The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Pre-Processing
2.3. Methods
- The VPM model was used to estimate GPP for C3-based paddy rice and C4-based maize. Then, two types of comparable GPP were obtained using an anomaly analysis and the GPP time series was generated.
- To investigate the temporal and spatial characteristics of CLP over a long period, the level of CLP was analyzed by GPP multi-years mean. The trend and amplitude were quantified by both the Theil–Sen median trend analysis and the MK test.
- The sustainability characteristic of future change was assessed by the Hurst exponent, which was integrated with the trend result to express the future direction of change.
2.3.1. GPP Estimation with the VPM Model and the GPP Mean Calculation
2.3.2. Theil–Sen Median
2.3.3. The MK Test
2.3.4. The Hurst Exponent
- (1)
- To define the time series GPP(t), t = 1, 2...n.
- (2)
- To calculate the mean of the GPP time series,
- (3)
- To calculate the accumulated deviation,
- (4)
- To acquire the level difference,
- (5)
- To acquire the standard deviation sequence,
- (6)
- To acquire the H exponent,
3. Results
3.1. The Characteristics of the Temporal and Spatial Distribution of the CLP Level
3.2. The Trend and Amplitude of Change of the GPP from 2000 to 2018
3.3. The Sustainability and Direction of Change of the CLP in the Future
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Zhang, L.; Trout, T. Improving agricultural water productivity to ensure food security under Changing environments. Agric. Water Manag. 2017, 179, 1–4. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, C.; Ma, J.; Yun, W.; Gao, L.; Li, P. Sustainability assessment of smallholder farmland systems: Healthy farmland system assessment framework. Sustainability 2019, 11, 4525. [Google Scholar] [CrossRef] [Green Version]
- Osem, Y.; Perevolotsky, A.; Kigel, J. Grazing effect on diversity of annual plant communities in a semi-arid rangeland: Interactions with small-scale spatial and temporal variation in primary productivity. J. Ecol. 2002, 90, 936–946. [Google Scholar] [CrossRef]
- Xiao, L.; Yang, X.; Cai, H.; Zhang, D. Cultivated Land Changes and Agricultural Potential Productivity in Mainland China. Sustainability 2015, 7, 11893–11908. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.O.; Deng, X.; Zhan, J.; He, S. Estimation of land production and its response to cultivated land conversion in North China Plain. Chin. Geogr. Sci. 2011, 21, 685–694. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Guo, L. Towards realistic assessment of cultivated land quality in an ecologically fragile environment: A satellite imagery-based approach. Appl. Geogr. 2010, 30, 271–281. [Google Scholar] [CrossRef]
- Barrios, E.; Barrios, E. Soil biota, ecosystem services and land productivity. Ecol. Econ. 2007, 64, 269–285. [Google Scholar] [CrossRef]
- Gong, H.; An, D.; Li, X.; Zhu, F. Soil degradation and food security coupled with global climate change in northeastern China. Chin. Geogr. Sci. 2013, 23, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Tøttrup, C.; Rasmussen, M. Mapping long-term changes in savannah crop productivity in Senegal through trend analysis of time series of remote sensing data. Agric. Ecosyst. Environ. 2004, 103, 545–560. [Google Scholar] [CrossRef]
- Malerba, D. Poverty-energy-emissions pathways: Recent trends and future sustainable development goals. Energy Sustain. Dev. 2019, 49, 109–124. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Chen, D.; White, R.; Li, Y. A quantitative evaluation system of soil productivity for intensive agriculture in China. Geoderma 2004, 123, 319–331. [Google Scholar] [CrossRef]
- Baskan, O.; Dengiz, O.; Demirağ Turan, İ. The land productivity dynamics trend as a tool for land degradation assessment in a dryland ecosystem. Environ. Monit. Assess. 2017, 189, 212. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Liu, L. Contemporaneous Time Series and Forecasting Methodologies for Predicting Short-Term Productivity. J. Constr. Eng. Manag. Asce J CONSTR ENG Manag. ASCE 2010, 136. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, Y.; Li, X.; Xiao, P.; Jiang, J. Assessment of Cultivated Land Productivity and Its Spatial Differentiation in Dongting Lake Region: A Case Study of Yuanjiang City, Hunan Province. Sustainability 2018, 10, 3616. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Jin, J.; Jin, X.; Xiao, Y.; Ren, J.; Liu, J.; Sun, R.; Zhou, Y. Analysis of Changes and Potential Characteristics of Cultivated Land Productivity Based on MODIS EVI: A Case Study of Jiangsu Province, China. Remote Sens. 2019, 11, 2041. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.; Wang, J.; Dong, T.; Shang, J.; Liu, J.; Song, Y. Using spatio-temporal fusion of Landsat-8 and MODIS data to derive phenology, biomass and yield estimates for corn and soybean. Sci. Total Environ. 2018, 650. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Lu, L.; Fang, F. Estimating near future regional corn yields by integrating multi-source observations into a crop growth model. Eur. J. Agron. 2013, 49, 126–140. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, Y.-B.; Lyapustin, A.; Wang, Y.; Gao, F.; Suyker, A.; Verma, S.; Middleton, E. Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR. Remote Sens. Environ. 2014, 153, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Sjöström, M.; Zhao, M.; Archibald, S.; Arneth, A.; Cappelaere, B.; Falk, U.; De Grandcourt, A.; Hanan, N.; Kergoat, L.; Kutsch, W.L.; et al. Evaluation of MODIS gross primary productivity for Africa using eddy covariance data. Remote Sens. Environ. 2013, 131, 275–286. [Google Scholar] [CrossRef]
- Wagle, P.; Xiao, X.; Suyker, A. Estimation and analysis of gross primary production of soybean under various management practices and drought conditions. ISPRS J. Photogramm. Remote Sens. 2014, 99. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Gu, H.; Wang, M.; Gu, Q.; Ding, Z.; Ma, M.; Liu, R.; Tang, X. Contrasting Performance of the Remotely-Derived GPP Products over Different Climate Zones across China. Remote Sens. 2019, 11, 1855. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xiao, X.; Jin, C.; Dong, J.; Zhou, S.; Wagle, P.; Joanna, J.; Guanter, L.; Zhang, Y.; Zhang, G.; et al. Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America. Remote Sens. Environ. 2016, 183, 154–169. [Google Scholar] [CrossRef] [Green Version]
- Sarmah, S.; Jia, G.; Zhang, A.; Singha, M. Assessing seasonal trends and variability of vegetation growth from NDVI3g, MODIS NDVI and EVI over South Asia. Remote Sens. Lett. 2018, 9. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Saleska, S.; Hutyra, L.; Camargo, P.; Wofsy, S.; Frolking, S.; Boles, S.; Keller, M.; Moore, B. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sens. Environ. 2005, 94, 105–122. [Google Scholar] [CrossRef]
- Ma, J.; Xiao, X.; Zhang, Y.; Doughty, R.; Chen, B.; Zhao, B. Spatial-temporal consistency between gross primary productivity and solar-induced chlorophyll fluorescence of vegetation in China during 2007–2014. Sci. Total Environ. 2018, 639. [Google Scholar] [CrossRef]
- Prey, L.; Schmidhalter, U. Temporal and Spectral Optimization of Vegetation Indices for Estimating Grain Nitrogen Uptake and Late-Seasonal Nitrogen Traits in Wheat. Sensors 2019, 19, 4640. [Google Scholar] [CrossRef] [Green Version]
- Pal, L.; Ojha, C.; Chandniha, S.; Kumar, A. Regional Scale Analysis of Trends in Rainfall using Nonparametric Methods and Wavelet Transforms over a Semi-Arid Region in India. Int. J. Climatol. 2019, 39, 2737–2764. [Google Scholar] [CrossRef]
- Liu, S.; Heyde, C. On estimation in conditional heteroskedastic time series models under non-normal distributions. Stat. Pap. 2008, 49, 455–469. [Google Scholar] [CrossRef]
- Hou, W.; Hou, X. Spatial–temporal changes in vegetation coverage in the global coastal zone based on GIMMS NDVI3g data. Int. J. Remote Sens. 2019, 1–21. [Google Scholar] [CrossRef]
- Rahman, A.-U.; Dawood, M. Spatio-statistical analysis of temperature fluctuation using Mann-Kendall and Sen’s Slope approach. Clim. Dyn. 2017, 48, 783–797. [Google Scholar] [CrossRef]
- Huang, J.; Rozelle, S. The emergence of agricultural commodity markets in China. China Econ. Rev. 2006, 17, 266–280. [Google Scholar] [CrossRef]
- Liu, S.; Weng, B.; Yan, D.; Wang, G.; Yin, J. Spatial-temporal evolution of temperature and precipitation in Jilin Province, China. In Proceedings of the 2012 International Symposium on Geomatics for Integrated Water Resource Management, Lanzhou, China, 19–21 October 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Z.; Zhang, B.; Song, K.; Li, X.; Li, J.; Li, F. Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China. Agric. Ecosyst. Environ. 2006, 113, 73–81. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.-P.; Fang, H.; Zhu, P.; Ren, J.; Wang, L. Long-Term Effects of Fertilization on Soil Organic Carbon Changes in Continuous Corn of Northeast China: RothC Model Simulations. Environ. Manag. 2003, 32, 459–465. [Google Scholar] [CrossRef]
- Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.; Zhang, Q.; Moore, B. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Guli, J.; Liang, S.; Yi, Q.; Liu, J. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol. Indic. 2015, 58, 64–76. [Google Scholar] [CrossRef]
- He, Y.; Yan, H.; Ma, L.; Zhang, L.; Qiu, L.; Yang, S. Spatiotemporal dynamics of the vegetation in Ningxia, China using MODIS imagery. Front. Earth Sci. 2019. [Google Scholar] [CrossRef]
- Dong, M.Y.; Wu, Z.F. Variations trend of annual mean temporature and precipitation for the last 50 years in Jilin Province. Natl. Sci. Ed. 2007, 39, 114–119. [Google Scholar]
GPP (Kg·C/m2) | CLP Grade | Area Percent (%) |
---|---|---|
0~0.45 | Level 1 | 15.56 |
0.45~0.6 | Level 2 | 6.37 |
0.6~0.7 | Level 3 | 38.43 |
0.7~0.88 | Level 4 | 30.84 |
0.88~1.29 | Level 5 | 8.80 |
SGPP | Z | Trend | Percent (%) |
---|---|---|---|
Significant increase | 33.29 | ||
−1.96–1.96 | Slight increase | 51.48 | |
−0.0005–0.0005 | −1.96–1.96 | Stable | 11.26 |
−1.96–1.96 | Slight decrease | 2.51 | |
<−1.96 | Significant decrease | 1.46 |
SGPP | H | Variation Types | Percentage (%) |
---|---|---|---|
>0.0005 | >0.5 | sustainability increased | 13.37 |
<−0.0005 | >0.5 | sustainability decreased | 13.98 |
>0.0005 | <0.5 | Anti-sustainability increased | 14.54 |
<−0.0005 | <0.5 | Anti-sustainability decreased | 12.24 |
−0.0005–0.0005 | >0.5 | Stable | 6.1 |
---- | =0.5 | uncertain | 39.77 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Zhang, C.; Yun, W.; Lv, Y.; Chen, W.; Zhu, D. The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data. Sustainability 2020, 12, 411. https://doi.org/10.3390/su12010411
Ma J, Zhang C, Yun W, Lv Y, Chen W, Zhu D. The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data. Sustainability. 2020; 12(1):411. https://doi.org/10.3390/su12010411
Chicago/Turabian StyleMa, Jiani, Chao Zhang, Wenju Yun, Yahui Lv, Wanling Chen, and Dehai Zhu. 2020. "The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data" Sustainability 12, no. 1: 411. https://doi.org/10.3390/su12010411
APA StyleMa, J., Zhang, C., Yun, W., Lv, Y., Chen, W., & Zhu, D. (2020). The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data. Sustainability, 12(1), 411. https://doi.org/10.3390/su12010411