binding material. Int. J. Hydrogen Energy 2017, 42, 17341–17349. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zhang, Y.X.; Yang, M.Y. Synthesis of environment-friendly graphene reinforced slag-based nanocomposite and performance of photocatalytic H2 generation. Ferroelectrics 2018, 522, 36–44. [Google Scholar] [CrossRef]
- Zhang, Y.J.; He, P.Y.; Yang, M.Y.; Chen, H.; Liu, L.C. Renewable conversion of slag to graphene geopolymer for H2 production and wastewater treatment. Catal. Today 2019. [Google Scholar] [CrossRef]
- Sahraei, O.A.Z.; Larachi, F.; Abatzoglou, N.; Iliuta, M.C. Hydrogen production by glycerol steam reforming catalyzed by Ni-promoted Fe/Mg-bearing metallurgical wastes. Appl. Catal. B Environ. 2017, 219, 183–193. [Google Scholar] [CrossRef]
- Dega, F.B.; Chamoumi, M.; Braidy, N.; Abatzoglou, N. Autothermal dry reforming of methane with a nickel spinellized catalyst prepared from a negative value metallurgical residue. Renew. Energy 2019, 138, 1239–1249. [Google Scholar] [CrossRef]
- Montoya-Bautista, C.V.; Acevedo, P.; Zanella, P.; Schouwenaars, R.; Ramirez-Zamora, R.M. Degradation of waste alcohols with a concurrent hydrogen production using copper slag as photocatalyst. Environ. Sci. Pollut. Res. 2018. submitted. [Google Scholar]
Slag | Activation Treatment | Process of Degradation | Pollutant | Removal Efficiency | Reference |
---|---|---|---|---|---|
Ferrous | Acid hydrolysis | Photocatalysis | 2-propanol | [90] | |
Ferrous | Alkaline fusion | Photocatalysis | 20 mg L−1 Methylene blue | 88% | [73] |
Ferrous | Acid conditions | Photocatalysis | 5 mg L−1 Rhodamine | 91% | [74] |
Ferrous + 60%TiO2 | Alkaline hydrolysis/thermic | Photocatalysis | 0.2 mMol L−1 methylene blue | 96.2% | [76] |
Ferrous | Alkaline/thermic | Fenton | 25 mg L−1 Black reactive 5 | 94% | [78] |
Ferrous | Ball milling | Photocatalysis | 20 mg L−1 Cr(VI) | 100% | [91] |
Ferrous | Alkaline activation+ nanocomposite | Photocatalysis | 30 mg L−1 DFB dye | 100% | [88] |
Ferrous | Alkaline/thermic | Photo-Fenton | 25 mg L−1 Methylene blue | 98% | [79] |
25 mg L−1 Blue Acid 29 | 94% | ||||
Copper | W.T. | Photo-Fenton | 50 mg L−1 phenol | 100% | [49] |
Copper | W.T. | Photo-Fenton | Ascaris suum | 58% | [50] |
Copper | W.T. | Photo-Fenton at neutral pH | 30 mg L−1 Diclofenac | 87% | [51] |
Magnesium | Alkaline activation + nanocomposite | Photocatalysis | 3 mg L−1 methyl orange | 90% | [92] |
Magnesium | Alkaline activation + nanocomposite | Photocatalysis | 1.07 × 10−4 mol L−1 Carmin indigo | 100% | [86] |
Silicomanganese | Alkaline activation+ carbon black | Photocatalysis | 4 mg L−1 basic violet 5BN | 89% | [88] |
Silicomanganese | Alkaline activation + nanocomposite | Photocatalysis | 5.64 mg L−1 BV5 dye | 98% | [89] |
Slag | Treatment | Sacrificial Agents | Hydrogen Production | Reference |
---|---|---|---|---|
Ferrous | Alkaline activation | Na2S:Na2SO3 = 5:1 (% weight) | 55 mmol g−1 | [95] |
Ferrous | Alkaline activation + CaWO4 | Na2SO3:Na2S (4.36 g: 6.25 g) | 50,827 μL g−1 | [96] |
Ferrous | Alkaline activation + CeO2 | Na2SO3: Na2S (4.36 g: 6.25 g) | 68 mmol g−1 | [97] |
Ferrous | Alkaline activation + graphene | Na2SO3: Na2S (4.36 g: 6.25 g) | 1.93 mmol g−1 | [98] |
Ferrous | Alkaline activation + ZnO + graphene | Na2SO3: Na2S | 228.3 mmol g−1 | [99] |
Ferrous | Solid state impregnation with Ni | Glycerol | 79% conversion of glycerol | [100] |
Ferrous | Solid state impregnation with Ni | Methanol | 98% conversion of methanol | [101] |
Copper | Without treatment | Waste alcohols | 0.113 μmol g−1h−1 | [102] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya-Bautista, C.V.; Avella, E.; Ramírez-Zamora, R.-M.; Schouwenaars, R. Metallurgical Wastes Employed as Catalysts and Photocatalysts for Water Treatment: A Review. Sustainability 2019, 11, 2470. https://doi.org/10.3390/su11092470
Montoya-Bautista CV, Avella E, Ramírez-Zamora R-M, Schouwenaars R. Metallurgical Wastes Employed as Catalysts and Photocatalysts for Water Treatment: A Review. Sustainability. 2019; 11(9):2470. https://doi.org/10.3390/su11092470
Chicago/Turabian StyleMontoya-Bautista, Claudia Victoria, Edwin Avella, Rosa-María Ramírez-Zamora, and Rafael Schouwenaars. 2019. "Metallurgical Wastes Employed as Catalysts and Photocatalysts for Water Treatment: A Review" Sustainability 11, no. 9: 2470. https://doi.org/10.3390/su11092470
APA StyleMontoya-Bautista, C. V., Avella, E., Ramírez-Zamora, R. -M., & Schouwenaars, R. (2019). Metallurgical Wastes Employed as Catalysts and Photocatalysts for Water Treatment: A Review. Sustainability, 11(9), 2470. https://doi.org/10.3390/su11092470