The Role of Cultural Landscapes in the Delivery of Provisioning Ecosystem Services in Protected Areas
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Data Collection
2.3. Data Preparation
2.3.1. Ecosystem Service Variables
2.3.2. Diversity of Terrestrial Vertebrates
2.4. Description of Protected Areas Based on Ecosystem Service and Diversity Variables
2.5. Cluster Analysis
3. Results
3.1. Ecosystem Service () and Diversity (H) Variables
3.2. Description of the Protected Areas
3.3. Cluster Analysis
4. Discussion
- For grazing livestock it is necessary to limit the grazing pressure, i.e., the grazing regime should allow time and space gaps between grazing activities and relevant practices, in order to ensure tree regeneration [17].
- Particular forest management practices are needed. Trees are valued not only for wood production but also for the shade and food they provide [25], such as fruits or acorns for Iberian pigs. Note that the effects of trees on pasture production are strongly context-dependent and range from neutral to negative for evergreen oak [26,27].
- Abandonment and intensification are two opposed tendencies in land-use changes. The abandonment of dehesas is the result of rural marginalization and decline of livestock farming [28]. Therefore, there is a high rate of emigration, mainly of young people, seeking better job opportunities in larger cities [29]. Consequently, the population progressively ages and the birth rate falls. These social characteristics are representative of the evolution of Sierra Norte Natural Park. Currently, the population is stable mainly due to rural tourism and the industry derived from Iberian pig grazing. The abandonment of dehesas entails the development of ecological succession, which implies an increase of scrubland and a loss of heterogeneity. The intensification through overgrazing is probably the most important driver of wood pasture loss [24]. A decline in pastures implies an increase in soil erosion [30]. In the studied Natural Parks, overgrazing is controlled by park managers, by avoiding the increase of livestock grazing that affects wood pastures.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Convention on Biological Diversity; United Nations: New York, NY, USA, 1992.
- Palomo, I.; Montes, C.; Martín-López, B.; González, J.A.; García-Llorente, M.; Alcorlo, P.; García Mora, M.R. Incorporating the social-ecological approach in protected areas in the Anthropocene. BioScience 2014, 64, 181–191. [Google Scholar] [CrossRef]
- Dudley, N. (Ed.) Guidelines for Applying Protected Area Management Categories; IUCN: Gland, Switzerland, 2008; 86p. [Google Scholar]
- Kareiva, P.; Marvier, M. Conservation Science. Balancing the Needs of People and Nature; Roberts and Company Publishers: Englewood, CO, USA, 2015. [Google Scholar]
- Kareiva, P.; Marvier, M. What is conservation science? BioScience 2012, 62, 962–969. [Google Scholar] [CrossRef]
- Anderies, J.M.; Janssen, M.A.; Ostrom, E. A framework to analyze the robustness of socio-ecological systems from an institutional perspective. Ecol. Soc. 2004, 9, 18. [Google Scholar] [CrossRef]
- Ban, N.C.; Mills, M.; Tam, J.; Hicks, C.C.; Klain, S.; Stoeckl, N.; Bottrill, M.C.; Levine, J.; Pressey, R.L.; Satterfield, T.; et al. A social–ecological approach to conservation planning: Embedding social considerations. Front. Ecol. Environ. 2013, 11, 194–202. [Google Scholar] [CrossRef]
- Farina, A. The Cultural Landscape as a Model for the Integration of Ecology and Economics. BioScience 2000, 50, 313. [Google Scholar] [CrossRef] [Green Version]
- Rescia, A.; Pérez-Corona, M.E.; Arribas-Ureña, P.; Dover, J. Cultural landscapes as complex adaptive systems: The cases of northern Spain and Northern Argentina. In Resilience and the Cultural Landscape: Understanding and Managing Change in Human-Shaped Environments; Pleninger, T., Bieling, T., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 126–145. [Google Scholar]
- Rescia, A.; Willaarts, B.; Schmitz, M.; Aguilera, P. Changes in land uses and management in two Nature Reserves in Spain: Evaluating the social-ecological resilience of natural landscapes. Landsc. Urban Plan. 2010, 98, 26–35. [Google Scholar] [CrossRef]
- Maldonado, A.D.; Ramos-López, D.; Aguilera, P.A. A Comparison of Machine-Learning Methods to Select Socioeconomic Indicators in Cultural Landscapes. Sustainability 2018, 10, 4312. [Google Scholar] [CrossRef]
- Schmitz, M.F.; De Aranzabal, I.; Aguilera, P.A.; Rescia, A.; Pineda, F.D. Relationship between landscape typology and socioeconomic structure: Scenarios of change in Spanish cultural landscapes. Ecol. Model. 2003, 168, 343–356. [Google Scholar] [CrossRef]
- De Aranzabal, I.; Schmitz, M.F.; Aguilera, P.; Pineda, F.D. Modelling of landscape changes derived from the dynamics of socio-ecological systems: A case of study in a semiarid Mediterranean landscape. Ecol. Indic. 2008, 8, 672–685. [Google Scholar] [CrossRef]
- Maldonado, A.D.; Aguilera, P.A.; Salmerón, A.; Nicholson, A.E. Probabilistic modeling of the relationship between socioeconomy and ecosystem services in cultural landscapes. Ecosyst. Serv. 2018, 33, 146–164. [Google Scholar] [CrossRef]
- Ferraz-De-Oliveira, M.I.; Azeda, C.; Pinto-Correia, T. Management of Montados and Dehesas for High Nature Value: An interdisciplinary pathway. Agrofor. Syst. 2016, 90, 1–6. [Google Scholar] [CrossRef]
- Bergmeier, E.; Petermann, J.; Schröder, E. Geobotanical survey of woodpasture habitats in Europe: Diversity, threats and conservation. Biodivers. Conserv. 2010, 19, 2995–3014. [Google Scholar] [CrossRef]
- Plieninger, T.; Hartel, T.; Martín-López, B.; Beaufoy, G.; Bergmeier, E.; Kirby, K.; Montero, M.J.; Moreno, G.; Oteros-Rozas, E.; Uytvanck, J.V. Wood-pastures of Europe: Geographic coverage, social–ecological values, conservation management, and policy implications. Biol. Conserv. 2015, 190, 70–79. [Google Scholar] [CrossRef]
- Rey Benayas, J.M.; Martins, A.; Nicolau, J.M.; Schulz, J.J. Abandonment of agricultural land: An overview of drivers and consequences. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2007, 2. [Google Scholar] [CrossRef]
- Plieninger, T.; Hui, C.; Gaertner, M.; Huntsinger, L. The Impact of Land Abandonment on Species Richness and Abundance in the Mediterranean Basin: A Meta-Analysis. PLoS ONE 2014, 9, e98355. [Google Scholar] [CrossRef]
- Stanners, D.; Bourdeau, P.; European Environment Agency; Comisión Europea, Oficina de Publicaciones Oficiales de las Comunidades Europeas. Europe’s Environment: The Dobris Assessment; European Environment Agency: Copenhagen, Denmark, 1995. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Synthesis Reports; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Legendre, P.; Legendre, L. Numerical Ecology; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [Google Scholar] [CrossRef] [Green Version]
- FAO. Protected Areas, People and Food Security. FAO Contribution to the World Parks Congress, Sidney, Australia; Technical Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; 23p. [Google Scholar]
- Jørgensen, D. Pigs and Pollards: Medieval Insights for UK Wood Pasture Restoration. Sustainability 2013, 5, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Rivest, D.; Paquette, A.; Moreno, G.; Messier, C. A meta-analysis reveals mostly neutral influence of scattered trees on pasture yield along with some contrasted effects depending on functional groups and rainfall conditions. Agric. Ecosyst. Environ. 2013, 165, 74–79. [Google Scholar] [CrossRef]
- Gea-Izquierdo, G.; Montero, G.; Cañellas, I. Changes in limiting resources determine spatio-temporal variability in tree–grass interactions. Agrofor. Syst. 2009, 76, 375–387. [Google Scholar] [CrossRef]
- Plieninger, T.; Bieling, C. Resilience-Based Perspectives to Guiding High-Nature-Value Farmland through Socioeconomic Change. Ecol. Soc. 2013, 18. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.; Hartel, T.; Kuemmerle, T. Conservation policy in traditional farming landscapes. Conserv. Lett. 2012, 5, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Moreno, G.; Pulido, F.J. The Functioning, Management and Persistence of Dehesas. In Agroforestry in Europe. Current Status and Future Prospects; Rigueiro-Rodrguez, A., Mosquera, M., McAdam, J., Eds.; Springer: Heidelberg/Berlin, Germany; New York, NY, USA, 2009; pp. 127–160. [Google Scholar]
- Gúzman Álvarez, J.R. Territorio y Medio Ambiente en el Olivar Andaluz; Olivicultura y Elaiotécnica, Junta de Andalucía: Sevilla, Spain, 2005. [Google Scholar]
- Sánchez Martínez, J.; Gallego Simón, V.; Araque Jiménez, E. El olivar andaluz y sus trasformaciones recientes. Estud. Geogr. 2011, 270, 203–229. [Google Scholar] [CrossRef]
- Sousa, A.A.R.; Barandica, J.M.; Sanz-Cañada, J.; Rescia, A.J. Application of a dynamic model using agronomic and economic data to evaluate the sustainability of the olive grove landscape of Estepa (Andalusia, Spain). Landsc. Ecol. 2019. [Google Scholar] [CrossRef]
- López-Pintor, A.; Sanz-Cañada, J.; Salas, E.; Rescia, A. Assessment of Agri-Environmental Externalities in Spanish Socio-Ecological Landscapes of Olive Groves. Sustainability 2018, 10, 2640. [Google Scholar] [CrossRef]
- Flohre, A.; Fischer, C.; Aavik, T.; Bengtsson, J.; Berendse, F.; Bommarco, R.; Ceryngier, P.; Clement, L.W.; Dennis, C.; Eggers, S.; et al. Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecol. Appl. 2011, 21, 1772–1781. [Google Scholar] [CrossRef] [Green Version]
- Phalan, B.; Balmford, A.; Green, R.E.; Scharlemann, J.P. Minimising the harm to biodiversity of producing more food globally. Food Policy 2011, 36. [Google Scholar] [CrossRef]
- Tscharntke, T.; Clough, Y.; Wanger, T.C.; Jackson, L.; Motzke, I.; Perfecto, I.; Vandermeer, J.; Whitbread, A. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 2012, 151, 53–59. [Google Scholar] [CrossRef]
- Ortega, M.; Pascual, S.; Rescia, A. Spatial structure of olive groves and scrublands affects Bactrocera oleae abundance: A multi-scale analysis. Basic Appl. Ecol. 2016, 17, 696–705. [Google Scholar] [CrossRef]
- Rescia, A.J.; Ortega, M. Quantitative evaluation of the spatial resilience to the B. oleae pest in olive grove socio-ecological landscapes at different scales. Ecol. Indic. 2018, 84, 820–827. [Google Scholar] [CrossRef]
- Rescia, A.J.; Sanz-Cañada, J.; Bosque-González, I.D. A new mechanism based on landscape diversity for funding farmer subsidies. Agron. Sustain. Dev. 2017, 37. [Google Scholar] [CrossRef]
- Milcu, A.I.; Hanspach, J.; Abson, D.; Fischer, J. Cultural Ecosystem Services: A Literature Review and Prospects for Future Research. Ecol. Soc. 2013, 18. [Google Scholar] [CrossRef] [Green Version]
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef]
- Baiamonte, G.; Domina, G.; Raimondo, F.M.; Bazan, G. Agricultural landscapes and biodiversity conservation: A case study in Sicily (Italy). Biodivers. Conserv. 2015, 24, 3201–3216. [Google Scholar] [CrossRef]
- Hanspach, J.; Loos, J.; Dorresteijn, I.; Abson, D.J.; Fischer, J. Characterizing social-ecological units to inform biodiversity conservation in cultural landscapes. Divers. Distrib. 2016, 22, 853–864. [Google Scholar] [CrossRef]
- Moreno, G.; Gonzalez-Bornay, G.; Pulido, F.; Lopez-Diaz, M.L.; Bertomeu, M.; Juárez, E.; Diaz, M. Exploring the causes of high biodiversity of Iberian dehesas: The importance of wood pastures and marginal habitats. Agrofor. Syst. 2015, 90, 87–105. [Google Scholar] [CrossRef]
- Directive, H. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Union 1992, 206, 7–50. [Google Scholar]
- Council of Europe. European Landscape Convention. Report and Convention; Council of Europe: Strasbourg, France, 2000. [Google Scholar]
SIOSE Category | Aggregated Land-Use Variables, |
---|---|
Urban mix | Built |
Industrial | |
Mining | |
Transport | |
Technical infrastructures | |
Herbaceous crops | Herbaceous crops |
Greenhouses | Greenhouses |
Woody crops | Woody crops |
Mixtures of crops and natural vegetations | Heterogeneous lands |
Grassland with forest | |
Grassland | Grassland |
Bush | Bush |
Forest | Forest |
Bush and forest | Bush and forest |
Naked soil | Naked soil |
Bodies of water | Bodies of water |
Type of Landscape | |||
---|---|---|---|
Natural | Agricultural | Artificial | Geomorphological |
Pines and conifers | Olive groves | Urban | Naked soil and snowfields |
Oaks | Almond groves | Mine and dump | Volcanic lands |
Scrubland with forest | Vineyards | Salt marshes and aquaculture crops | Cliffs |
Riparian vegetation | Arable lands | Reservoirs and waterbodies | Meadows |
Eucalyptus groves | Irrigated fruit trees | Gullies | |
Scrubland | Irrigated crops | Malpais | |
Esparto fields | Ricefields | Limestone formations | |
Grassland | Greenhouses | Mesa and cuesta | |
Wasteland | Delta | ||
Dehesa | Beaches | ||
Natural marshes | Dunes and sandbanks |
Ecosystem Service | Type | Built | Herb | GH | Woody | Het | Grassland | Bush | Forest | Bush & Forest | Naked Soil | Water |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Agr | Provisioning | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
LG | Provisioning | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
MCR | Regulating | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
EnvEd | Cultural | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
Tour | Cultural | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
MGU | Protected Area | Agr | LG | MCR | EnvEd | Tour | H |
---|---|---|---|---|---|---|---|
SIERRA MORENA MOUNTAIN RANGE | 1. Sierra de Aracena y Picos de Aroche | 0.384 | 0.409 | 0.916 | 0.884 | 0.744 | 1.382 |
2. Sierra Norte de Sevilla | 0.440 | 0.464 | 0.917 | 0.869 | 0.761 | 1.317 | |
3. Sierra de Hornachuelos | 0.236 | 0.238 | 0.975 | 0.965 | 0.846 | 1.166 | |
4. Sierra de Cardeña y Montoro | 0.421 | 0.433 | 0.944 | 0.947 | 0.897 | 1.344 | |
5. Sierra de Andújar | 0.185 | 0.231 | 0.932 | 0.978 | 0.741 | 1.423 | |
6. Despeñaperros | 0.088 | 0.096 | 0.947 | 0.941 | 0.866 | 1.461 | |
BAETIC SYSTEMS | 7. Sierras de Cazorla, Segura y Las Villas | 0.201 | 0.223 | 0.930 | 0.884 | 0.723 | 1.428 |
8. Sierra de Castril | 0.093 | 0.268 | 0.797 | 0.953 | 0.525 | 1.451 | |
9. Sierra Mágina | 0.263 | 0.292 | 0.948 | 0.840 | 0.643 | 1.276 | |
10. Sierra María-Los Vélez | 0.188 | 0.148 | 0.897 | 0.859 | 0.711 | 1.022 | |
11. Sierras Subbéticas | 0.443 | 0.521 | 0.884 | 0.612 | 0.351 | 1.208 | |
12. Sierra de Huétor | 0.047 | 0.072 | 0.925 | 0.956 | 0.784 | 1.294 | |
13. Sierra de Baza | 0.147 | 0.187 | 0.890 | 0.931 | 0.685 | 1.343 | |
14. Sierra Nevada (National Park) | 0.027 | 0.152 | 0.786 | 0.910 | 0.394 | 1.269 | |
15. Sierra Nevada | 0.199 | 0.223 | 0.904 | 0.889 | 0.632 | 1.281 | |
16. Los Alcornocales | 0.125 | 0.153 | 0.898 | 0.946 | 0.814 | 1.435 | |
17. Sierra de Grazalema | 0.278 | 0.319 | 0.845 | 0.880 | 0.726 | 1.355 | |
18. Sierra de las Nieves | 0.053 | 0.188 | 0.825 | 0.955 | 0.588 | 1.318 | |
19. Montes de Málaga | 0.062 | 0.066 | 0.953 | 0.922 | 0.896 | 1.277 | |
20. Sierras de Tejeda, Almijara y Alhama | 0.045 | 0.069 | 0.934 | 0.953 | 0.631 | 1.384 | |
LITTORAL | 21. Doñana | 0.143 | 0.125 | 0.819 | 0.852 | 0.777 | 1.346 |
22. Doñana (National Park) | 0.046 | 0.125 | 0.857 | 0.937 | 0.737 | 1.411 | |
23. Bahía de Cádiz | 0.003 | 0.010 | 0.935 | 0.942 | 0.924 | 1.541 | |
24. La Breña y Marismas del Barbate | 0.011 | 0.033 | 0.939 | 0.962 | 0.923 | 1.383 | |
25. Del Estrecho | 0.076 | 0.276 | 0.679 | 0.880 | 0.524 | 1.421 | |
26. Cabo de Gata-Níjar | 0.129 | 0.165 | 0.717 | 0.833 | 0.070 | 1.405 |
Cluster | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
Landscape | |||||||
Scrubland with forest | 0.864 | −1.570 | −1.572 | −0.021 | 0.522 | −0.009 | |
Dehesa | 0.034 | −0.475 | −0.475 | 2.580 | −0.387 | −0.472 | |
Scrubland | 1.311 | −0.265 | −0.718 | 0.658 | −0.187 | −0.681 | |
Limestone formations | −0.739 | −0.745 | −0.745 | −0.745 | 1.294 | 0.100 | |
Pines and conifers | −0.315 | −0.822 | −0.494 | −0.397 | −0.384 | 1.375 | |
Natural marshes | −0.388 | −0.388 | 2.134 | −0.388 | −0.388 | −0.388 | |
Salty marshes | −0.237 | −0.169 | 1.285 | −0.237 | −0.237 | −0.237 | |
Volcanic lands | −0.196 | 4.903 | −0.196 | −0.196 | −0.196 | −0.196 | |
Dunes and sandbanks | −0.286 | −0.181 | 1.945 | −0.386 | −0.386 | −0.386 | |
Naked soil and snowfield | −0.205 | −0.205 | −0.205 | −0.205 | −0.205 | 0.683 |
WEIGHTED AVERAGE | ||||||||
---|---|---|---|---|---|---|---|---|
Cluster | Protected Area | Prop. Area | Agr | LG | MCR | EnvEd | Tour | H |
1 | 3. Sierra de Hornachuelos | 0.157 | 0.189 | 0.914 | 0.955 | 0.796 | 1.383 | |
5. Sierra de Andújar | ||||||||
6. Despeñaperros | ||||||||
16. Los Alcornocales | ||||||||
25. Del Estrecho | ||||||||
2 | 26. Cabo de Gata - Níjar | 0.129 | 0.165 | 0.717 | 0.833 | 0.07 | 1.405 | |
3 | 21. Doñana | 0.09 | 0.114 | 0.847 | 0.895 | 0.777 | 1.388 | |
22. Doñana (National Park) | ||||||||
23. Bahía de Cádiz | ||||||||
24. La Breña y Marismas del Barbate | ||||||||
4 | 1. Sierra de Aracena y Picos de Aroche | 0.412 | 0.436 | 0.919 | 0.883 | 0.766 | 1.350 | |
2. Sierra Norte de Sevilla | ||||||||
4. Sierra de Cardeña y Montoro | ||||||||
5 | 8. Sierra de Castril | 0.199 | 0.257 | 0.882 | 0.876 | 0.620 | 1.335 | |
9. Sierra Mágina | ||||||||
11. Sierras Subbéticas | ||||||||
13. Sierra de Baza | ||||||||
17. Sierra de Grazalema | ||||||||
18. Sierra de las Nieves | ||||||||
20. Sierras de Tejeda, Almijara y Alhama | ||||||||
6 | 7. Sierras de Cazorla, Segura y Las Villas | 0.158 | 0.198 | 0.895 | 0.892 | 0.641 | 1.339 | |
10. Sierra María - Los Vélez | ||||||||
12. Sierra de Huétor | ||||||||
14. Sierra Nevada (National Park) | ||||||||
15. Sierra Nevada | ||||||||
19. Montes de Málaga |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado, A.D.; Ramos-López, D.; Aguilera, P.A. The Role of Cultural Landscapes in the Delivery of Provisioning Ecosystem Services in Protected Areas. Sustainability 2019, 11, 2471. https://doi.org/10.3390/su11092471
Maldonado AD, Ramos-López D, Aguilera PA. The Role of Cultural Landscapes in the Delivery of Provisioning Ecosystem Services in Protected Areas. Sustainability. 2019; 11(9):2471. https://doi.org/10.3390/su11092471
Chicago/Turabian StyleMaldonado, Ana D., Darío Ramos-López, and Pedro A. Aguilera. 2019. "The Role of Cultural Landscapes in the Delivery of Provisioning Ecosystem Services in Protected Areas" Sustainability 11, no. 9: 2471. https://doi.org/10.3390/su11092471
APA StyleMaldonado, A. D., Ramos-López, D., & Aguilera, P. A. (2019). The Role of Cultural Landscapes in the Delivery of Provisioning Ecosystem Services in Protected Areas. Sustainability, 11(9), 2471. https://doi.org/10.3390/su11092471