On the Necessity and Effects of Considering Correlated Stochastic Speeds in Shortest Path Problems Under Sustainable Environments
Abstract
:1. Introduction
2. Problem Definition
3. Test Case and Settings
3.1. Data Collection and Processing
3.2. Experimental Settings
4. Experimental Results
4.1. Effects of Speed Stochasticity
4.2. Effects of Speed Correlation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Edenhofer, O. Climate Change 2014: Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2015; Volume 3. [Google Scholar]
- Ubeda, S.; Arcelus, F.J.; Faulin, J. Green logistics at Eroski: A case study. Int. J. Prod. Econ. 2011, 131, 44–51. [Google Scholar] [CrossRef]
- Tang, S.; Wang, W.; Yan, H.; Hao, G. Low carbon logistics: Reducing shipment frequency to cut carbon emissions. Int. J. Prod. Econ. 2015, 164, 339–350. [Google Scholar] [CrossRef]
- Piecyk, M.; Browne, M.; Whiteing, A.; McKinnon, A. Green Logistics: Improving the Environmental Sustainability of Logistics; Kogan Page Publishers: London, UK, 2015. [Google Scholar]
- Bektaş, T.; Laporte, G. The pollution-routing problem. Transp. Res. Part B Methodol. 2011, 45, 1232–1250. [Google Scholar] [CrossRef]
- Dekker, R.; Bloemhof, J.; Mallidis, I. Operations research for green logistics–An overview of aspects, issues, contributions and challenges. Eur. J. Oper. Res. 2012, 219, 671–679. [Google Scholar] [CrossRef] [Green Version]
- Demir, E.; Bektaş, T.; Laporte, G. A review of recent research on green road freight transportation. Eur. J. Oper. Res. 2014, 237, 775–793. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Choy, K.L.; Ho, G.T.S.; Chung, S.H.; Lam, H.Y. Survey of green vehicle routing problem: Past and future trends. Expert Syst. Appl. 2014, 41, 1118–1138. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, X.; Bie, R.; Song, H. Discovering time-dependent shortest path on traffic graph for drivers towards green driving. J. Netw. Comput. Appl. 2017, 83, 204–212. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L.; Van Woensel, T.; Gross, J.P. Time-dependent vehicle routing problem with path flexibility. Transp. Res. Part B Methodol. 2017, 95, 169–195. [Google Scholar] [CrossRef]
- Ehmke, J.F.; Campbell, A.M.; Thomas, B.W. Optimizing for total costs in vehicle routing in urban areas. Transp. Res. Part E Logist. Transp. Rev. 2018, 116, 242–265. [Google Scholar] [CrossRef]
- Laporte, G.; Pascoal, M.M. Minimum cost path problems with relays. Comput. Oper. Res. 2011, 38, 165–173. [Google Scholar] [CrossRef]
- Arslan, O.; Yıldız, B.; Karaşan, O.E. Minimum cost path problem for plug-in hybrid electric vehicles. Transp. Res. Part E Logist. Transp. Rev. 2015, 80, 123–141. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Gao, S. Optimal paths in dynamic networks with dependent random link travel times. Transp. Res. Part B Methodol. 2012, 46, 579–598. [Google Scholar] [CrossRef]
- Fu, L.; Rilett, L.R. Expected shortest paths in dynamic and stochastic traffic networks. Transp. Res. Part B Methodol. 1998, 32, 499–516. [Google Scholar] [CrossRef]
- Miller-Hooks, E.D.; Mahmassani, H.S. Least expected time paths in stochastic, time-varying transportation networks. Transp. Sci. 2000, 34, 198–215. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Zhou, X. Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time path problem. Transp. Res. Part B Methodol. 2014, 59, 22–44. [Google Scholar] [CrossRef]
- Prakash, A.A. Pruning algorithm for the least expected travel time path on stochastic and time-dependent networks. Transp. Res. Part B Methodol. 2018, 108, 127–147. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, X. Optimizing on-time arrival probability and percentile travel time for elementary path finding in time-dependent transportation networks: Linear mixed integer programming reformulations. Transp. Res. Part B Methodol. 2017, 96, 68–91. [Google Scholar] [CrossRef]
- Chen, B.Y.; Shi, C.; Zhang, J.; Lam, W.H.; Li, Q.; Xiang, S. Most reliable path-finding algorithm for maximizing on-time arrival probability. Transp. B Transp. Dyn. 2017, 5, 248–264. [Google Scholar] [CrossRef]
- Chen, P.; Tong, R.; Lu, G.Q.; Wang, Y.P. The alpha-reliable path problem in stochastic road networks with link correlations: A moment-matching-based path finding algorithm. Expert Syst. Appl. 2018, 110, 20–32. [Google Scholar] [CrossRef]
- Ehmke, J.F.; Campbell, A.M.; Thomas, B.W. Data-driven approaches for emissions-minimized paths in urban areas. Comput. Oper. Res. 2016, 67, 34–47. [Google Scholar] [CrossRef]
- Chabini, I.; Lan, S. Adaptations of the A* algorithm for the computation of fastest paths in deterministic discrete-time dynamic networks. IEEE Trans. Intell. Transp. Syst. 2002, 3, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.; Haworth, J.; Wang, J. Spatio-temporal autocorrelation of road network data. J. Geogr. Syst. 2012, 14, 389–413. [Google Scholar] [CrossRef]
- Rachtan, P.; Huang, H.; Gao, S. Spatiotemporal link speed correlations: Empirical study. Transp. Res. Rec. J. Transp. Res. Board 2013, 2390, 34–43. [Google Scholar] [CrossRef]
- Ermagun, A.; Chatterjee, S.; Levinson, D. Using temporal detrending to observe the spatial correlation of traffic. PLoS ONE 2017, 12, e0176853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, F.; Zhang, D.; Dong, Y.; Guo, Z. Urban link travel speed dataset from a megacity road network. Sci. Data 2019, 6, 61. [Google Scholar] [CrossRef]
- Zockaie, A.; Nie, Y.; Wu, X.; Mahmassani, H. Impacts of correlations on reliable shortest path finding: A simulation-based study. Transp. Res. Rec. J. Transp. Res. Board 2013, 2334, 1–9. [Google Scholar] [CrossRef]
- Huang, H.; Gao, S. Trajectory-adaptive routing in dynamic networks with dependent random link travel times. Transp. Sci. 2018, 52, 102–117. [Google Scholar] [CrossRef]
- Deo, N.; Pang, C.Y. Shortest-path algorithms: Taxonomy and annotation. Networks 1984, 14, 275–323. [Google Scholar] [CrossRef]
- Dean, B.C. Shortest Paths in FIFO Time-Dependent Networks: Theory and Algorithms; Rapport Technique; Massachusetts Institute of Technology: Cambridge, MA, USA, 2004. [Google Scholar]
- Gao, S. Optimal Adaptive Routing and Traffic Assignment in Stochastic Time-Dependent Networks. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2005. [Google Scholar]
- Hickman, J.; Hassel, D.; Joumard, R.; Samaras, Z.; Sorenson, S. MEET-Methodology for Calculating Transport Emissions and Energy Consumption; Technical Report; European Commission: Brussels, Belgium, 1999. [Google Scholar]
- Chen, C. Freeway Performance Measurement System (PeMS). Ph.D. Thesis, University of California, Berkeley, CA, USA, 2003. [Google Scholar]
- Kaut, M.; Wallace, S.W. Shape-based scenario generation using copulas. Comput. Manag. Sci. 2011, 8, 181–199. [Google Scholar] [CrossRef]
- Grubbs, F.E. Sample criteria for testing outlying observations. Ann. Math. Stat. 1950, 21, 27–58. [Google Scholar] [CrossRef]
- Brands, J.; Murray, J. Los Angeles Taxicab Review and Performance Report (2014–2015); Technical Report; Los Angeles Department of Transportation: Los Angeles, CA, USA, 2017. [Google Scholar]
Period | Link | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 57 | 54 | 52 | 48 | 54 | 54 | 58 | 50 | 52 | 59 | |
64 | 58 | 60 | 61 | 61 | 66 | 64 | 60 | 61 | 61 | ||
64 | 58 | 60 | 61 | 61 | 66 | 64 | 60 | 61 | 61 | ||
69 | 69 | 66 | 66 | 67 | 68 | 68 | 67 | 66 | 69 | ||
2 | 59 | 57 | 51 | 55 | 56 | 55 | 56 | 53 | 55 | 57 | |
65 | 61 | 61 | 60 | 61 | 64 | 63 | 62 | 62 | 62 | ||
68 | 68 | 66 | 66 | 68 | 67 | 69 | 69 | 67 | 68 | ||
54 | 50 | 49 | 49 | 53 | 61 | 60 | 57 | 57 | 58 |
DP | SP | Diff. (%) | DP | SP | Diff. (%) | DP | SP | Diff. (%) | DP | SP | Diff. (%) | |
25.0018 | 24.9954 | −0.03 | 25.0018 | 24.9992 | −0.01 | 25.0018 | 25.0083 | 0.03 | 25.0018 | 25.0167 | 0.06 | |
- | - | - | 0.7563 | 0.7488 | −0.99 | 1.5126 | 1.4859 | −1.77 | 2.2690 | 2.2181 | −2.24 | |
F | 25.0018 | 24.9954 | −0.03 | 25.7581 | 25.7480 | −0.04 | 26.5144 | 26.4942 | −0.08 | 27.2707 | 27.2347 | −0.13 |
better path | 7 | 8 | 12 | 17 |
same path | 193 | 192 | 188 | 183 |
DP | SP | Diff. (%) | DP | SP | Diff. (%) | DP | SP | Diff. (%) | DP | SP | Diff. (%) | |
25.1505 | 25.1455 | −0.02 | 25.1554 | 25.1534 | −0.01 | 25.1618 | 25.1767 | 0.06 | 25.1796 | 25.1911 | 0.05 | |
- | - | - | 0.762 | 0.7583 | −0.49 | 1.512 | 1.4793 | −2.16 | 2.2638 | 2.1985 | −2.88 | |
F | 25.1505 | 25.1455 | −0.02 | 25.9174 | 25.9117 | −0.02 | 26.6738 | 26.656 | −0.07 | 27.4433 | 27.3896 | −0.20 |
better path | 7 | 12 | 18 | 25 |
same path | 193 | 188 | 182 | 175 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Guo, Z. On the Necessity and Effects of Considering Correlated Stochastic Speeds in Shortest Path Problems Under Sustainable Environments. Sustainability 2020, 12, 238. https://doi.org/10.3390/su12010238
Zhang D, Guo Z. On the Necessity and Effects of Considering Correlated Stochastic Speeds in Shortest Path Problems Under Sustainable Environments. Sustainability. 2020; 12(1):238. https://doi.org/10.3390/su12010238
Chicago/Turabian StyleZhang, Dongqing, and Zhaoxia Guo. 2020. "On the Necessity and Effects of Considering Correlated Stochastic Speeds in Shortest Path Problems Under Sustainable Environments" Sustainability 12, no. 1: 238. https://doi.org/10.3390/su12010238
APA StyleZhang, D., & Guo, Z. (2020). On the Necessity and Effects of Considering Correlated Stochastic Speeds in Shortest Path Problems Under Sustainable Environments. Sustainability, 12(1), 238. https://doi.org/10.3390/su12010238