Modelling Water Absorption in Micronized Lentil Seeds with the Use of Peleg’s Equation
Abstract
:1. Introduction
- Mt—Water content after time t, % of d.w.;
- Mo—Initial water content, % of d.w.;
- K1—Constant, h · %−1;
- K2—Constant, %−1.
2. Materials and Methods
2.1. Research Material
2.2. Measurement of Initial Moisture Content
2.3. Micronization Process
2.4. Measurement of the Water Content
- Mt—Water content after time t, % relative to dry weight [%];
- MH2O—Water weight after time t [g];
- M1—Dry weight [g].
- Mm—Initial weight of the material [g];
- W—Moisture [%].
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Mt | water content after time t, [% of dry weight]; |
Mo | initial water content, [% of dry weight]; |
K1 | constant, [h · %–1]; |
K2 | constant, [%–1]; |
R | sorption rate, [-]; |
MH2O | water weight after time t, [g]; |
M1 | dry weight, [g]; |
Mm | initial weight of the material, [g]; |
W | moisture, [%]; |
R2 | fit of the model, [-]; |
E | goodness of fit of the model, [%]; |
References
- Maskan, M. Effect of processing on hydration kinetics of three wheat products of the same variety. J. Food Eng. 2002, 52, 337–341. [Google Scholar] [CrossRef]
- Turhan, M.; Sayar, S.; Gunasekaran, S. Application of Peleg model to study water absorption in chickpea during soaking. J. Food Eng. 2002, 53, 153–159. [Google Scholar] [CrossRef]
- Cunningham, S.E.; McMinn, W.A.M.; Magee, T.R.A.; Richardson, P.S. Modelling water absorption of pasta during soaking. J. Food Eng. 2007, 82, 600–607. [Google Scholar] [CrossRef]
- Montanuci, F.D.; Perussello, C.A.; de Matos Jorge, L.M.; Jorge, R.M.M. Experimental analysis and finite element simulation of the hydration process of barley grains. J. Food Eng. 2014, 131, 44–49. [Google Scholar] [CrossRef]
- Munson-McGee, S.H.; Mannarswamy, A.; Andersen, P.K. D-optimal designs for sorption kinetic experiments: Cylinders. J. Food Eng. 2011, 104, 202–207. [Google Scholar] [CrossRef]
- Peleg, M. An empirical model for the description of moisture sorption curves. J. Food Sci. 1988, 53, 1216–1217, 1219. [Google Scholar] [CrossRef]
- Abu-Ghannam, N.; McKenna, B. The application of Peleg’s equation to model water absorption during the soaking of red kidney beans (Phasedus vulgaris L.). J. Food Eng. 1997, 32, 391–401. [Google Scholar] [CrossRef]
- Quicazán, M.C.; Caicedo, L.A.; Cuenca, M. Applying Peleg’s equation to modelling the kinetics of solid hydration and migration during soybean soaking. Ing. Investig. 2012, 32, 53–57. [Google Scholar]
- Sopade, P.A.; Xun, P.Y.; Halley, P.J.; Hardin, M. Equivalence of the Peleg, Pilosof and Singh–Kulshrestha models for water absorption in food. J. Food Eng. 2007, 78, 730–734. [Google Scholar] [CrossRef]
- Hung, T.V.; Liu, L.H.; Black, R.G.; Trewhella, M.A. Water absorption in chickpea (C. arietinum) and field pea (P. sativum) cultivars using the Peleg model. J. Food Sci. 1993, 58, 848–852. [Google Scholar] [CrossRef]
- Sayar, S.; Turhan, M.; Gunasekaran, S. Analysis of chickpea soaking by simultaneous water transfer and water-starch reaction. J. Food Eng. 2001, 50, 91–98. [Google Scholar] [CrossRef]
- Maharaj, V.; Sankat, C.K. Rehydration characteristics and quality of dehydrated dasheen leaves. Can. Agric. Eng. 2000, 42, 81–85. [Google Scholar]
- Sopade, P.A.; Obekpa, J.A. Modeling water absorption in soybean, cowpea and peanuts at three temperatures using Peleg’s equation. J. Food Sci. 1990, 55, 1084–1087. [Google Scholar] [CrossRef]
- Sopade, P.A.; Ajisegiri, E.S.; Badau, M.H. The use of Peleg`s equation to model water absorption in some cereal grains during soaking. J. Food Eng. 1992, 15, 269–283. [Google Scholar] [CrossRef]
- Cenkowski, S.; Sosulski, F.W. Cooking characteristics of split peas treated with infrared heat. Trans. ASAE 1998, 41, 715–720. [Google Scholar] [CrossRef]
- Khattab, R.Y.; Arntfield, S.D. Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. Lebensm. Wiss. Technol. 2009, 42, 1113–1118. [Google Scholar] [CrossRef]
- Krajewska, M.; Ślaska-Grzywna, B.; Andrejko, D. Effect of Infrared Thermal Pre-Treatment of Sesame Seeds (Sesamum Indicum L.) on Oil Yield and Quality. Ital. J. Food Sci. 2018, 30, 487–496. [Google Scholar] [CrossRef]
- Sobczak, P.; Zawiślak, K.; Panasiewicz, M.; Mazur, J.; Kocira, S.; Żukiewicz-Sobczak, W. Impact of Heat Treatment on the Hardness and Content of Anti-Nutritious Substances in Soybean Seeds. Carpath. J. Food Sci. Technol. 2018, 10, 46–52. [Google Scholar]
- Hefnawy, T.H. Effect of processing methods on nutritional composition and anti-nutritional factors in lentils (Lens culinaris). Ann. Agric. Sci. 2011, 56, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Boye, J.I.; Aksay, S.; Roufik, S.; Ribéreau, S.; Mondor, M.; Farnworth, E.; Rajamohamed, S.H. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res. Int. 2010, 43, 537–546. [Google Scholar] [CrossRef]
- Chopra, R.; Prasad, D.N. Standardization of soaking conditions for soybean seeds/cotyledons for improved quality of soymilk. Indian J. Anim. Sci. 1994, 64, 405–410. [Google Scholar]
- Pan, Z.; Tangratanavalee, W. Characteristics of soybeans as affected by soaking conditions. Lebensm. Wiss. Technol. 2003, 36, 143–151. [Google Scholar] [CrossRef]
Nutrients | Content [%] | |
---|---|---|
Protein | 22.01 ± 0.53 | |
Fat | 0.90 ± 0.02 | |
Moisture | Crude seeds | 8.40 ± 0.17 |
Micronized seeds | 6.00 ± 0.20 |
Parameter | T | Soaking Time | K1 | 1/K1 | K2 | R2 | E |
---|---|---|---|---|---|---|---|
Unit | °C | h | % | ||||
Result | 25 | 0–8 | 1.6845 | 0.59365 | 0.6893 | 0.9960 | 3.93 |
50 | 0–8 | 0.5183 | 1.92938 | 0.6567 | 0.9957 | 6.08 | |
75 | 0–8 | 0.1543 | 6.48088 | 0.7461 | 0.9952 | 1.94 |
Parameter | T | Soaking Time | K1 | 1/K1 | K2 | R2 | E |
---|---|---|---|---|---|---|---|
Unit | °C | h | % | ||||
Result | 25 | 0–8 | 0.7801 | 1.28189 | 0.7977 | 0.9698 | 17.38 |
50 | 0–8 | 0.2920 | 3.42466 | 0.7299 | 0.9895 | 6.06 | |
75 | 0–8 | 0.1345 | 7.43494 | 0.7565 | 0.9791 | 4.18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuna-Broniowska, I.; Blicharz-Kania, A.; Andrejko, D.; Kubik-Komar, A.; Kobus, Z.; Pecyna, A.; Stoma, M.; Ślaska-Grzywna, B.; Rydzak, L. Modelling Water Absorption in Micronized Lentil Seeds with the Use of Peleg’s Equation. Sustainability 2020, 12, 261. https://doi.org/10.3390/su12010261
Kuna-Broniowska I, Blicharz-Kania A, Andrejko D, Kubik-Komar A, Kobus Z, Pecyna A, Stoma M, Ślaska-Grzywna B, Rydzak L. Modelling Water Absorption in Micronized Lentil Seeds with the Use of Peleg’s Equation. Sustainability. 2020; 12(1):261. https://doi.org/10.3390/su12010261
Chicago/Turabian StyleKuna-Broniowska, Izabela, Agata Blicharz-Kania, Dariusz Andrejko, Agnieszka Kubik-Komar, Zbigniew Kobus, Anna Pecyna, Monika Stoma, Beata Ślaska-Grzywna, and Leszek Rydzak. 2020. "Modelling Water Absorption in Micronized Lentil Seeds with the Use of Peleg’s Equation" Sustainability 12, no. 1: 261. https://doi.org/10.3390/su12010261
APA StyleKuna-Broniowska, I., Blicharz-Kania, A., Andrejko, D., Kubik-Komar, A., Kobus, Z., Pecyna, A., Stoma, M., Ślaska-Grzywna, B., & Rydzak, L. (2020). Modelling Water Absorption in Micronized Lentil Seeds with the Use of Peleg’s Equation. Sustainability, 12(1), 261. https://doi.org/10.3390/su12010261