The ‘GartenApp’: Assessing and Communicating the Ecological Potential of Private Gardens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Vegetation Heights
2.3. Connectivity Modelling
2.4. App Architecture
2.4.1. Mapping the Garden
2.4.2. Questionnaire on the Biodiversity Potential of Gardens
2.4.3. Vegetation Structure of the Garden
2.4.4. Ecosystem Services Assessment
2.4.5. Biodiversity Assessment
2.4.6. Connectivity, Report and Option for Uploading Input
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Description | Resistance |
---|---|
Buildings | No Data |
Water | 1000 |
Agricultural land | 800 |
Railway, roads, impervious surfaces | 800 |
Trees | 1 |
Shrubs | 10 |
Grass layer | 100 |
Description | Resistance |
---|---|
Gardens | 1 |
Pasture | 1 |
Public green areas | 1 |
Allotment gardens | 1 |
Cemeteries | 1 |
Deciduous forest | 3 |
Grove | 3 |
Sports area | 5 |
Airfield | 5 |
Ruderal | 6 |
Small streets | 8 |
Impervious | 14 |
Paths | 16 |
Squares | 16 |
Opencast mining | 39 |
Mixed Forest | 50 |
Tram | 100 |
Swamp | 100 |
Highways | 100 |
Railway | 100 |
Coniferous forest | 100 |
Big streets | 100 |
Waterbodies | 100 |
Arable land | 100 |
Buildings | No Data |
Canal | No Data |
References
- Strohbach, M.W.; Haase, D. Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city. Landsc. Urban Plan. 2012, 104, 95–104. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting cities for climate change: The role of the Green Infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Ziter, C.D.; Pedersen, E.J.; Kucharik, C.J.; Turner, M.G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc. Natl. Acad. Sci. USA 2019, 116, 7575–7580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maragno, D.; Gaglio, M.; Robbi, M.; Appiotti, F.; Fano, E.; Gissi, E. Fine-scale analysis of urban flooding reduction from green infrastructure: An ecosystem services approach for the management of water flows. Ecol. Model. 2018, 386, 1–10. [Google Scholar] [CrossRef]
- Brown, G.; Schebella, M.F.; Weber, D. Using participatory GIS to measure physical activity and urban park benefits. Landsc. Urban Plan. 2014, 121, 34–44. [Google Scholar] [CrossRef]
- Hartig, T.; Kahn, P.H. Living in cities, naturally. Science 2016, 352, 938–940. [Google Scholar] [CrossRef]
- Dunn, R.R.; Gavin, M.C.; Sanchez, M.C.; Solomon, J.N. The Pigeon Paradox: Dependence of Global Conservation on Urban Nature. Conserv. Biol. 2006, 20, 1814–1816. [Google Scholar] [CrossRef]
- Davis, A.M.; Glick, T.F. Urban Ecosystems and Island Biogeography. Environ. Conserv. 1978, 5, 299–304. [Google Scholar] [CrossRef]
- Shanahan, D.F.; Strohbach, M.W.; Warren, P.S.; Fuller, R.A. The Challenges of Urban Living; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Strohbach, M.W.; Arnold, E.; Haase, D. The carbon footprint of urban green space—A life cycle approach. Landsc. Urban Plan. 2012, 104, 220–229. [Google Scholar] [CrossRef]
- Belaire, J.A.; Whelan, C.J.; Minor, E.S. Having our yards and sharing them too: The collective effects of yards on native bird species in an urban landscape. Ecol. Appl. 2014, 24, 2132–2143. [Google Scholar] [CrossRef]
- Rudd, H.; Vala, J.; Schaefer, V. Importance of backyard habitat in a comprehensive biodiversity conservation strategy: A connectivity analysis of urban green spaces. Restor. Ecol. 2002, 10, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Lynch, A.J. Creating Effective Urban Greenways and Stepping-stones: Four Critical Gaps in Habitat Connectivity Planning Research. J. Plan. Lit. 2019, 34, 131–155. [Google Scholar] [CrossRef]
- Ahern, J. Green infrastructure for cities: The spatial dimension. In Cities of the Future: Towards Integrated Sustainable Water and Landscape Management; Novotny, V., Brown, P., Eds.; IWA Publishing: London, UK, 2007; pp. 267–283. [Google Scholar]
- Gaston, K.J.; Warren, P.H.; Thompson, K.; Smith, R.M. Urban Domestic Gardens (IV): The extent of the resource and its associated features. Biodivers. Conserv. 2005, 14, 3327–3349. [Google Scholar] [CrossRef]
- Loram, A.; Tratalos, J.; Warren, P.H.; Gaston, K.J. Urban domestic gardens (X): The extent & structure of the resource in five major cities. Landsc. Ecol. 2007, 22, 601–615. [Google Scholar] [CrossRef]
- Cameron, R.; Blanuša, T.; Taylor, J.E.; Salisbury, A.; Halstead, A.J.; Henricot, B.; Thompson, K. The domestic garden—Its contribution to urban green infrastructure. Urban For. Urban Green. 2012, 11, 129–137. [Google Scholar] [CrossRef]
- Cook, E.M.; Hall, S.J.; Larson, K.L. Residential landscapes as social-ecological systems: A synthesis of multi-scalar interactions between people and their home environment. Urban Ecosyst. 2012, 15, 19–52. [Google Scholar] [CrossRef]
- Lepczyk, C.A.; Aronson, M.F.J.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S. Biodiversity in the city: Fundamental questions for understanding the ecology of urban green spaces for biodiversity conservation. BioScience 2017, 67, 799–807. [Google Scholar] [CrossRef] [Green Version]
- Casalegno, S.; Anderson, K.; Cox, D.T.; Hancock, S.; Gaston, K.J. Ecological connectivity in the three-dimensional urban green volume using waveform airborne lidar. Sci. Rep. 2017, 7, 45571. [Google Scholar] [CrossRef] [Green Version]
- Aronson, M.F.J.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, S.J.; Nilon, C.H.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Odum, W.E. Environmental Degradation and the Tyranny of Small Decisions. BioScience 1982, 32, 728–729. [Google Scholar] [CrossRef]
- Dewaelheyns, V.; Kerselaers, E.; Rogge, E. A toolbox for garden governance. Land Use Policy 2016, 51, 191–205. [Google Scholar] [CrossRef]
- Beumer, C. Show me your garden and I will tell you how sustainable you are: Dutch citizens’ perspectives on conserving biodiversity and promoting a sustainable urban living environment through domestic gardening. Urban For. Urban Green. 2018, 30, 260–279. [Google Scholar] [CrossRef]
- DG 11 Synthesis Report 2018: Tracking Progress Towards Inclusive, Safe, Resilient and Sustainable Cities and Human Settlements; Nairobi, Kenya, 2018; Available online: https://sustainabledevelopment.un.org/sdg11 (accessed on 5 December 2019).
- UN. New Urban Agenda; Habitat III Secretariat: Quito, Ecuador, 2017; Available online: http://habitat3.org/the-new-urban-agenda (accessed on 5 December 2019).
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Why garden for wildlife? Social and ecological drivers, motivations and barriers for biodiversity management in residential landscapes. Ecol. Econ. 2013, 86, 258–273. [Google Scholar] [CrossRef]
- Beumer, C.; Martens, P. BIMBY’s first steps: A pilot study on the contribution of residential front-yards in Phoenix and Maastricht to biodiversity, ecosystem services and urban sustainability. Urban Ecosyst. 2016, 19, 45–76. [Google Scholar] [CrossRef] [Green Version]
- Beumer, C.; Martens, P. Biodiversity in my (back) yard: Towards a framework for citizen engagement in exploring biodiversity and ecosystem services in residential gardens. Sustain. Sci. 2015, 10, 87–100. [Google Scholar] [CrossRef]
- Dobbs, C.; Hernández, A.; de la Barrera, F.; Miranda, M.D.; Paecke, S.R. Integrating urban biodiversity mapping, citizen science and technology. In Urban Biodiversity: From Research to Practice; Ossola, A., Niemelä, J., Eds.; Routledge: London, UK; New York, NY, USA, 2018; pp. 236–247. [Google Scholar]
- Verbeeck, K.; Orshoven, J.V.; Hermy, M. Measuring extent, location and change of imperviousness in urban domestic gardens in collective housing projects. Landsc. Urban Plan. 2011, 100, 57–66. [Google Scholar] [CrossRef]
- Grafius, D.R.; Corstanje, R.; Siriwardena, G.M.; Plummer, K.E.; Harris, J.A. A bird’s eye view: Using circuit theory to study urban landscape connectivity for birds. Landsc. Ecol. 2017, 32, 1771–1787. [Google Scholar] [CrossRef]
- Bjerke, T.; Østdahl, T. Animal-related attitudes and activities in an urban population. Anthrozoös 2004, 17, 109–129. [Google Scholar] [CrossRef]
- LSN. LSN-Online-die Kostenfreie Regionaldatenbank für Niedersachsen. Available online: https://www1.nls.niedersachsen.de (accessed on 5 August 2019).
- DWD. Klimadaten Deutschland: Vieljährige Mittelwerte; Deutschen Wetterdienst: Offenbach am Main, Germany, 2019; Available online: https://www.dwd.de/DE/leistungen/klimadatendeutschland/vielj_mittelwerte.html (accessed on 30 October 2019).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Drachenfels, O.v. Überarbeitung der Naturräumlichen Regionen Niedersachsens. Inf. Nat. Niedersachs. 2010, 4, 249–252. [Google Scholar]
- LGLN. Auszug aus den Geobasisdaten der Niedersächsischen Vermessungs und Katasterverwaltung; Landesamt für Geoinformation und Landesvermessung Niedersachsen: Hannover, Germany, 2016. [Google Scholar]
- BKG. GeoBasis-DE. Available online: https://www.bkg.bund.de/ (accessed on 30 October 2019).
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- R Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- LGLN. Hausumringe; Landesamt für Geoinformation und Landesvermessung Niedersachsen: Hannover, Germany, 2016. [Google Scholar]
- McRae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef] [PubMed]
- Verbeylen, G.; De Bruyn, L.; Adriaensen, F.; Matthysen, E. Does matrix resistance influence Red squirrel (Sciurus vulgaris L. 1758) distribution in an urban landscape? Landsc. Ecol. 2003, 18, 791–805. [Google Scholar] [CrossRef]
- Braaker, S.; Moretti, M.; Boesch, R.; Ghazoul, J.; Obrist, M.K.; Bontadina, F. Assessing habitat connectivity for ground-dwelling animals in an urban environment. Ecol. Appl. 2014, 24, 1583–1595. [Google Scholar] [CrossRef]
- Chang, W.; Cheng, J.; Allaire, J.J.; Xie, Y.; McPherson, J. Shiny: Web Application Framework for R. 2018. Available online: https://rdrr.io/cran/shiny/ (accessed on 20 December 2019).
- Cheng, J.; Karambelkar, B.; Xie, Y. Leaflet: Create Interactive Web Maps with the JavaScript ’Leaflet’ Library. 2018. Available online: https://www.igismap.com/leaflet-getting-started-to-create-map-application/ (accessed on 20 December 2019).
- Bucklin, D.; Basille, M. Rpostgis: Linking R with a PostGIS spatial database. R J. 2018, 10, 251–268. [Google Scholar] [CrossRef]
- Young, C.; Frey, D.; Moretti, M.; Bauer, N. Research Note: Garden-owner reported habitat heterogeneity predicts plant species richness in urban gardens. Landsc. Urban Plan. 2019, 185, 222–227. [Google Scholar] [CrossRef]
- Osborne, J.L.; Martin, A.P.; Shortall, C.R.; Todd, A.D.; Goulson, D.; Knight, M.E.; Hale, R.J.; Sanderson, R.A. Quantifying and comparing bumblebee nest densities in gardens and countryside habitats. J. Appl. Ecol. 2007, 45, 784–792. [Google Scholar] [CrossRef]
- Fuller, R.A.; Warren, P.H.; Armsworth, P.R.; Barbosa, O.; Gaston, K.J. Garden bird feeding predicts the structure of urban avian assemblages. Divers. Distrib. 2008, 14, 131–137. [Google Scholar] [CrossRef]
- Daniels, G.D.; Kirkpatrick, J.B. Does variation in garden characteristics influence the conservation of birds in suburbia? Biol. Conserv. 2006, 133, 326–335. [Google Scholar] [CrossRef]
- Chamberlain, D.E.; Cannon, A.R.; Toms, M.P. Associations of garden birds with gradients in garden habitat and local habitat. Ecography 2004, 27, 589–600. [Google Scholar] [CrossRef]
- Smith, R.M.; Gaston, K.J.; Warren, P.H.; Thompson, K. Urban domestic gardens (VIII): Environmental correlates of invertebrate abundance. Biodivers. Conserv. 2006, 15, 2515–2545. [Google Scholar] [CrossRef]
- Ødegaard, F.; Tømmerås, B.Å. Compost heaps—Refuges and stepping-stones for alien arthropod species in northern Europe. Divers. Distrib. 2000, 6, 45–59. [Google Scholar] [CrossRef]
- Gaston, K.J.; Smith, R.M.; Thompson, K.; Warren, P.H. Urban domestic gardens (II): Experimental tests of methods for increasing biodiversity. Biodivers. Conserv. 2005, 14, 395–413. [Google Scholar] [CrossRef]
- Thompson, P.S.; Greenwood, J.J.D.; Greenaway, K. Birds in European gardens in the winter and spring of 1988–89. Bird Study 1993, 40, 120–134. [Google Scholar] [CrossRef]
- Forman, R.T.T. Urban Ecology; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Sirohi, M.H.; Jackson, J.; Edwards, M.; Ollerton, J. Diversity and abundance of solitary and primitively eusocial bees in an urban centre: A case study from Northampton (England). J. Insect Conserv. 2015, 19, 487–500. [Google Scholar] [CrossRef] [Green Version]
- Fortel, L.; Henry, M.; Guilbaud, L.; Mouret, H.; Vaissière, B.E. Use of human-made nesting structures by wild bees in an urban environment. J. Insect Conserv. 2016, 20, 239–253. [Google Scholar] [CrossRef] [Green Version]
- Hof, A.R.; Bright, P.W. The value of agri-environment schemes for macro-invertebrate feeders: Hedgehogs on arable farms in Britain. Anim. Conserv. 2010, 13, 467–473. [Google Scholar] [CrossRef]
- Loram, A.; Warren, P.; Thompson, K.; Gaston, K. Urban domestic gardens: The effects of human interventions on garden composition. Environ. Manag. 2011, 48, 808–824. [Google Scholar] [CrossRef]
- Reis, C.; Lopes, A. Evaluating the cooling potential of urban green spaces to tackle urban climate change in Lisbon. Sustainability 2019, 11, 2480. [Google Scholar] [CrossRef] [Green Version]
- Grunwald, L.; Kossmann, M.; Weber, S. Mapping urban cold-air paths in a Central European city using numerical modelling and geospatial analysis. Urban Clim. 2019, 29, 100503. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. nlme: Linear and Nonlinear Mixed Effects Models. 2018. Available online: https://cran.r-project.org/web/packages/nlme/nlme.pdf (accessed on 20 December 2019).
- Lindberg, F.; Grimmond, C.S.B. Nature of vegetation and building morphology characteristics across a city: Influence on shadow patterns and mean radiant temperatures in London. Urban Ecosyst. 2011, 14, 617–634. [Google Scholar] [CrossRef]
- Dorman, M. Shadow: Geometric Shadow Calculations. R Package Version 0.6.0. 2019. Available online: https://github.com/michaeldorman/shadow (accessed on 20 December 2019).
- Sturm, U.; Schade, S.; Ceccaroni, L.; Gold, M.; Kyba, C.; Claramunt, B.; Haklay, M.; Kasperowski, D.; Albert, A.; Piera, J.; et al. Defining principles for mobile apps and platforms development in citizen science. Res. Ideas Outcomes 2017, 3. [Google Scholar] [CrossRef]
- App, M. Der Effekt von Stadtgrün auf Landschaftliche Konnektivität für Igel (Erinaceus europaeus): Ein Ansatz über die Circuit Theory. Master’s Thesis, Technische Universität Braunschweig, Braunschweig, Germany, 2019. [Google Scholar]
- Larson, K.L.; Cook, E.; Strawhacker, C.; Hall, S.J. The Influence of Diverse Values, Ecological Structure, and Geographic Context on Residents’ Multifaceted Landscaping Decisions. Hum. Ecol. 2010, 38, 747–761. [Google Scholar] [CrossRef]
- Andersson, E.; Barthel, S.; Borgström, S.; Colding, J.; Elmqvist, T.; Folke, C.; Gren, Å. Reconnecting cities to the biosphere: Stewardship of Green Infrastructure and urban ecosystem services. AMBIO 2014, 43, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Hunter, M.C.R.; Brown, D.G. Spatial contagion: Gardening along the street in residential neighborhoods. Landsc. Urban Plan. 2012, 105, 407–416. [Google Scholar] [CrossRef]
- Diduck, A.P.; Raymond, C.M.; Rodela, R.; Moquin, R.; Boerchers, M. Pathways of learning about biodiversity and sustainability in private urban gardens. J. Environ. Plan. Manag. 2019. [Google Scholar] [CrossRef]
Feature | Function | Reference |
---|---|---|
Nesting box for birds | increases species richness of birds; an indirect effect can be an increase in the number of bumblebee nests | [11,51] |
Bird feeder | increased resource availability increases bird density and occurrence of certain bird species | [52,53,54] |
Hedge | provide nesting opportunities for bumblebees; provision of shelter and litter for snails | [51,55] |
Compost heap | increases number of bumblebee nests; habitat for beetles, springtails and mites; increases beetle and slug species richness | [51,55,56,57] |
Fruit trees and berry shrubs | increases resource availability and habitat for birds and insects (sugar-rich fruits as resource for garden-inhabiting species, lipid-rich fruits for migrating species) | [58,59] |
Deadwood storage | increases presences of fungi and other saproxylic species | [57] |
Stone wall | habitat for lizards, insects and xerophilous plants and lichens; increases species richness of slugs, snails | [55,59] |
Wild patches | increase diversity and abundance of bees | [60] |
Nesting support for insects | increases survival probability of pollinators | [61] |
Ponds | habitat for water plants, amphibians and insects; watering place for birds; increases presence of a broad range of wild species (e.g., foxes, moles, snakes) | [57,59,62,63] |
Parameter | Estimate | Standard Error | t-Value |
---|---|---|---|
Intercept [°C] | 26.38 | 0.92 | 28.63 |
Vegetation volume [m³] | −0.60 × 10−3 | 6.38 × 10−5 | −9.38 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneider, A.-K.; Strohbach, M.W.; App, M.; Schröder, B. The ‘GartenApp’: Assessing and Communicating the Ecological Potential of Private Gardens. Sustainability 2020, 12, 95. https://doi.org/10.3390/su12010095
Schneider A-K, Strohbach MW, App M, Schröder B. The ‘GartenApp’: Assessing and Communicating the Ecological Potential of Private Gardens. Sustainability. 2020; 12(1):95. https://doi.org/10.3390/su12010095
Chicago/Turabian StyleSchneider, Anne-Katrin, Michael W. Strohbach, Mario App, and Boris Schröder. 2020. "The ‘GartenApp’: Assessing and Communicating the Ecological Potential of Private Gardens" Sustainability 12, no. 1: 95. https://doi.org/10.3390/su12010095
APA StyleSchneider, A. -K., Strohbach, M. W., App, M., & Schröder, B. (2020). The ‘GartenApp’: Assessing and Communicating the Ecological Potential of Private Gardens. Sustainability, 12(1), 95. https://doi.org/10.3390/su12010095