Assisted Deposition of PM2.5 from Indoor Air by Ornamental Potted Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Equipment
2.1.1. Potted-Plants Selection
2.1.2. Testing Instrument
2.1.3. Experiment Equipment
2.2. Experimental Method
2.2.1. Removal Efficiency of PM2.5 by Potted-Plants and Its Influencing Factors
2.2.2. Actual Indoor Study
3. Results and Discussion
3.1. Deposition Effect of PM2.5 by Potted Plants under Different PM2.5 Concentrations
3.2. Influencing Factors of PM2.5 Deposition by Potted Plants
3.2.1. Influence of Plant Species
3.2.2. Leaf Surface Characteristics and LAI
3.2.3. Influence of RH
3.3. Actual Indoor Study
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Martins, N.R.; Guilherme, C.D.G. Impact of PM2.5 in indoor urban environments: A review. Sustain. Cities Soc. 2018, 42, 259–275. [Google Scholar] [CrossRef]
- Widziewicz, K.; Loska, K. Metal induced inhalation exposure in urban population: A probabilistic approach. Atmos. Environ. 2016, 128, 198–207. [Google Scholar] [CrossRef]
- Li, Z.; Wen, Q.; Zhang, R. Sources, health effects and control strategies of indoor fine particulate matter (PM2.5): A review. Sci. Total Environ. 2017, 586, 610–622. [Google Scholar] [CrossRef] [PubMed]
- Baeza-Squiban, A.; Bonvallot, V.; Boland, S.; Marano, F. Airborne particle evoke an inflammatory response in human airway epithelium. Activation of transcription factors. Cell Biol. Toxicol. 1999, 15, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Burnett, R.T.; Thurston, G.D.; Thun, M.J.; Calle, E.E.; Krewski, D.; Godleski, J.J. Cardiovascular mortality and long-term exposure to particulate air pollution. Circulation 2004, 109, 71–77. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; CAIII, P.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B.; Zhou, W.; Jiang, X.; Tan, Z. A methodology for predicting particle penetration factor through cracks of windows and doors for actual engineering application. Build. Environ. 2012, 47, 339–348. [Google Scholar] [CrossRef]
- Habre, R.; Coull, B.; Moshier, E.; Godbold, J.; Grunin, A.; Nath, A.; Castro, W.; Schachter, N.; Rohr, A.; Kattan, M.; et al. Sources of indoor air pollution in New York City residences of asthmatic children. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 269–278. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef]
- Tong, Z.; Whitlow, T.H.; Macrae, P.F.; Landers, A.J.; Harada, Y. Quantifying the effect of vegetation on near-road air quality using brief campaigns. Environ. Pollut. 2015, 201, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Whitlow, T.H.; Landers, A.; Flanner, B. A case study of air quality above an urban roof top vegetable farm. Environ. Pollut. 2016, 208, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Particulate pollution capture by urban trees: Effect of species and windspeed. Glob. Chang. Biol. 2000, 6, 995–1003. [Google Scholar] [CrossRef]
- Willis, K.J.; Petrokofsky, G. The natural capital of city trees. Science 2017, 356, 374–376. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Zhao, B. A wind tunnel study on the effect of trees on PM2.5, distribution around buildings. J. Hazard. Mater. 2018, 346, 36–41. [Google Scholar] [CrossRef]
- Tong, Z.; Baldauf, R.W.; Isakov, V.; Deshmukh, P.; Zhang, K.M. Roadside vegetation barrier designs to mitigate near-road air pollution impacts. Sci. Total Environ. 2016, 541, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Urban particulate pollution reduction by four species of green roof vegetation in a UK city. Atmos. Environ. 2012, 61, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Popek, R. Particulate matter on foliage of 13 woody species: Deposition on surfaces and phytostabilisation in waxes—A 3-Year study. Int. J. Phytormediation 2013, 15, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 427, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Ram, S.S.; Majumder, S.; Chaudhuri, P.; Chanda, S.; Santra, S.C.; Chakraborty, A.; Sudarshan, M. A review on air pollution monitoring and management using plants with special reference to foliar dust adsorption and physiological stress responses. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2489–2522. [Google Scholar] [CrossRef]
- Torpy, F.R.; Irga, P.J.; Burchett, M.D. Profiling indoor plants for the amelioration of high CO2 concentrations. Urban For. Urban Green. 2014, 13, 227–233. [Google Scholar] [CrossRef]
- Wolverton, B.C.; Johnson, A.; Bounds, K. Interior Landscape Plants for Indoor Air Pollution Abatement; National Aeronautics and Space Administration: Davidsonville, MD, USA, 1989.
- Coward, M.; Ross, D.; Coward, S.; Cayless, S.; Raw, G. Pilot Study to Assess the Impact of Green Plants on NO2 Levels in Homes; Building Research Establishment: Watford, UK, 1996. [Google Scholar]
- Orwell, R.L.; Wood, R.A.; Tarran, J.; Torpy, F.; Burchett, M.D. Removal of benzene by the indoor plant/substrate microcosm and implications for air quality. Water Soil Air Pollut. 2004, 157, 157,193–207. [Google Scholar] [CrossRef]
- Teiri, H.; Pourzamani, H.; Hajizadeh, Y. Phytoremediation of VOCs from indoor air by ornamental potted plants: A pilot study using a palm species, under the controlled environment. Chemosphere 2018, 197, 375. [Google Scholar] [CrossRef]
- He, Q.Q.; Zhou, J.H. Research advance in purification of formaldehyde-polluted indoor air by potted plants. Acta Agric. Jiangxi 2014, 26, 44–48. (In Chinese) [Google Scholar]
- Bu, Z.M.; Xiang, J.B.; Chen, Y.B.; Pan, W.B.; Wang, H.G.; Mo, J.H. Environmental chamber testing and practical assessment of PM2.5 removal effect of air cleaners. Heat. Vent. Air Cond. 2013, 43, 64–67. (In Chinese) [Google Scholar]
- Ryu, J.; Kim, J.J.; Byeon, H.; Go, T.; Lee, S.J. Removal of fine particulate matter (PM2.5) via atmospheric humidity caused by evapotranspiration. Environ. Pollut. 2019, 245, 253–259. [Google Scholar] [CrossRef]
- Zhu, M. Research on Indoor Air Quality Control Based on PM2.5 Concentration Standards. Master’s Thesis, Wuhan University of Science Technology, Wuhan, China, 2014. (In Chinese). [Google Scholar]
- Liu, M.Z.; Nuerbayi, A.; Pan, X.L. Preparation of leaf stomatal slice with nail polish. Bull. Biol. 2005, 10, 44. (In Chinese) [Google Scholar]
- Aydogan, A.; Montoya, L.D. Formaldehyde removal by common indoor plant species and various growing media. Atmos. Environ. 2011, 45, 2675–2682. [Google Scholar] [CrossRef]
- Barclay, H.J. Conversion of total leaf area to projected leaf area in lodgepole pine and Douglas-fir. Tree Physiol. 1998, 18, 185–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, W.K.; Schoettle, A.W.; Cui, M. Importance of the method of leaf area measurement to the interpretation of gas exchange of complex shoots. Tree Physiol. 1991, 8, 121–127. [Google Scholar] [CrossRef]
- NEPAC (National Environmental Protection Agency of China), GB/T18883-2002. Indoor Air Quality Standards; National Environmental Protection Agency: Beijing, China, 2003. (In Chinese)
- Wang, L.; Hasi, E.; Liu, L.Y.; Gao, S.Y. Physico-chemical characteristics of ambient particles settling upon leaf surface of six conifers in Beijing. Chin. J. Appl. Ecol. 2007, 18, 487–492. [Google Scholar]
- Shannon, G. Review of plants to mitigate particulate matter, ozone as well as nitrogen dioxide air pollutants and applicable recommendations for green roofs in montreal, quebec. Environ. Pollut. 2018, 241, 378–387. [Google Scholar]
- Sehmel, G.A. Particle and gas dry deposition: A review. Atmos. Environ. 1980, 14, 983–1011. [Google Scholar] [CrossRef]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Urban woodlands: Their role in reducing the effects of particulate pollution. Environ. Pollut. 1998, 99, 347–360. [Google Scholar] [CrossRef]
- Feng, S.; Wang, L.H.; Sun, F.B.; Li, G.; Yu, L.; Wang, Y.J.; Zeng, X.R.; Yan, H.; Dong, L.; Bao, Z.Y. Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in Hangzhou, China. Sci. Total Environ. 2019, 652, 939–951. [Google Scholar]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban For. Urban Green. 2018, 30, 98–107. [Google Scholar] [CrossRef]
- Janhäll, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Kim, B.M.; Seo, J.; Kim, J.Y.; Lee, J.Y.; Kim, Y. Transported vs. Local contributions from secondary and biomass burning sources to PM2.5. Atmos. Environ. 2016, 144, 24–36. [Google Scholar] [CrossRef]
- Olvera Alvarez, H.A.; Myers, O.B.; Weigel, M.; Armijos, R.X. The value of using seasonality and meteorological variables to model intra-urban PM2.5 variation. Atmos. Environ. 2018, 182, 1–8. [Google Scholar] [CrossRef]
- Han, Y.; Qi, M.; Chen, Y.; Shen, H.; Liu, J.; Huang, Y. Influences of ambient air PM2.5 concentration and meteorological condition on the indoor PM2.5 concentrations in a residential apartment in beijing using a new approach. Environ. Pollut. 2015, 205, 307–314. [Google Scholar] [CrossRef]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the united states: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Cheng, Y.; He, K.B.; Du, Z.Y.; Zheng, M.; Duan, F.K.; Ma, Y.L. Humidity plays an important role in the PM2.5 pollution in Beijing. Environ. Pollut. 2015, 197, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C. Characteristics of emissions of air pollutants from environmental tobacco smoke. Ph.D. Thesis, Hunan University, Changsha, Hunan, 2007. (In Chinese). [Google Scholar]
- Li, C.; Cui, S.X.; Yang, W.; Wang, X.J.; Ming, J.; Chen, Y.P.; Fu, Z.R. Experimental research on effects of the relative humidity on the size distributions of indoor fine particles. J. Saf. Environ. 2017, 14, 254–258. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Li, F.; Wang, Y.; Yu, Y.; Wang, Z.; Liu, X.; Ding, K. Assisted Deposition of PM2.5 from Indoor Air by Ornamental Potted Plants. Sustainability 2019, 11, 2546. https://doi.org/10.3390/su11092546
Cao Y, Li F, Wang Y, Yu Y, Wang Z, Liu X, Ding K. Assisted Deposition of PM2.5 from Indoor Air by Ornamental Potted Plants. Sustainability. 2019; 11(9):2546. https://doi.org/10.3390/su11092546
Chicago/Turabian StyleCao, Yanxiao, Fei Li, Yanan Wang, Yu Yu, Zhibiao Wang, Xiaolei Liu, and Ke Ding. 2019. "Assisted Deposition of PM2.5 from Indoor Air by Ornamental Potted Plants" Sustainability 11, no. 9: 2546. https://doi.org/10.3390/su11092546
APA StyleCao, Y., Li, F., Wang, Y., Yu, Y., Wang, Z., Liu, X., & Ding, K. (2019). Assisted Deposition of PM2.5 from Indoor Air by Ornamental Potted Plants. Sustainability, 11(9), 2546. https://doi.org/10.3390/su11092546