Determination of the Agricultural Eco-Compensation Standards in Ecological Fragile Poverty Areas Based on Emergy Synthesis
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Materials
2.2.1. Field Investigation
2.2.2. Data Acquisition and Processing
2.3. Methodology
2.3.1. Calculation of the Pollutant Emissions Amount
2.3.2. Calculation of Emergy Values of Pollutant Emissions
2.3.3. Setting of Reduction Scenarios and Different Fertilizers Reduction Proportions
2.3.4. Quantification of Eco-Compensation Standard Based on Emergy Synthesis
3. Results
3.1. Trends in Major Agricultural Pollutant Emissions in HLBB 1995–2015
3.2. Eco-Compensation Standard of Farmers’ WTA
3.3. Eco-Compensation Standard Based on Emergy Synthesis Under Current and Reduction Scenarios
4. Discussion
4.1. Significance of Integrating Models and the Novelty of the Emergy-Based Eco-Compensation Standard Accounting
4.2. Contribution to the Knowledge in Preventing the Farmland Non-Point Pollution
5. Conclusions
- We proposed a quantification method that considers the ecological economic emergy value of non-point source pollution eco-compensation standard, overcoming the inconsistencies in quantification of the material flow, ecological flow, and economic flow, which create uncertainties in the assessment processes.
- The agricultural non-point source pollution has gradually intensified in HLBB since 1995. From the perspective of emergy in the agro-pastoral system, N2O is the main pollutant that caused the most non-point source pollution from farmland in HLBB from 2010 to 2015, although its physical amount was the largest among the selected seven pollutant source indexes.
- In HLBB, the optimal eco-compensation strategy is a 20% reduction in phosphate fertilizer application with a compensation standard of $379.63/ha/year, which accounts for 2.72% of GDP in HLBB in 2015. In such poverty-stricken areas, jointly supporting from local finance and central finance are required in the implementation of the eco-compensation.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Fertilizer Reduction Scenario | N2O | NH3 | NH3-N | TN | TP | |
---|---|---|---|---|---|---|
Current situation (2015) | 5.97 | 41.80 | 1.85 | 2.92 | 0.98 | |
1 | NPR | 5.55 | 38.88 | 1.23 | 1.95 | 0.65 |
NR | 5.14 | 35.97 | 1.73 | 2.73 | 0.91 | |
PR | 5.97 | 41.80 | 1.73 | 2.73 | 0.91 | |
2 | NPR | 5.14 | 35.97 | 1.23 | 1.95 | 0.65 |
NR | 4.31 | 30.14 | 1.73 | 2.73 | 0.91 | |
PR | 5.97 | 41.80 | 1.73 | 2.73 | 0.91 | |
3 | NPR | 4.72 | 33.06 | 1.23 | 1.95 | 0.65 |
NR | 3.47 | 24.32 | 1.60 | 2.53 | 0.85 | |
PR | 5.97 | 41.80 | 1.73 | 2.73 | 0.91 | |
4 | NPR | 4.31 | 30.14 | 1.23 | 2.92 | 0.65 |
NR | 2.64 | 18.49 | 1.23 | 1.95 | 0.65 | |
PR | 5.97 | 41.80 | 1.73 | 2.73 | 0.91 | |
5 | NPR | 3.89 | 27.23 | 1.23 | 2.92 | 0.65 |
NR | 1.81 | 12.66 | 1.23 | 1.95 | 0.65 | |
PR | 5.97 | 41.80 | 1.73 | 2.73 | 0.91 |
Fertilizer Reduction Scenario | Maize Yield | |
---|---|---|
Current situation (2015) | 11,538.71 | |
1 | NPR | 10,558.08 |
NR | 10,309.51 | |
PR | 10,818.37 | |
2 | NPR | 9395.67 |
NR | 8748.31 | |
PR | 10,089.93 | |
3 | NPR | 8051.49 |
NR | 6855.11 | |
PR | 9353.39 | |
4 | NPR | 6525.53 |
NR | 4629.91 | |
PR | 8608.75 | |
5 | NPR | 4817.80 |
NR | 2072.71 | |
PR | 7856.01 |
Fertilizer Reduction Scenario | N2O | NH3 | NH3-N | TN | TP | Sum | |
---|---|---|---|---|---|---|---|
Emergy transformity of pollution (seJ/kg) | 1.13 × 1014 | 4.52 × 1011 | 5.83 × 1013 | 5.85 × 1013 | 1.90 × 1014 | ||
Current situation (2015) | 6.76 × 1014 | 1.89 × 1013 | 1.08 × 1014 | 1.71 × 1014 | 1.86 × 1014 | 1.16 × 1015 | |
1 | NPR | 6.29 × 1014 | 1.76 × 1013 | 7.18 × 1013 | 1.14 × 1014 | 1.24 × 1014 | 9.56 × 1014 |
NR | 5.82 × 1014 | 1.63 × 1013 | 1.01 × 1014 | 1.59 × 1014 | 1.74 × 1014 | 1.03 × 1015 | |
PR | 6.76 × 1014 | 1.89 × 1013 | 1.01 × 1014 | 1.59 × 1014 | 1.74 × 1014 | 1.13 × 1015 | |
2 | NPR | 5.82 × 1014 | 1.63 × 1013 | 7.18 × 1013 | 1.14 × 1014 | 1.24 × 1014 | 9.08 × 1014 |
NR | 4.87 × 1014 | 1.36 × 1013 | 1.01 × 1014 | 1.59 × 1014 | 1.74 × 1014 | 9.35 × 1014 | |
PR | 6.76 × 1014 | 1.89 × 1013 | 1.01 × 1014 | 1.59 × 1014 | 1.74 × 1014 | 1.13 × 1015 | |
3 | NPR | 5.35 × 1014 | 1.49 × 1013 | 7.18 × 1013 | 1.14 × 1014 | 1.24 × 1014 | 8.59 × 1014 |
NR | 3.93 × 1014 | 1.10 × 1013 | 9.34 × 1013 | 1.48 × 1014 | 1.61 × 1014 | 8.07 × 1014 | |
PR | 6.76 × 1014 | 1.89 × 1013 | 1.01 × 1014 | 1.59 × 1014 | 1.74 × 1014 | 1.13 × 1015 | |
4 | NPR | 4.87 × 1014 | 1.36 × 1013 | 7.18 × 1013 | 1.71 × 1014 | 1.24 × 1014 | 8.68 × 1014 |
NR | 2.99 × 1014 | 8.36 × 1012 | 7.18 × 1013 | 1.14 × 1014 | 1.24 × 1014 | 6.17 × 1014 | |
PR | 6.76 × 1014 | 1.89 × 1013 | 1.01 × 1014 | 1.59 × 1014 | 1.74 × 1014 | 1.13 × 1015 | |
5 | NPR | 4.40 × 1014 | 1.23 × 1013 | 7.18 × 1013 | 1.71 × 1014 | 1.24 × 1014 | 8.19 × 1014 |
NR | 2.05 × 1014 | 5.72 × 1012 | 7.18 × 1013 | 1.14 × 1014 | 1.24 × 1014 | 5.20 × 1014 | |
PR | 6.76 × 1014 | 1.89 × 1013 | 1.01 × 1014 | 1.59 × 1014 | 1.74 × 1014 | 1.13 × 1015 |
Fertilizer Reduction Scenario | Maize Yield | |
---|---|---|
Emergy transformity of maize (sej/kg) | 3.04 × 1012 | |
Current situation (2015) (sej) | 3.51 × 1016 | |
1 | NPR | 3.21 × 1016 |
NR | 3.13 × 1016 | |
PR | 3.29 × 1016 | |
2 | NPR | 2.86 × 1016 |
NR | 2.66 × 1016 | |
PR | 3.07 × 1016 | |
3 | NPR | 2.45 × 1016 |
NR | 2.08 × 1016 | |
PR | 2.84 × 1016 | |
4 | NPR | 1.98 × 1016 |
NR | 1.41 × 1016 | |
PR | 2.62 × 1016 | |
5 | NPR | 1.46 × 1016 |
NR | 6.30 × 1015 | |
PR | 2.39 × 1016 |
Fertilizer Reduction Scenario | N2O | NH3 | NH3-N | TN | TP | Sum | |
---|---|---|---|---|---|---|---|
Current situation (2015) | 115.54 | 3.23 | 18.42 | 29.21 | 31.82 | 198.22 | |
1 | NPR | 107.49 | 3.00 | 12.28 | 19.47 | 21.21 | 163.46 |
NR | 99.43 | 2.78 | 17.19 | 27.26 | 29.70 | 176.37 | |
PR | 115.54 | 3.23 | 17.19 | 27.26 | 29.70 | 192.93 | |
2 | NPR | 99.43 | 2.78 | 12.28 | 19.47 | 21.21 | 155.18 |
NR | 83.33 | 2.33 | 17.19 | 27.26 | 29.70 | 159.81 | |
PR | 115.54 | 3.23 | 17.19 | 27.26 | 29.70 | 192.93 | |
3 | NPR | 91.38 | 2.55 | 12.28 | 19.47 | 21.21 | 146.90 |
NR | 67.22 | 1.88 | 15.97 | 25.31 | 27.58 | 137.96 | |
PR | 115.54 | 3.23 | 17.19 | 27.26 | 29.70 | 192.93 | |
4 | NPR | 83.33 | 2.33 | 12.28 | 29.21 | 21.21 | 148.36 |
NR | 51.11 | 1.43 | 12.28 | 19.47 | 21.21 | 105.51 | |
PR | 115.54 | 3.23 | 17.19 | 27.26 | 29.70 | 192.93 | |
5 | NPR | 75.27 | 2.10 | 12.28 | 29.21 | 21.21 | 140.08 |
NR | 35.01 | 0.98 | 12.28 | 19.47 | 21.21 | 88.95 | |
PR | 115.54 | 3.23 | 17.19 | 27.26 | 29.70 | 192.93 |
Fertilizer Reduction Scenario | Maize Yield Loss | |
---|---|---|
1 | NPR | 544.36 |
NR | 660.62 | |
PR | 379.63 | |
2 | NPR | 1156.69 |
NR | 1488.46 | |
PR | 758.17 | |
3 | NPR | 1863.48 |
NR | 2494.14 | |
PR | 1140.92 | |
4 | NPR | 2655.00 |
NR | 3682.93 | |
PR | 1527.87 | |
5 | NPR | 3550.72 |
NR | 5028.35 | |
PR | 1919.04 |
Scenario | Eco-compensation Standards under Different Reduction Proportions | ||
---|---|---|---|
Nitrogen and Phosphate Fertilizer Reduction (NPR) | Nitrogen Fertilizer Reduction (NR) | Phosphate Fertilizer Reduction (PR) | |
1 | 544.36 | 660.62 | 379.63 |
2 | 1156.69 | 1488.46 | 758.17 |
3 | 1863.48 | 2494.14 | 1140.92 |
4 | 2655.00 | 3682.93 | 1527.87 |
5 | 3550.72 | 5028.35 | 1919.04 |
References
- Weidner, H. Capacity building for ecological modernization: Lessons from cross-national research. Am. Behav. Sci. 2002, 45, 1340–1368. [Google Scholar] [CrossRef]
- Mensah, A.M.; Castro, L.C. Sustainable Resource Use & Sustainable Development: A Contradiction; Center for Development Research, University of Bonn: Bonn, Germany, 2004. [Google Scholar]
- Liu, G.H.; Wan, J.; Zhang, H.Y.; Cai, L.J. Eco-Compensation Policies and Mechanisms in China. Rev. Eur. Comp. Int. Environ. Law 2008, 17, 234–242. [Google Scholar] [CrossRef]
- Liu, M.C.; Yin, X.; Zheng, Y.; Min, Q.W.; Sun, Y.H.; Fuller, A.M. Standards of ecological compensation for traditional eco-agriculture: Taking rice-fish system in Hani terrace as an example. J. Mt. Sci. 2014, 11, 1049–1059. [Google Scholar] [CrossRef]
- Shang, W.X.; Gong, Y.C.; Wang, Z.J.; Stewardson, M.J. Eco-compensation in China: Theory, practices and suggestions for the future. J. Environ. Manag. 2018, 210, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.T.; Gong, Y.; Scarpa, R. Hungry birds and angry farmers: Using choice experiments to assess “Eco-compensation” for Coastal Wetlands Protection in China. Ecol. Econ. 2018, 154, 71–87. [Google Scholar] [CrossRef]
- Vatn, A.; Bromley, D.W. Choices without prices without apologies. J. Environ. Econ. Manag. 1994, 26, 129–148. [Google Scholar] [CrossRef]
- Place, F.; Dewees, P. Policies and incentives for the adoption of improved fallows. Agrofor. Syst. 1999, 47, 323–343. [Google Scholar] [CrossRef]
- Rosenthal, G. Selecting target species to evaluate the success of wet grassland restoration. Agric. Ecosyst. Environ. 2003, 98, 227–246. [Google Scholar] [CrossRef]
- Zheng, H.; Robinson, B.E.; Liang, Y.C.; Polasky, S.; Ma, D.C.; Wang, F.C.; Ruckelshaus, M.; Ouyang, Z.Y.; Daily, G.C. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program. Proc. Natl. Acad. Sci. USA 2013, 110, 16681–16686. [Google Scholar] [CrossRef] [Green Version]
- Arabomena O., J.; Chirwaa P., W.; Babalolaa F., D. Willingness-to-pay for environmental services provided by trees in core and fringe areas of Benin City, Nigeria. Int. For. Rev. 2019, 21, 23–36. [Google Scholar] [CrossRef]
- Rodríguez de Francisco, J.C.; Budds, J.; Boelens, R. Payment for environmental services and unequal resource control in Pimampiro, Ecuador. Soc. Nat. Resour. 2013, 26, 1217–1233. [Google Scholar] [CrossRef]
- Hein, L.; Van Koppen, K.; De Groot, R.S.; Van Ierland, E.C. Spatial scales, stakeholders and the valuation of ecosystem services. Ecol. Econ. 2006, 57, 209–228. [Google Scholar] [CrossRef]
- Zbinden, S.; Lee, D.R. Paying for environmental services: An analysis of participation in Costa Rica’s PSA Program. World. Dev. 2005, 33, 255–272. [Google Scholar] [CrossRef]
- Engel, S.; Wunscher, T.; Wunder, S. Determinants of participation in payments for ecosystem service schemes. Tropentag 2010, 9, 14–16. [Google Scholar]
- Engel, S.; Pagiola, S.; Wunder, S. Designing payments for environmental services in theory and practice: An overview of the issues. Ecol. Econ. 2008, 65, 663–674. [Google Scholar] [CrossRef] [Green Version]
- Moran, D.; McVittie, A.; AllcroftD, J.; Elston, D.A. Quantifying public preferences for agri-environmental policy in Scotland: A comparison of methods. Ecol. Econ. 2007, 63, 42–53. [Google Scholar] [CrossRef]
- Pan, J.; Zeng, W.Z.; Zhang, W.K. The willingness to pay for the ecological compensation of Min River Basin-Based on the survey of Chengdu 282 households. Environ. Pollut. 2012, 1, 14–20. [Google Scholar] [CrossRef]
- Liu, M.C.; Liu, W.W.; Yang, L.; Jiao, W.J.; He, S.Y.; Min, Q.W. A dynamic eco-compensation standard for Hani Rice Terraces System in southwest China. Ecosyst. Serv. 2019, 36, 100897. [Google Scholar] [CrossRef]
- Odum, H.T. Environmental accounting: Emergy and environmental decision making. Child Dev. 1996, 42, 1187–1201. [Google Scholar]
- Lan, S.F.; Qin, P.; Lu, H.F. Emergy Analysis on Ecological-Economic Systems; Chemical Industry Press: Beijing, China, 2002; pp. 27–42. (In Chinese) [Google Scholar]
- Wu, Z.N.; Guo, X.; Lv, C.M.; Wang, H.L.; Di, D.Y. Study on the quantification method of water pollution ecological compensation standard based on emergy theory. Ecol. Indic. 2018, 92, 189–194. [Google Scholar] [CrossRef]
- Guo, W.X.; Fu, Y.C.; Ruan, B.Q.; Ge, H.F.; Zhao, N.N. Agricultural non-point source pollution in the Yongding River Basin. Ecol. Indic. 2014, 36, 254–261. [Google Scholar] [CrossRef]
- Guan, X.J.; Hu, C.; Chen, M.Y. An ecological compensation standard based on emergy theory for the Xiao Honghe River Basin. Water Sci. Technol. 2015, 71, 1463–1470. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.C.; Du, X.; Ruan, B.Q.; Liu, L.S. Agro-ecological compensation of watershed based on emergy. Water Sci. Technol. 2017, 76, 2830–2841. [Google Scholar] [CrossRef]
- Huang, L.; Xiao, T.; Zhao, Z.Z.; Sun, C.Y.; Liu, J.Y.; Shao, Q.Q.; Fan, J.W.; Wang, J.B. Effects of grassland restoration programs on ecosystems in arid and semiarid China. J. Environ. Manag. 2013, 117, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Zhang, L.X.; Yang, L.Z.; Zhang, F.S.; Norse, D.; Zhu, Z.L. Agricultural non-point source pollution in China: Causes and mitigation measures. Ambio 2012, 41, 370–379. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, F.R.; Xu, Y.; Gao, Y.; Xie, Z. Evaluation of land reclamation and implications of ecological restoration for agro-pastoral ecotone: Case study of Horqin Left Back Banner in China. Chin. Geogr. Sci. 2017, 27, 772–783. [Google Scholar] [CrossRef]
- Ulgiati, S.; Odum, H.T.; Bastianoni, S. Emergy use, environmental loading and sustainability an emergy analysis of Italy. Ecol. Model. 1994, 73, 215–268. [Google Scholar] [CrossRef]
- Brown, M.T.; Brandt-Williams, S.L.; Tilley, D.; Ulgiati, S. Emergy Synthesis 1: Theory and Application of the Emergy Methodology; University of Florida: Gainesville, FL, USA, 2000; pp. 1–14. [Google Scholar]
- Zhang, Y.; Yang, Z.F.; Yu, X.Y. Evaluation of urban metabolism based on emergy synthesis: A case study for Beijing (China). Ecol. Model. 2009, 220, 1690–1696. [Google Scholar] [CrossRef]
- Brown, M.T.; Ulgiati, S. Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline. Ecol. Model. 2010, 221, 2501–2508. [Google Scholar] [CrossRef]
- Zhang, T.H.; Cui, J.Y.; Zhao, H.L.; Zhao, X.Y.; Li, Y.L. Effect of the factors of soil water content and fertilizers on yield of spring corn at sandy cropland, in Horqin sand land. J. Desert Res. 2000, 1, 59–62. [Google Scholar]
- Milder, J.C.; Scherr, S.J.; Bracer, C. Trends and future potential of payment for ecosystem services to alleviate rural poverty in developing countries. Ecol. Soc. 2010, 15, 4. [Google Scholar] [CrossRef]
- Price Division of China National Development and Reform Commission. National Agricultural Product Cost-Benefit Data Compilation; China Statistic Press: Beijing, China, 2016.
- Kemkes, R.J.; Farley, J.; Koliba, C.J. Determining when payments are an effective policy approach to ecosystem service provision. Ecol. Econ. 2010, 69, 2069–2074. [Google Scholar] [CrossRef]
- Yin, K.; Xiao, Y. Economic compensation criteria of eco-fallow based on non-market value of cultivated land in water-level fluctuation zone of Three Gorges Reservoir Area. Bull. Soil Water Conserv. 2017, 37, 239–246. (In Chinese) [Google Scholar]
- Yu, L.L.; Gai, Y.Y. Ecological compensation based on farmers’ willingness: A case study of Jingsan County in Hubei Province, China. Chin. J. Appl. Ecol. 2015, 26, 215–223. (In Chinese) [Google Scholar]
- Mao, D.H.; Hu, G.W.; Liu, H.J.; Li, Z.Z.; Li, Z.L.; Tian, Z.Z. Ecological compensation standard in Dongting Lake region of returning cropland to lake based on emergy analysis. Chin. J. Appl. Ecol. 2014, 25, 525–532. (In Chinese) [Google Scholar]
- Cai, Y.Y.; Yu, L.L. Ecological compensation for agricultural land in the key development area of Wuhan. Resour. Sci. 2014, 36, 1660–1669. (In Chinese) [Google Scholar]
- Zhang, Y.; Ji, Y.; Zhou, Y.; Sun, H. Ecological Compensation Standard for Non-Point Pollution from Farmland. Probl. Ekorozw. 2017, 12, 139–146. [Google Scholar]
Q (kg ha−1·year) | Q ≥ 2.3 | 2.3 > Q ≥ 2.0 | 2.0 > Q ≥ 1.7 | 1.7 > Q ≥ 1.3 | 1.3 > Q ≥ 1.0 | Q < 1.0 |
---|---|---|---|---|---|---|
f | 1.4 | 1.2 | 1.1 | 1 | 0.9 | 0.8 |
R (%) | R ≥ 50 | 50 > R ≥ 45 | 45 > R ≥ 40 | 40 > R ≥ 35 | R < 35 |
---|---|---|---|---|---|
fs | 1.4 | 1.3 | 1.2 | 1.1 | 1.0 |
Fertilizer Reduction Scenario | Reduction Proportion of Nitrogen and Phosphate Fertilizer (%) | |||||
---|---|---|---|---|---|---|
Nitrogen and Phosphate Fertilizer Reduction (NPR) | Nitrogen Fertilizer Reduction (NR) | Phosphate Fertilizer Reduction (PR) | ||||
N | P | N | P | N | P | |
1 | −10 | −10 | −20 | − | − | −20 |
2 | −20 | −20 | −40 | − | − | −40 |
3 | −30 | −30 | −60 | − | − | −60 |
4 | −40 | −40 | −80 | − | − | −80 |
5 | −50 | −50 | −100 | − | − | −100 |
Pollutant Emission | Raw Amount (kg ha−1/year) | Emergy Value (seJ/ha/year) | ||||
---|---|---|---|---|---|---|
1995 | 2005 | 2015 | 1995 | 2005 | 2015 | |
N2O | 2.02 | 1.49 | 5.97 | 2.29 × 1014 (27.19%) | 1.69 × 1014 (34.68%) | 6.76 × 1014 (58.28%) |
NH3 | 14.15 | 10.46 | 41.8 | 6.40 × 1012 (0.76%) | 4.73 × 1012 (0.97%) | 1.89 × 1013 (1.63%) |
NH3-N | 2.41 | 1.24 | 1.85 | 1.41 × 1014 (16.71%) | 7.23 × 1013 (14.86%) | 1.08 × 1014 (9.30%) |
TN | 3.8 | 1.97 | 2.92 | 2.22 × 1014 (26.43%) | 1.15 × 1014 (23.70%) | 1.71 × 1014 (14.73%) |
TP | 1.28 | 0.66 | 0.98 | 2.43 × 1014 (28.92%) | 1.25 × 1014 (25.78%) | 1.86 × 1014 (16.06%) |
Fertilizer Application Reduction Range (%) | Proportion (%) | Compensation Standard of Farmer’s Willingness to Accept | |||||
---|---|---|---|---|---|---|---|
Mean | Max. | Min. | |||||
CNY/ha/year | $/ha/year | CNY/ha/year | $/ha/year | CNY/ha/year | $/ha/year | ||
1–10 | 5.43 | 200.00 | 32.11 | 800 | 128.44 | 0 | 0 |
11–20 | 30.23 | 1223.50 | 196.44 | 4000 | 642.22 | 0 | 0 |
21–30 | 14.73 | 2150.50 | 345.27 | 5500 | 883.05 | 0 | 0 |
31–40 | 13.18 | 3300.00 | 529.83 | 7500 | 1204.16 | 1000 | 160.55 |
41–50 | 18.60 | 3555.50 | 570.85 | 7000 | 1123.88 | 800 | 128.44 |
51–60 | 12.40 | 3500.00 | 561.94 | 5000 | 802.77 | 2000 | 321.11 |
61–70 | 0.78 | 3500.00 | 561.94 | 8000 | 1284.44 | 3500 | 561.94 |
71–80 | 0.00 | - | - | - | - | - | - |
81–90 | 0.00 | - | - | - | - | - | - |
91–100 | 4.65 | 8500.00 | 1364.72 | 15,000 | 2408.32 | 5000 | 802.77 |
Methods | Goal | Year | Recommended Eco-Compensation Standard | Proportion of Total Eco-Compensation Amount to Regional GDP (%) | Location | Regional Economic Situation | References | |
---|---|---|---|---|---|---|---|---|
CNY/ha | $/ha | |||||||
Emergy Synthesis | Prevention of non-point source pollution in farmland | 2015 | 2364.91 | 379.63 | 2.72 | Horqin Left Back Banner, China | Developing | This research |
Willingness to accept | Eco-fallow | 2015 | 1520 | 244 | 1.01 | Three Gorges Reservoir Area, China | Developing | Yin et al., 2017 [37] |
Willingness to accept | Prevention of non-point source pollution in farmland | 2014 | 1130–9190 | 181–1480 | 0.37–2.98 | Macheng City, Hubei Province, China | Developed | Yu et al., 2015 [38] |
Willingness to accept | Prevention of non-point source pollution in farmland | 2013 | 4750–12,400 | 763–1990 | 6.10–15.91 | Jingshan County, Hubei Province, China | Developing | Yu et al., 2015 [38] |
Emergy Synthesis | Returning farmland to lake | 2010 | 865,000 | 139,000 | 7.51 | Dongting Lake Region, China | Developing | Mao et al., 2014 [39] |
Willingness to accept | Prevention of non-point source pollution of farmland | 2009 | 380,000–625,000 | 61,000-100,000 | 0.37–0.44 | Wuhan City, Hubei Province, China | Developed | Cai et al., 2009 [40] |
Willingness to accept opportunity cost | Prevention of non-point source pollution of farmland | 2009 | 629.4–7097.7 | 101.03–1139.23 | 0.06–0.67 | Yixing City, Jiangsu Province, China | Developed | Zhang et al., 2017 [41] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Han, Z.; Cui, Y.; Zhang, H.; Liu, L. Determination of the Agricultural Eco-Compensation Standards in Ecological Fragile Poverty Areas Based on Emergy Synthesis. Sustainability 2019, 11, 2548. https://doi.org/10.3390/su11092548
Gao Y, Han Z, Cui Y, Zhang H, Liu L. Determination of the Agricultural Eco-Compensation Standards in Ecological Fragile Poverty Areas Based on Emergy Synthesis. Sustainability. 2019; 11(9):2548. https://doi.org/10.3390/su11092548
Chicago/Turabian StyleGao, Yang, Ziyan Han, Yanzhi Cui, Hanbing Zhang, and Lulu Liu. 2019. "Determination of the Agricultural Eco-Compensation Standards in Ecological Fragile Poverty Areas Based on Emergy Synthesis" Sustainability 11, no. 9: 2548. https://doi.org/10.3390/su11092548
APA StyleGao, Y., Han, Z., Cui, Y., Zhang, H., & Liu, L. (2019). Determination of the Agricultural Eco-Compensation Standards in Ecological Fragile Poverty Areas Based on Emergy Synthesis. Sustainability, 11(9), 2548. https://doi.org/10.3390/su11092548