Reducing Groundwater Contamination from On-Site Sanitation in Peri-Urban Sub-Saharan Africa: Reviewing Transition Management Attributes towards Implementation of Water Safety Plans
Abstract
:1. Introduction
2. Methodology
3. Understanding the Complex Socio-Technical System Influencing Groundwater Contamination by On-Site Sanitation in Peri-Urban SSA
4. Challenges of IWRM and Attributes of TM in Implementing WSPs to Reduce Peri-Urban Groundwater Contamination by On-Site Sanitation in SSA
4.1. Policy and Regulation
4.2. Institutions
4.3. Science and Technology
4.4. User and Market Dynamics
4.5. Socio-Cultural Considerations
5. Proposal for a Risk-Based Management Framework towards Reducing Peri-Urban Groundwater Contamination by On-Site Sanitation in SSA
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gorelick, S.M.; Zheng, C. Global change and the groundwater management challenge. Water Resour. Res. 2015, 51, 3031–3051. [Google Scholar] [CrossRef]
- WHO. Protecting Groundwater for Health: Managing the Quality of Drinking Water Sources; IWA Publishing: London, UK, 2006. [Google Scholar]
- Nayebare, J.G.; Owor, M.M.; Kulabako, R.; Campos, L.C.; Fottrell, E.; Taylor, R.G. WASH conditions in a small town in Uganda: How safe are on-site facilities? J. Water Sanit. Hyg. Dev. 2020, 10, 96–110. [Google Scholar] [CrossRef] [Green Version]
- Shivendra, B.T.; Ramaraju, H.K. Impact of onsite sanitation system on groundwater in different geological settings of peri-urban areas. Aquat. Procedia 2015, 4, 1162–1172. [Google Scholar] [CrossRef]
- WHO; UNICEF. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baseline; World Health Organization: Geneva, Switzerland, 2017; Volume 66. [Google Scholar] [CrossRef]
- Semiyaga, S.; Okure, M.A.E.; Niwagaba, C.B.; Katukiza, A.Y.; Kansiime, F. Decentralized options for faecal sludge management in urban slum areas of Sub-Saharan Africa: A review of technologies, practices and end-uses. Resour. Conserv. Recycl. 2015, 104, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Gaye, C.B.; Tindimugaya, C. Review: Challenges and opportunities for sustainable groundwater management in Africa. Hydrogeol. J. 2019, 27, 1099–1110. [Google Scholar] [CrossRef]
- Back, J.O.; Rivett, M.O.; Hinz, L.B.; Mackay, N.; Wanangwa, G.J.; Phiri, O.L.; Songola, C.E.; Thomas, M.A.S.; Kumwenda, S.; Nhlema, M.; et al. Risk assessment to groundwater of pit latrine rural sanitation policy in developing country settings. Sci. Total Environ. 2018, 613–614, 592–610. [Google Scholar] [CrossRef] [Green Version]
- Nyenje, P.M.; Foppen, J.W.; Kulabako, R.; Muwanga, A.; Uhlenbrook, S. Nutrient pollution in shallow aquifers underlying pit latrines and domestic solid waste dumps in urban slums. J. Environ. Manag. 2013, 122, 15–24. [Google Scholar] [CrossRef]
- Berendes, D.M.; de Mondesert, L.; Kirby, A.E.; Yakubu, H.; Adomako, L.; Michiel, J.; Raj, S.; Robb, K.; Wang, Y.; Doed, B.; et al. Variation in E. coli concentrations in open drains across neighborhoods in Accra, Ghana: The influence of onsite sanitation coverage and interconnectedness of urban environments. Int. J. Hyg. Environ. Health 2020, 224, 113433. [Google Scholar] [CrossRef]
- Grönwall, J. Self-supply and accountability: To govern or not to govern groundwater for the (peri-) urban poor in Accra, Ghana. Environ. Earth Sci. 2016, 75, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pantaleo, P.A.; Komakech, H.C.; Mtei, K.M.; Njau, K.N. Contamination of groundwater sources in emerging African towns: The case of Babati town, Tanzania. Water Pract. Technol. 2018, 13, 980–990. [Google Scholar] [CrossRef] [Green Version]
- Nyarko, K.B.; Oduro-Kwarteng, S.; Dwumfour-Asare, B.; Boakye, K.O. Incentives for water supply to the urban poor and the role of the regulator in Ghana. Int. J. Water 2016, 10, 267–280. [Google Scholar] [CrossRef]
- Nhamo, G.; Nhemachena, C.; Nhamo, S. Is 2030 too soon for Africa to achieve the water and sanitation sustainable development goal? Sci. Total Environ. 2019, 669, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Anim-Gyampo, M.; Anornu, G.K.; Agodzo, S.K.; Appiah-Adjei, E.K. Groundwater Risk Assessment of Shallow Aquifers within the Atankwidi Basin of Northeastern Ghana. Earth Syst. Environ. 2019, 3, 59–72. [Google Scholar] [CrossRef]
- Elisante, E.; Muzuka, A.N.N. Sources and seasonal variation of coliform bacteria abundance in groundwater around the slopes of Mount Meru, Arusha, Tanzania. Environ. Monit. Assess. 2016, 188, 395. [Google Scholar] [CrossRef] [PubMed]
- Lapworth, D.J.; Nkhuwa, D.C.W.; Okotto-Okotto, J.; Pedley, S.; Stuart, M.E.; Tijani, M.N.; Wright, J. Urban groundwater quality in sub-Saharan Africa: Current status and implications for water security and public health. Hydrogeol. J. 2017, 25, 1093–1116. [Google Scholar] [CrossRef] [Green Version]
- Murphy, J.L.; Kahler, A.M.; Nansubuga, I.; Nanyunja, E.M.; Kaplan, B.; Jothikumar, N.; Routh, J.; Gómez, G.A.; Mintz, E.D.; Hill, V.R.; et al. Environmental survey of drinking water sources in Kampala, Uganda, during a Typhoid Fever outbreak. Appl. Environ. Microbiol. 2017, 83, e01706-17. [Google Scholar] [CrossRef] [Green Version]
- Conti, K.I.; Gupta, J. Global governance principles for the sustainable development of groundwater resources. Int. Environ. Agreem. 2016, 16, 849–871. [Google Scholar] [CrossRef] [Green Version]
- Varady, R.G.; Zuniga-Teran, A.A.; Gerlak, A.K.; Megdal, S.B. Modes and approaches of groundwater governance: A survey of lessons learned from selected cases across the globe. Water 2016, 8, 417. [Google Scholar] [CrossRef]
- Stephan, R.M. Climate change considerations under international groundwater law. Water Int. 2017, 42, 757–772. [Google Scholar] [CrossRef]
- Hussein, H. The Guarani aquifer system, highly present but not high profile: A hydropolitical analysis of transboundary groundwater governance. Environ. Sci. Policy 2018, 83, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Hussein, H. Yarmouk, Jordan, and Disi basins: Examining the impact of the discourse of water scarcity in Jordan on transboundary water governance. Mediterr. Polit. 2018, 24, 269–289. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.D. Bridging political economy analysis and critical institutionalism: An approach to help analyse change for rural water services. Int. J. Commons 2015, 9, 65–86. [Google Scholar] [CrossRef]
- Thiel, A.; Moser, C. Toward comparative institutional analysis of polycentric social-ecological systems governance. Environ. Policy Gov. 2018, 28, 269–283. [Google Scholar] [CrossRef]
- Carlisle, K.; Gruby, R.L. Polycentric systems of governance: A theoretical model for the commons. Policy Stud. J. 2019, 47, 927–952. [Google Scholar] [CrossRef] [Green Version]
- Megdal, S.B.; Dillon, P.; Seasholes, K. Water banks: Using managed aquifer recharge to meet water policy objectives. Water 2014, 6, 1500–1514. [Google Scholar] [CrossRef] [Green Version]
- Mukherji, A.; Shah, T. Groundwater socio-ecology and governance: A review of institutions and policies in selected countries. Hydrogeol. J. 2005, 13, 328–345. [Google Scholar] [CrossRef]
- Global Water Partnership. Integrated Water Resources Management; Global Water Partnership: Stockholm, Sweden, 2000. [Google Scholar]
- Allouch, J. The birth and spread of IWRM—A case study of global policy diffusion and translation. Water Altern. 2016, 9, 412–433. [Google Scholar]
- Mechlem, K. Groundwater governance: The role of legal frameworks at the local and national level – Established practice and emerging trends. Water 2016, 8, 347. [Google Scholar] [CrossRef] [Green Version]
- Foster, S.S.D.; Ait-Kadi, M. Integrated Water Resources Management (IWRM): How does groundwater fit in? Hydrogeol. J. 2012, 20, 415–418. [Google Scholar] [CrossRef]
- Biswas, A.K. Integrated Water Resources Management: Is It Working? Int. J. Water Resour. Dev. 2008, 24, 5–22. [Google Scholar] [CrossRef]
- Agyenim, J.B.; Gupta, J. IWRM and developing countries: Implementation challenges in Ghana. Phys. Chem. Earth 2012, 47–48, 46–57. [Google Scholar] [CrossRef]
- Mehta, L.; Alba, R.; Bolding, A.; Denby, K.; Derman, B.; Hove, T.; Manzungu, E.; Movik, S.; Prabhakaran, P.; van Koppen, B.; et al. The politics of IWRM in Southern Africa. Int. J. Water Resour. Dev. 2014, 30, 528–542. [Google Scholar] [CrossRef]
- Molle, F. Nirvana concepts, Narratives and Policy models: Insights from the Water Sector. Water Altern. 2008, 1, 131–156. [Google Scholar]
- Gudaga, J.L.; Kabote, S.J.; Tarimo, A.K.P.R.; Mosha, D.B.; Kashaigili, J.J. Effectiveness of groundwater governance structures and institutions in Tanzania. Appl. Water Sci. 2018, 8, 77. [Google Scholar] [CrossRef] [Green Version]
- Mehta, L.; Bolding, A.; Derman, B.; Manzungu, E. Introduction to the Special Issue—Flows and Practices: The Politics of Integrated Water Resources Management (IWRM) in Southern Africa. Water Altern. 2016, 9, 389–411. [Google Scholar]
- Petit, O. Paradise Lost? The difficulties in defining and monitoring Integrated Water Resources Management Indicators. Curr. Opin. Environ. Sustain. 2016, 21, 58–64. [Google Scholar] [CrossRef]
- Duncan, E.A.; de Vries, N.; Nyarko, K.B. The effectiveness of water resources management in Pra Basin. Water Policy 2019, 21, 787–805. [Google Scholar] [CrossRef]
- WHO. Water Safety Plans: Managing Drinking-Water Quality from Catchment to Consumer; World Health Organization Press: Geneva, Switzerland, 2005. [Google Scholar]
- WHO. Global Status on Water Safety Plans: A Review of Proactive Risk Assessment and Risk Management Practices to Ensure the Safety of Drinking-Water; World Health Organization Press: Geneva, Switzerland, 2017. [Google Scholar]
- Rondi, L.; Sorlini, S.; Collivignarelli, M.C. Sustainability of Water Safety Plans Developed in Sub-Saharan Africa. Sustainability 2015, 7, 11139–11159. [Google Scholar] [CrossRef] [Green Version]
- Rickert, B.; Schmoll, O.; Rinehold, A.; Barrenberg, E. Water Safety Plan: A Field Guide to Improving Drinking-Water Safety in Small Communities; World Health Organization Press: Geneva, Switzerland, 2014. [Google Scholar]
- Tsitsifli, S.; Tsoukalas, D. Water safety plans and HACCP implementation in water utilities around the world: Benefits, drawbacks and critical success factors. Environ. Sci. Pollut. Res. 2019. [Google Scholar] [CrossRef]
- Li, H.; Smith, D.C.; Cohen, A.; Wang, L.; Li, Z.; Zhang, X.; Zhong, G.; Zhang, R. Implementation of water safety plans in China: 2004–2018. Int. J. Hyg. Environ. Health 2020, 223, 106–115. [Google Scholar] [CrossRef]
- Roeger, A.; Tavares, A.F. Water safety plans by utilities: A review of research on implementation. Util. Policy 2018, 53, 15–24. [Google Scholar] [CrossRef]
- Rugemalila, R.; Gibbs, L. Urban water governance failure and local strategies for overcoming water shortages in Dar es Salaam, Tanzania. Environ. Plan. C Gov. Policy 2015, 33, 412–427. [Google Scholar] [CrossRef] [Green Version]
- Kayser, G.; Loret, J.F.; Setty, K.; Blaudin De Thé, C.; Martin, J.; Puigdomenech, C.; Bartram, J. Water safety plans for water supply utilities in China, Cuba, France, Morocco and Spain: Costs, benefits, and enabling environment elements. Urban Water J. 2019, 16, 277–288. [Google Scholar] [CrossRef]
- Summerill, C.; Smith, J.; Webster, J.; Pollard, S. An international review of the challenges associated with securing ‘buy-in’ for water safety plans within providers of drinking water supplies. J. Water Health 2010, 8, 387–398. [Google Scholar] [CrossRef] [Green Version]
- Kanyesigye, C.; Marks, S.J.; Nakanjako, J.; Kansiime, F.; Ferrero, G. Status of water safety plan development and implementation in Uganda. Int. J. Environ. Res. Public Health 2019, 16, 4096. [Google Scholar] [CrossRef] [Green Version]
- Loorbach, D. Transition Management for Sustainable Development: A Prescriptive, Complexity—Based Governance Framework. Governance 2010, 23, 161–183. [Google Scholar] [CrossRef]
- Rauschmayer, F.; Bauler, T.; Schäpke, N. Towards a thick understanding of sustainability transitions—Linking transition management, capabilities and social practices. Ecol. Econ. 2015, 109, 211–221. [Google Scholar] [CrossRef]
- Wen, B.; Van Der Zouwen, M.; Horlings, E. Transitions in urban water management and patterns of international, interdisciplinary and intersectoral collaboration in urban water science. Environ. Innov. Soc. Transit. 2015, 15, 123–139. [Google Scholar] [CrossRef]
- Rotmans, J.; Loorbach, D. Complexity and transition management. J. Ind. Ecol. 2009, 13, 184–196. [Google Scholar] [CrossRef] [Green Version]
- Nastar, M.; Abbas, S.; Rivero, C.A.; Jenkins, S. The emancipatory promise of participatory water governance for the urban poor: Reflections on the transition management approach in the cities of the emancipatory promise of participatory water governance for the urban poor: Reflections on the transition. Afr. Stud. 2018, 77, 504–525. [Google Scholar] [CrossRef]
- Silvestri, G.; Wittmayer, J.M.; Schipper, K.; Kulabako, R.; Oduro-Kwarteng, S.; Nyenje, P.; Van Raak, R. Transition Management for Improving the Sustainability of WASH Services in Informal Settlements in Sub-Saharan Africa—An Exploration. Sustainability 2018, 10, 4052. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement (Reprinted from Annals of Internal Medicine). Phys. Ther. 2009, 89, 873–880. [Google Scholar] [CrossRef]
- Brady, M.; Loonam, J. Exploring the use of entity-relationship diagramming as a technique to support grounded theory inquiry. Qual. Res. Organ. Manag. 2010, 5, 224–237. [Google Scholar] [CrossRef] [Green Version]
- Olivier, L.; Dubois, Y.; LeGat, Y.; Boutin, C. Statistical analysis of the effluent of 231 on-site sanitation facilities in France monitored during a 6-year period. Water Sci. Technol. 2019, 8, 203–212. [Google Scholar] [CrossRef]
- Vidal, B.; Hedström, A.; Barraud, S.; Kärrman, E.; Herrmann, I. Assessing the sustainability of on-site sanitation systems using multi-criteria analysis. Environ. Sci. Water Res. Technol. 2019, 5, 1599–1615. [Google Scholar] [CrossRef] [Green Version]
- Bakyayita, G.K.; Norrström, A.C.; Kulabako, R.N. Assessment of levels, speciation, and toxicity of trace metal contaminants in selected shallow groundwater sources, surface runoff, wastewater, and surface water from designated streams in Lake Victoria Basin, Uganda. J. Environ. Public Health 2019, 2019, 6734017. [Google Scholar] [CrossRef] [Green Version]
- Lutterodt, G.; Foppen, J.W.A.; Uhlenbrook, S. Escherichia coli strains harvested from springs in Kampala, Uganda: Cell characterization and transport in saturated porous media. Hydrol. Process. 2014, 28, 1973–1988. [Google Scholar] [CrossRef]
- Elisante, E.; Muzuka, A.N.N. Assessment of sources and transformation of nitrate in groundwater on the slopes of Mount Meru, Tanzania. Environ. Earth Sci. 2016, 75, 277. [Google Scholar] [CrossRef]
- Mushi, D.; Byamukama, D.; Kirschner, A.K.T.; Mach, R.L.; Brunner, K.; Farnleitner, A.H. Sanitary inspection of wells using risk-of-contamination scoring indicates a high predictive ability for bacterial faecal pollution in the peri-urban tropical lowlands of Dar es Salaam, Tanzania. J. Water Health 2012, 10, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Akoto, O.; Agbeshie, J.; Diane, T. Chemical characteristics and health hazards of heavy metals in shallow groundwater: Case study Anloga community, Volta Region. Appl. Water Sci. 2019, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Takal, J.K.; Quaye-ballard, J.A. Bacteriological contamination of groundwater in relation to septic tanks location in Ashanti. Cogent Environ. Sci. 2018, 4, 1556197. [Google Scholar] [CrossRef]
- Machdar, E.; van der Steen, N.P.; Raschid-Sally, L.; Lens, P.N.L. Application of Quantitative Microbial Risk Assessment to analyze the public health risk from poor drinking water quality in a low income area in Accra, Ghana. Sci. Total Environ. 2013, 449, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Aboagye, D.; Zume, J.T. Assessing groundwater quality in peri-urban localities of Kumasi, Ghana. Afr. Geogr. Rev. 2019, 38, 390–405. [Google Scholar] [CrossRef]
- Katukiza, A.Y.; Temanu, H.; Chung, J.W.; Foppen, J.W.A.; Lens, P.N.L. Genomic copy concentrations of selected waterborne viruses in a slum environment in Kampala, Uganda. J. Water Health 2013, 11, 358–370. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, J.P.R.; Lapworth, D.J.; Nkhuwa, D.C.W.; Stuart, M.E.; Gooddy, D.C.; Bell, R.A.; Chirwa, M.; Kabika, J.; Liemisa, M.; Chibesa, M.; et al. Emerging contaminants in urban groundwater sources in Africa. Water Res. 2015, 72, 51–63. [Google Scholar] [CrossRef] [Green Version]
- K’oreje, K.O.; Okoth, M.; van Langenhove, H.; Demeestere, K. Occurrence and treatment of contaminants of emerging concern in the African aquatic environment: Literature review and a look ahead. J. Environ. Manag. 2020, 254, 109752. [Google Scholar] [CrossRef]
- Buekes, L.S.; King, T.L.B.; Schmidt, S. Assessment of pit latrines in a peri-urban community in KwaZulu-Natal (South Africa) as a source of antibiotic resistant E. coli strains. Int. J. Hyg. Environ. Health 2017, 220, 1279–1284. [Google Scholar] [CrossRef]
- Troy, T.J.; Konar, M.; Srinivasan, V.; Thompson, S. Moving sociohydrology forward: A synthesis across studies. Hydrol. Earth Syst. Sci. 2015, 19, 3667–3679. [Google Scholar] [CrossRef] [Green Version]
- Hynds, P.; Regan, S.; Andrade, L.; Mooney, S.; O’Malley, K.; DiPelino, S.; O’Dwyer, J. Muddy waters: Refining theway forward for the ‘sustainability science’ of socio-hydrogeology. Water 2018, 10, 1111. [Google Scholar] [CrossRef] [Green Version]
- Geels, F.W. From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory. Res. Policy 2004, 33, 897–920. [Google Scholar] [CrossRef]
- Fuenfschilling, L.; Binz, C. Global socio-technical regimes. Res. Policy 2018, 47, 735–749. [Google Scholar] [CrossRef] [Green Version]
- Baum, R.; Bartram, J. A systematic literature review of the enabling environment elements to improve implementation of water safety plans in high-income countries. J. Water Health 2018, 16, 14–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, B.P.L.; Hussein, H. Production of scale in regional hydropolitics: An analysis of La Plata River Basin and the Guarani aquifer system in South America. Geoforum 2019, 99, 42–53. [Google Scholar] [CrossRef]
- Poustie, M.S.; Frantzeskaki, N.; Brown, R.R. A transition scenario for leapfrogging to a sustainable urban water future in Port Vila, Vanuatu. Technol. Forecast. Soc. Chang. 2016, 105, 129–139. [Google Scholar] [CrossRef]
- Loorbach, D.; Shiroyama, H. The challenges of sustainable urban development and transforming cities. In Governance of Urban Sustainability Transitions; Loorbach, D., Shiroyama, H., Fujino, J., Eds.; Springer: Tokyo, Japan, 2016; pp. 3–12. [Google Scholar]
- Geels, F.W. The multi-level perspective on sustainability transitions: Responses to seven criticisms. Environ. Innov. Soc. Transit. 2011, 1, 24–40. [Google Scholar] [CrossRef]
- Geels, F.W.; Schot, J. Typology of sociotechnical transition pathways. Res. Policy 2007, 36, 399–417. [Google Scholar] [CrossRef]
- De Haan, F.J.; Rogers, B.C. The Multi-Pattern Approach for Systematic Analysis of Transition Pathways. Sustainability 2019, 11, 318. [Google Scholar] [CrossRef] [Green Version]
- Nicol, A.; Odinga, W. IWRM in Uganda—Progress after Decades of Implementation. Water Altern. 2016, 9, 627–643. [Google Scholar]
- Van Koppen, B.; Tarimo, A.K.P.R.; van Eeden, A.; Manzungu, E.; Sumuni, P.M. Winners and losers of IWRM in Tanzania. Water Altern. 2016, 9, 588–607. [Google Scholar]
- Anokye, N.A.; Gupta, J. Reconciling IWRM and water delivery in Ghana—The potential and the challenges. Phys. Chem. Earth 2012, 47–48, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Giordano, M.; Shah, T. From IWRM back to integrated water resources management. Int. J. Water Resour. Dev. 2014, 30, 364–376. [Google Scholar] [CrossRef]
- Komakech, H.C.; de Bont, C. Differentiated Access: Challenges of Equitable and Sustainable Groundwater Exploitation in Tanzania. Water Altern. 2018, 11, 623–637. [Google Scholar]
- Peletz, R.; Kumpel, E.; Bonham, M.; Rahman, Z.; Khush, R. To what extent is drinking water tested in sub-Saharan Africa? A comparative analysis of regulated water quality monitoring. Int. J. Environ. Res. Public Health 2016, 13, 275. [Google Scholar] [CrossRef] [Green Version]
- Roorda, C.; Wittmayer, J.; Henneman, P.; van Steenbergen, F.; Frantzeskaki, N.; Loorbach, D. Transition Management in the Urban Context: Guidance Manual; Dutch Research Institute for Transitions, Erasmus University: Rotterdam, The Netherlands, 2014. [Google Scholar]
- Van der Brugge, R.; Rotmans, J. Towards transition management of European water resources. Water Resour. Manag. 2007, 21, 249–267. [Google Scholar] [CrossRef] [Green Version]
- Msuya, T.S.; Lalika, M.C.S. Linking Ecohydrology and Integrated Water Resources Management: Institutional challenges for water management in the Pangani Basin, Tanzania. Ecohydrol. Hydrobiol. 2018, 18, 174–191. [Google Scholar] [CrossRef]
- Nsubuga, F.W.N.; Namutebi, E.N.; Nsubuga-Ssenfuma, M. Water Resources of Uganda: An Assessment and Review. J. Water Resour. Prot. 2014, 6, 1297–1315. [Google Scholar] [CrossRef] [Green Version]
- Howard, G.; Godfrey, S.; Tibatemwa, S.; Niwagaba, C. Water safety plans for piped urban supplies in developing countries: A case study from Kampala, Uganda. Urban Water J. 2005, 2, 161–170. [Google Scholar] [CrossRef]
- Parker, A.; Summerill, C. Water safety plan implementation in East Africa: Motivations and barriers. Waterlines 2013, 32, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Tibatemwa, S.; Godfrey, S.; Niwagaba, C.; Kizito, F. Implementing water-safety plans in Urban piped-water supplies in Uganda. Waterlines 2005, 23, 8–10. [Google Scholar] [CrossRef]
- Obeng, P.A.; Obeng, P.A.; Awere, E. Water Safety Planning and Implementation in a Ghanaian Small-scale Water Supply System. Int. J. Environ. Clim. Chang. 2020, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- De Haan, F.J.; Rotmans, J. Pattern in transitions: Understanding complex chains of change. Technol. Forecast. Soc. Chang. 2011, 78, 90–102. [Google Scholar] [CrossRef]
- Herslund, L.; Mguni, P. Examining urban water management practices—Challenges and possibilities for transitions to sustainable urban water management in Sub-Saharan cities. Sustain. Cities Soc. 2019, 48, 101573. [Google Scholar] [CrossRef]
- Ouedraogo, I.; Defourny, P.; Vanclooster, M. Mapping the groundwater vulnerability for pollution at the pan African scale. Sci. Total Environ. 2016, 544, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Oke, S.A.; Fourie, F. Guidelines to groundwater vulnerability mapping for Sub-Saharan Africa. Groundw. Sustain. Dev. 2017, 5, 168–177. [Google Scholar] [CrossRef]
- Malisa, R.; Schwella, E.; Kidd, M. From ‘government’ to ‘governance’: A quantitative transition analysis of urban wastewater management principles in Stellenbosch Municipality. Sci. Total Environ. 2019, 674, 494–511. [Google Scholar] [CrossRef] [PubMed]
- Re, V.; Sacchi, E.; Kammoun, S.; Tringali, C.; Trabelsi, R.; Zouari, K.; Daniele, S. Integrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources. The case of Grombalia Basin (Tunisia). Sci. Total Environ. 2017, 593–594, 664–676. [Google Scholar] [CrossRef] [PubMed]
- Osumanu, A.; Yelfaanibe, I.K.; Galaa, Z.S. How is Integrated Water Resources Management Working at the Local Level? Perspectives from the Black Volta Basin of the Lawra District, Ghana. J. Environ. Earth Sci. 2014, 4, 27–39. [Google Scholar]
- Daré, W.; Venot, J.; Le Page, C.; Aduna, A. Problemshed or Watershed? Participatory modeling towards IWRM in North Ghana. Water 2018, 10, 721. [Google Scholar] [CrossRef] [Green Version]
- Faysse, N. Troubles on the way: An analysis of the challenges faced by multi-stakeholder platforms. Nat. Res. For. 2006, 30, 219–229. [Google Scholar] [CrossRef]
- Ampe, K.; Paredis, E.; Asveld, L.; Osseweijer, P.; Block, T. A transition in the Dutch wastewater system? The struggle between discourses and with lock-ins discourses and with lock-ins. J. Environ. Policy Plan. 2019, 22, 155–169. [Google Scholar] [CrossRef]
- Shemsanga, C.; Martz, A.N.N.M.L.; Mcharo, H.K.E. Indigenous knowledge on development and management of shallow dug wells of Dodoma Municipality in Tanzania. Appl. Water Sci. 2018, 8, 59. [Google Scholar] [CrossRef] [Green Version]
- Yeleliere, E.; Cobbina, S.J.; Duwiejuah, A.B. Review of Ghana’s water resources: The quality and management with particular focus on freshwater resources. Appl. Water Sci. 2018, 8, 93. [Google Scholar] [CrossRef]
- Mapunda, D.W.; Chen, S.S.; Yu, C. The role of informal small-scale water supply system in resolving drinking water shortages in peri-urban Dar es Salaam, Tanzania. Appl. Geogr. 2018, 92, 112–122. [Google Scholar] [CrossRef]
- Omar, Y.Y.; Parker, A.; Smith, J.A.; Pollard, S.J.T. Risk management for drinking water safety in low and middle income countries-cultural influences on water safety plan (WSP) implementation in urban water utilities. Sci. Total Environ. 2017, 576, 895–906. [Google Scholar] [CrossRef] [Green Version]
- Brodnik, C.; Brown, R. Strategies for developing transformative capacity in urban water management sectors: The case of Melbourne, Australia. Technol. Forecast. Soc. Chang. 2018, 137, 147–159. [Google Scholar] [CrossRef]
- Avelino, F. Empowerment and the challenge of applying transition management to ongoing projects. Policy Sci. 2009, 42, 369–390. [Google Scholar] [CrossRef] [Green Version]
Country | Reported Contaminants from On-Site Sanitation in Peri-Urban Areas 1 | Reference |
---|---|---|
Uganda | Nutrient contamination (nitrate of up to 94.6 mg/L; orthophosphate up to 2.4 mg/L) in shallow groundwater in Kampala and Lukaya | [3,9,62] |
Microbiological contamination (E. coli, fecal coliforms, viruses, salmonella) detected from springs in Kampala | [18,63] | |
Tanzania | Nutrient contamination (nitrate of up to 445 mg/L in Dar es Salaam; 449 mg/L in Dodoma; 100 mg/L in Tanga and 180 mg/L in Manyara) | [64] |
Microbial contamination (Fecal coliforms, E. coli and fecal streptococci) in Arusha, Dar es Saalam, and Babati | [12,16,65] | |
Ghana | Nutrient contamination (nitrate of up to 170 mg/L in Volta Region) | [66] |
Microbial contamination (Fecal coliforms, E. coli, and salmonella) in Kumasi, Ashanti Region, and Accra | [10,67,68,69] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Twinomucunguzi, F.R.B.; Nyenje, P.M.; Kulabako, R.N.; Semiyaga, S.; Foppen, J.W.; Kansiime, F. Reducing Groundwater Contamination from On-Site Sanitation in Peri-Urban Sub-Saharan Africa: Reviewing Transition Management Attributes towards Implementation of Water Safety Plans. Sustainability 2020, 12, 4210. https://doi.org/10.3390/su12104210
Twinomucunguzi FRB, Nyenje PM, Kulabako RN, Semiyaga S, Foppen JW, Kansiime F. Reducing Groundwater Contamination from On-Site Sanitation in Peri-Urban Sub-Saharan Africa: Reviewing Transition Management Attributes towards Implementation of Water Safety Plans. Sustainability. 2020; 12(10):4210. https://doi.org/10.3390/su12104210
Chicago/Turabian StyleTwinomucunguzi, Felix R. B., Philip M. Nyenje, Robinah N. Kulabako, Swaib Semiyaga, Jan Willem Foppen, and Frank Kansiime. 2020. "Reducing Groundwater Contamination from On-Site Sanitation in Peri-Urban Sub-Saharan Africa: Reviewing Transition Management Attributes towards Implementation of Water Safety Plans" Sustainability 12, no. 10: 4210. https://doi.org/10.3390/su12104210
APA StyleTwinomucunguzi, F. R. B., Nyenje, P. M., Kulabako, R. N., Semiyaga, S., Foppen, J. W., & Kansiime, F. (2020). Reducing Groundwater Contamination from On-Site Sanitation in Peri-Urban Sub-Saharan Africa: Reviewing Transition Management Attributes towards Implementation of Water Safety Plans. Sustainability, 12(10), 4210. https://doi.org/10.3390/su12104210