Rivers’ Temporal Sustainability through the Evaluation of Predictive Runoff Methods
Abstract
:1. Introduction
2. Overview of Research Approaches
2.1. Deterministic Methods
2.1.1. Process-Based on Hydrological Models
2.1.2. Wavelets Transformation (WT)
2.2. Deterministic Machine Learning (ML) methods
2.2.1. Artificial Neural Networks Methods (ANN)
2.2.2. System Dynamics Methods (SDs)
2.3. Stochastic Methods
2.3.1. Traditional Techniques
2.3.2. Multivariate Adaptive Regression Splines (MARS)
2.3.3. ARIMA/ARMA Methods
2.3.4. Causal Reasoning (CR) Methods
2.3.5. Copulas Methods
2.3.6. Kalman and Particle Filter Methods
2.4. Stochastic Machine Learning (ML) Methods
2.4.1. HJ-Biplot
2.4.2. Principal Component Analysis (PCA)
2.4.3. Factorial Analysis of Variance (FAV)
3. Methodology and Results
3.1. Identification of Parameters
3.2. Assessment of Parameters
3.3. SWOT analysis
3.4. Suitability Assessment for Rivers’ Sustainability
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pulido-Velazquez, D.; Luis Garcia-Arostegui, J.L.; Molina, J.; Pulido-Velazquez, M. Assessment of Future Groundwater Recharge in Semi-Arid Regions under Climate Change Scenarios (Serral-Salinas Aquifer, SE Spain). Could Increased Rainfall Variability Increase the Recharge Rate? Hydrol. Process. 2015, 29, 828–844. [Google Scholar] [CrossRef]
- Wang, Y.; Traore, S.; Kerh, T.; Leu, J. Modelling Reference Evapotranspiration using Feed Forward Backpropagation Algorithm in Arid Regions of Africa. Irrig. Drain. 2011, 60, 404–417. [Google Scholar] [CrossRef]
- O’Gorman, P.A. Precipitation Extremes under Climate Change. Curr. Clim. Chang. Rep. 2015, 1, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfahl, S.; O’Gorman, P.A.; Fischer, E.M. Understanding the Regional Pattern of Projected Future Changes in Extreme Precipitation. Nat. Clim. Chang. 2017, 7, 423–427. [Google Scholar] [CrossRef]
- Chang, B.; Guan, J.; Aral, M.M. Scientific Discourse: Climate Change and Sea-Level Rise. J. Hydrol. Eng. 2015, 20, A4014003. [Google Scholar] [CrossRef]
- Kalra, A.; Li, L.; Li, X.; Ahmad, S. Improving Streamflow Forecast Lead Time using Oceanic-Atmospheric Oscillations for Kaidu River Basin, Xinjiang, China. J. Hydrol. Eng. 2013, 18, 1031–1040. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in Precipitation with Climate Change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Molina, J.L.; Zazo, S. Assessment of Temporally Conditioned Runoff Fractions in Unregulated Rivers. J. Hydrol. Eng. 2018, 23, 04018015. [Google Scholar] [CrossRef]
- Salas, J.; Delleur, J.; Yevjevich, V.; Lane, W.L. Applied Modeling of Hydrologic Time Series, 1st ed.; Water Resources Publications: Littleton, CO, USA, 1980; p. 484. [Google Scholar]
- MITECO. Modelo SIMPA 2019. Periodo de Simulación: 1940/41 a 2017/18. Available online: https://www.miteco.gob.es/es/agua/temas/evaluacion-de-los-recursos-hidricos/evaluacion-recursos-hidricos-regimen-natural/ (accessed on 3 January 2020).
- Molina, J.L.; Zazo, S. Causal Reasoning for the Analysis of Rivers Runoff Temporal Behavior. Water Resour. Manag. 2017, 31, 4669–4681. [Google Scholar] [CrossRef]
- Hurst, H.E. Long-Term Storage Capacity of Reservoirs. Trans. Am. Soc. Civil Eng. (ASCE) 1951, 116, 770–808. [Google Scholar]
- Molina, J.L.; Luis Garcia-Arostegui, J.; Bromley, J.; Benavente, J. Integrated Assessment of the European WFD Implementation in Extremely Overexploited Aquifers through Participatory Modelling. Water Resour. Manag. 2011, 25, 3343–3370. [Google Scholar] [CrossRef]
- Farmer, W.H.; Vogel, R.M. On the Deterministic and Stochastic use of Hydrologic Models. Water Resour. Res. 2016, 52, 5619–5633. [Google Scholar] [CrossRef] [Green Version]
- Jakeman, A.J.; Letcher, R.A.; Norton, J.P. Ten Iterative Steps in Development and Evaluation of Environmental Models. Environ. Model. Softw. 2006, 21, 602–614. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, G.; Molina, J.L.; Patino-Alons, M.; Castillo, M.D.C.; Vicente-Galindo, M.; Galindo-Villardon, M. Water Quality Evaluation through a Multivariate Statistical HJ-Biplot Approach. J. Hydrol. 2019, 577, 123993. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, X.; Yue, H. Evaluation of Hierarchically Weighted Principal Component Analysis for Water Quality Management at Jiaozuo Mine. Int. Biodeterior. Biodegrad. 2018, 128, 182–185. [Google Scholar] [CrossRef]
- Forgy, E.W. Cluster Analysis of Multivariate Data—Efficiency vs. Interpretability of Classifications. Biometrics 1965, 21, 768–769. [Google Scholar]
- Kim, S.E.; Seo, I.W.; Choi, S.Y. Assessment of Water Quality Variation of a Monitoring Network using Exploratory Factor Analysis and Empirical Orthogonal Function. Environ. Model. Softw. 2017, 94, 21–35. [Google Scholar] [CrossRef]
- Chan, M.C.; Lou, I.C.; Ung, W.K.; Mok, K.M. Integrating Principle Component Analysis and Canonical Correlation Analysis for Monitoring Water Quality in Storage Reservoir. Appl. Mech. Mater. 2013, 284, 1458–1462. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Hydrology, Society, Change and Uncertainty. Geophys. Res. 2014, 16. [Google Scholar] [CrossRef]
- Graf, R.; Zhu, S.; Sivakumar, B. Forecasting River Water Temperature Time Series using a Wavelet-Neural Network Hybrid Modelling Approach. J. Hydrol. 2019, 578, 124115. [Google Scholar] [CrossRef]
- Molina, J.L.; Zazo, S.; Martín-Casado, A.M. Causal Reasoning: Towards Dynamic Predictive Models for Runoff Temporal Behavior of High Dependence Rivers. Water 2019, 11, 877. [Google Scholar] [CrossRef] [Green Version]
- USACE. US Army Corps of Engineers. Hydrologic Engineering Center. Available online: https://www.hec.usace.army.mil/software/hec-hms/ (accessed on 3 January 2020).
- Liu, J.J.; Zhou, Z.H.; Yan, Z.Q.; Gong, J.G.; Jia, Y.W.; Xu, C.Y.; Wang, H. A new approach to separating the impacts of climate change and multiple human activities on water cycle processes based on a distributed hydrological model. J. Hydrol. 2019, 578, 124096. [Google Scholar] [CrossRef]
- Pilz, T.; Delgado, J.M.; Voss, S.; Vormoor, K.; Francke, T.; Costa, A.C.; Martins, E.; Bronstert, A. Seasonal drought prediction for semiarid northeast Brazil: What is the added value of a process-based hydrological model? Hydrol. Earth Syst. Sci. 2019, 23, 1951–1971. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.Q.; Liu, S.X. A simple regional snow hydrological process-based snow depth model and its application in the Upper Yangtze River Basin. Hydrol. Res. 2019, 50, 672–690. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.H.; Sun, G.; Miao, G.F.; Noormets, A.; Emanuel, R.; King, J.S. Understanding coastal wetland hydrology with a new regional-scale, process-based hydrological model. Hydrol. Process. 2018, 32, 3158–3173. [Google Scholar] [CrossRef]
- Labat, D.; Ababou, R.; Mangin, A. Rainfall-Runoff Relations for Karstic Springs. Part II: Continuous Wavelet and Discrete Orthogonal Multiresolution. J. Hydrol. 2000, 238, 149–178. [Google Scholar] [CrossRef]
- Labat, D.; Ababou, R.; Mangin, A. Introduction of Wavelet Analyses to Rainfall/Runoffs Relationship for a Karstic Basin: The Case of Licq-Atherey Karstic System (France). Ground Water 2001, 39, 605–615. [Google Scholar] [CrossRef]
- Niu, J.; Sivakumar, B. Scale-Dependent Synthetic Streamflow Generation using a Continuous Wavelet Transform. J. Hydrol. 2013, 496, 71–78. [Google Scholar] [CrossRef]
- Niu, J. Precipitation in the Pearl River Basin, South China: Scaling, Regional Patterns, and Influence of Large-Scale Climate Anomalies. Stoch. Environ. Res. Risk Assess. 2013, 27, 1253–1268. [Google Scholar] [CrossRef]
- Roushangar, K.; Nourani, V.; Alizadeh, F. A Multiscale Time-Space Approach to Analyze and Categorize the Precipitation Fluctuation Based on the Wavelet Transform and Information Theory Concept. Hydrol. Res. 2018, 49, 724–743. [Google Scholar] [CrossRef]
- Niu, J.; Chen, J. A Wavelet Perspective on Variabilities of Hydrological Processes in Conjunction with Geomorphic Analysis over the Pearl River Basin in South China. J. Hydrol. 2016, 542, 392–409. [Google Scholar] [CrossRef]
- Sang, Y.; Sun, F.; Singh, V.P.; Xie, P.; Sun, J. A Discrete Wavelet Spectrum Approach for Identifying Non-Monotonic Trends in Hydroclimate Data. Hydrol. Earth Syst. Sci. 2018, 22, 757–766. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Maheswaran, R.; Sehgal, V.; Khosa, R.; Sivakumar, B.; Bernhofer, C. Hydrologic Regionalization using Wavelet-Based Multiscale Entropy Method. J. Hydrol. 2016, 538, 22–32. [Google Scholar] [CrossRef]
- Maheswaran, R.; Khosa, R. Comparative Study of Different Wavelets for Hydrologic Forecasting. Comput. Geosci. 2012, 46, 284–295. [Google Scholar] [CrossRef]
- Rezaie-balf, M.; Naganna, S.R.; Ghaemi, A.; Deka, P.C. Wavelet Coupled MARS and M5 Model Tree Approaches for Groundwater Level Forecasting. J. Hydrol. 2017, 553, 356–373. [Google Scholar] [CrossRef]
- Nourani, V.; Baghanam, A.H.; Adamowski, J.; Kisi, O. Applications of Hybrid Wavelet-Artificial Intelligence Models in Hydrology: A Review. J. Hydrol. 2014, 514, 358–377. [Google Scholar] [CrossRef]
- Adamowski, J.; Chan, H.F. A Wavelet Neural Network Conjunction Model for Groundwater Level Forecasting. J. Hydrol. 2011, 407, 28–40. [Google Scholar] [CrossRef]
- Moosavi, V.; Vafakhah, M.; Shirmohammadi, B.; Behnia, N. A Wavelet-ANFIS Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods. Water Resour. Manag. 2013, 27, 1301–1321. [Google Scholar] [CrossRef]
- Moosavi, V.; Vafakhah, M.; Shirmohammadi, B.; Ranjbar, M. Optimization of Wavelet-ANFIS and Wavelet-ANN Hybrid Models by Taguchi Method for Groundwater Level Forecasting. Arab. J. Sci. Eng. 2014, 39, 1785–1796. [Google Scholar] [CrossRef]
- Raghavendra, S.N.; Deka, P.C. Forecasting Monthly Groundwater Level Fluctuations in Coastal Aquifers using Hybrid Wavelet Packet-Support Vector Regression. Cogent Eng. 2015, 2, 999414. [Google Scholar] [CrossRef]
- Shoaib, M.; Shamseldin, A.Y.; Melville, B.W.; Khan, M.M. A Comparison between Wavelet Based Static and Dynamic Neural Network Approaches for Runoff Prediction. J. Hydrol. 2016, 535, 211–225. [Google Scholar] [CrossRef]
- Shoaib, M.; Shamseldin, A.Y.; Khan, S.; Sultan, M.; Ahmad, F.; Sultan, T.; Dahri, Z.H.; Ali, I. Input Selection of Wavelet-Coupled Neural Network Models for Rainfall-Runoff Modelling. Water Resour. Manag. 2019, 33, 955–973. [Google Scholar] [CrossRef]
- Kasiviswanathan, K.S.; He, J.; Sudheer, K.P.; Tay, J. Potential Application of Wavelet Neural Network Ensemble to Forecast Streamflow for Flood Management. J. Hydrol. 2016, 536, 161–173. [Google Scholar] [CrossRef]
- Peng, T.; Zhou, J.; Zhang, C.; Fu, W. Streamflow Forecasting using Empirical Wavelet Transform and Artificial Neural Networks. Water 2017, 9, 406. [Google Scholar] [CrossRef] [Green Version]
- Seo, Y.; Kim, S.; Kisi, O.; Singh, V.P. Daily Water Level Forecasting using Wavelet Decomposition and Artificial Intelligence Techniques. J. Hydrol. 2015, 520, 224–243. [Google Scholar] [CrossRef]
- Rajaee, T.; Nourani, V.; Zounemat-Kermani, M.; Kisi, O. River Suspended Sediment Load Prediction: Application of ANN and Wavelet Conjunction Model. J. Hydrol. Eng. 2011, 16, 613–627. [Google Scholar] [CrossRef]
- Seo, Y.; Kim, S.; Kisi, O.; Singh, V.P.; Parasuraman, K. River Stage Forecasting using Wavelet Packet Decomposition and Machine Learning Models. Water Resour. Manag. 2016, 30, 4011–4035. [Google Scholar] [CrossRef]
- Ramirez, M.C.V.; Velho, H.F.D.; Ferreira, N.J. Artificial Neural Network Technique for Rainfall Forecasting Applied to the Sao Paulo Region. J. Hydrol. 2005, 301, 146–162. [Google Scholar] [CrossRef]
- Mandal, T.; Jothiprakash, V. Short-Term Rainfall Prediction using ANN and MT Techniques. ISH J. Hydraul. Eng. 2012, 18, 20–26. [Google Scholar] [CrossRef]
- Chiang, Y.; Chang, F.; Jou, B.J.; Lin, P. Dynamic ANN for Precipitation Estimation and Forecasting from Radar Observations. J. Hydrol. 2007, 334, 250–261. [Google Scholar] [CrossRef]
- Noori, N.; Kalin, L. Coupling SWAT and ANN Models for Enhanced Daily Streamflow Prediction. J. Hydrol. 2016, 533, 141–151. [Google Scholar] [CrossRef]
- Prasad, R.; Deo, R.C.; Li, Y.; Maraseni, T. Input Selection and Performance Optimization of ANN-Based Streamflow Forecasts in the Drought-Prone Murray Darling Basin Region using IIS and MODWT Algorithm. Atmos. Res. 2017, 197, 42–63. [Google Scholar] [CrossRef]
- Lallahem, S.; Mania, J.; Hani, A.; Najjar, Y. On the use of Neural Networks to Evaluate Groundwater Levels in Fractured Media. J. Hydrol. 2005, 307, 92–111. [Google Scholar] [CrossRef]
- Daliakopoulos, I.; Coulibaly, P.; Tsanis, I. Groundwater Level Forecasting using Artificial Neural Networks. J. Hydrol. 2005, 309, 229–240. [Google Scholar] [CrossRef]
- Piotrowski, A.P.; Napiorkowski, M.J.; Napiorkowski, J.J.; Osuch, M. Comparing various Artificial Neural Network Types for Water Temperature Prediction in Rivers. J. Hydrol. 2015, 529, 302–315. [Google Scholar] [CrossRef]
- Zhu, S.; Hadzima-Nyarko, M.; Gao, A.; Wang, F.; Wu, J.; Wu, S. Two Hybrid Data-Driven Models for Modeling Water-Air Temperature Relationship in Rivers. Environ. Sci. Pollut. Res. 2019, 26, 12622–12630. [Google Scholar] [CrossRef]
- Abramowitz, G.; Gupta, H.; Pitman, A.; Wang, Y.; Leuning, R.; Cleugh, H.; Hsu, K. Neural Error Regression Diagnosis (NERD): A Tool for Model Bias Identification and Prognostic Data Assimilation. J. Hydrometeorol. 2006, 7, 160–177. [Google Scholar] [CrossRef] [Green Version]
- Hsu, K.; Gupta, H.; Gao, X.; Sorooshian, S.; Imam, B. Self-Organizing Linear Output Map (SOLO): An Artificial Neural Network Suitable for Hydrologic Modeling and Analysis. Water Resour. Res. 2002, 38, 1302. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, M.K.; Chatterjee, C. Development of an Accurate and Reliable Hourly Flood Forecasting Model using Wavelet-Bootstrap-ANN (WBANN) Hybrid Approach. J. Hydrol. 2010, 394, 458–470. [Google Scholar] [CrossRef]
- Susnik, J.; Molina, J.; Vamvakeridou-Lyroudia, L.S.; Savic, D.A.; Kapelan, Z. Comparative Analysis of System Dynamics and Object-Oriented Bayesian Networks Modelling for Water Systems Management. Water Resour. Manag. 2013, 27, 819–841. [Google Scholar] [CrossRef]
- Bakhshianlamouki, E.; Masia, S.; Karimi, P.; van der Zaag, P.; Susnik, J. A system dynamics model to quantify the impacts of restoration measures on the water-energy-food nexus in the Urmia lake Basin, Iran. Sci. Total Environ. 2020, 708, 134874. [Google Scholar] [CrossRef] [PubMed]
- Gohari, A.; Mirchi, A.; Madani, K. System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran. Water Resour. Manag. 2017, 31, 1413–1434. [Google Scholar] [CrossRef] [Green Version]
- Ghashghaie, M.; Marofi, S.; Marofi, H. Using System Dynamics Method to Determine the Effect of Water Demand Priorities on Downstream Flow. Water Resour. Manag. 2014, 28, 5055–5072. [Google Scholar] [CrossRef]
- Hassanzadeh, E.; Zarghami, M.; Hassanzadeh, Y. Determining the Main Factors in Declining the Urmia Lake Level by Using System Dynamics Modeling. Water Resour. Manag. 2012, 26, 129–145. [Google Scholar] [CrossRef]
- Muetzelfeldt, R.; Massheder, J. The Simile Visual Modelling Environment. Eur. J. Agron. 2003, 18, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, M.T.H.; Ludwig, F.; Zwolsman, J.J.G.; Weedon, G.P.; Kabat, P. Global River Temperatures and Sensitivity to Atmospheric Warming and Changes in River Flow. Water Resour. Res. 2011, 47, W02544. [Google Scholar] [CrossRef]
- Molina, J.L.; Zazo, S.; Rodriguez-Gonzalvez, P.; Gonzalez-Aguilera, D. Innovative Analysis of Runoff Temporal Behavior through Bayesian Networks. Water 2016, 8, 484. [Google Scholar] [CrossRef] [Green Version]
- Zazo, S.; Macian-Sorribes, H.; Sena-Fael, C.M.; Martín-Casado, A.M.; Molina, J.L.; Pulido-Velazquez, M. Qualitative Approach for Assessing Runoff Temporal Dependence through Geometrical Symmetry. In Proceedings of the International Congress on Engineering. Engineering for Evolution (ICEUBI2019), Covilhã, Portugal, 28 November 2019. [Google Scholar]
- Hao, Z.; Singh, V.P. Review of Dependence Modeling in Hydrology and Water Resources. Prog. Phys. Geogr. 2016, 40, 549–578. [Google Scholar] [CrossRef]
- Chenoweth, T.; Hubata, R.; St Louis, R.D. Automatic ARMA Identification using Neural Networks and the Extended Sample Autocorrelation Function: A Reevaluation. Decis. Support Syst. 2000, 29, 21–30. [Google Scholar] [CrossRef]
- Mohammadi, K.; Eslami, H.R.; Kahawita, R. Parameter Estimation of an ARMA Model for River Flow Forecasting using Goal Programming. J. Hydrol. 2006, 331, 293–299. [Google Scholar] [CrossRef]
- Nelsen, R.B. An Introduction to Copulas; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Friedman, J.H. Multivariate Adaptive Regression Splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Put, R.; Xu, Q.S.; Massart, D.L.; Heyden, Y.V. Multivariate Adaptive Regression Splines (MARS) in Chromatographic Quantitative Structure-Retention Relationship Studies. J. Chromatogr. A 2004, 1055, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Craven, P.; Wahba, G. Smoothing Noisy Data with Spline Functions—Estimating the Correct Degree of Smoothing by the Method of Generalized Cross-Validation. Numer. Math. 1979, 31, 377–403. [Google Scholar] [CrossRef]
- Adamowski, J.; Chan, H.F.; Prasher, S.O.; Sharda, V.N. Comparison of Multivariate Adaptive Regression Splines with Coupled Wavelet Transform Artificial Neural Networks for Runoff Forecasting in Himalayan Micro-Watersheds with Limited Data. J. Hydroinf. 2012, 14, 731–744. [Google Scholar] [CrossRef]
- Sharda, V.N.; Prasher, S.O.; Patel, R.M.; Ojasvi, P.R.; Prakash, C. Performance of Multivariate Adaptive Regression Splines (MARS) in Predicting Runoff in Mid-Himalayan Micro-Watersheds with Limited Data. Hydrol. Sci. J. J. Des. Sci. Hydrol. 2008, 53, 1165–1175. [Google Scholar] [CrossRef]
- Deo, R.C.; Kisi, O.; Singh, V.P. Drought Forecasting in Eastern Australia using Multivariate Adaptive Regression Spline, Least Square Support Vector Machine and M5Tree Model. Atmos. Res. 2017, 184, 149–175. [Google Scholar] [CrossRef]
- Kisi, O.; Parmar, K.S. Application of Least Square Support Vector Machine and Multivariate Adaptive Regression Spline Models in Long Term Prediction of River Water Pollution. J. Hydrol. 2016, 534, 104–112. [Google Scholar] [CrossRef]
- Kisi, O. Pan Evaporation Modeling using Least Square Support Vector Machine, Multivariate Adaptive Regression Splines and M5 Model Tree. J. Hydrol. 2015, 528, 312–320. [Google Scholar] [CrossRef]
- Samadi, M.; Jabbari, E.; Azamathulla, H.M.; Mojallal, M. Estimation of Scour Depth below Free Overfall Spillways using Multivariate Adaptive Regression Splines and Artificial Neural Networks. Eng. Appl. Comput. Fluid Mech. 2015, 9, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.; Salas, J.D.; Prairie, J. An Enhanced Nonparametric Streamflow Disaggregation Model with Genetic Algorithm. Water Resour. Res. 2010, 46, W08545. [Google Scholar] [CrossRef]
- See, L.; Openshaw, S. A Hybrid Multi-Model Approach to River Level Forecasting. Hydrol. Sci. J. J. Des. Sci. Hydrol. 2000, 45, 523–536. [Google Scholar] [CrossRef]
- Jain, A.; Kumar, A.M. Hybrid Neural Network Models for Hydrologic Time Series Forecasting. Appl. Soft Comput. 2007, 7, 585–592. [Google Scholar] [CrossRef]
- Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann: San Francisco, CA, USA, 1988. [Google Scholar]
- Molina, J.L.; Pulido-Velazquez, D.; Luis Garcia-Arostegui, J.; Pulido-Velazquez, M. Dynamic Bayesian Networks as a Decision Support Tool for Assessing Climate Change Impacts on Highly Stressed Groundwater Systems. J. Hydrol. 2013, 479, 113–129. [Google Scholar] [CrossRef] [Green Version]
- Molina, J.L.; Bromley, J.; Garcia-Arostegui, J.L.; Sullivan, C.; Benavente, J. Integrated Water Resources Management of Overexploited Hydrogeological Systems using Object-Oriented Bayesian Networks. Environ. Model. Softw. 2010, 25, 383–397. [Google Scholar] [CrossRef] [Green Version]
- Castelletti, A.; Soncini-Sessa, R. Bayesian Networks and Participatory Modelling in Water Resource Management. Environ. Model. Softw. 2007, 22, 1075–1088. [Google Scholar] [CrossRef]
- Said, A. The Implementation of a Bayesian Network for Watershed Management Decisions. Water Resour. Manag. 2006, 20, 591–605. [Google Scholar] [CrossRef]
- Carmona, G.; Varela-Ortega, C.; Bromley, J. Supporting Decision Making Under Uncertainty: Development of a Participatory Integrated Model for Water Management in the Middle Guadiana River Basin. Environ. Model. Softw 2013, 50, 144–157. [Google Scholar] [CrossRef] [Green Version]
- Jensen, F.V.; Nielsen, T.D. Bayesian Networks and Decision Graphs; Springer: New York, NY, USA, 2001. [Google Scholar]
- Varis, O.; Fraboulet-Jussila, S. Water Resources Development in the Lower Senegal River Basin: Conflicting Interests, Environmental Concerns and Policy Options. Int. J. Water Resour. Dev. 2002, 18, 245–260. [Google Scholar] [CrossRef]
- Nodelman, U.; Horvitz, E. Continuous Time Bayesian Networks for Inferring Users’ Presence and Activities with Extensions for Modeling and Evaluation; Microsoft Research Technical Report MSR-TR-2003-97; Microsoft Research: Redmond, WA, USA, 2003. [Google Scholar]
- Cain, J. Planning Improvements in Natural Resources Management; Centre for Ecology and Hydrology: Wallingford, UK, 2001; Volume 124, pp. 1–123. [Google Scholar]
- Pena, J.M.; Lozano, J.A.; Larranaga, P. Unsupervised Learning of Bayesian Networks Via Estimation of Distribution Algorithms: An Application to Gene Expression Data Clustering. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2004, 12, 63–82. [Google Scholar] [CrossRef] [Green Version]
- Genc, O.; Dag, A. A Machine Learning-Based Approach to Predict the Velocity Profiles in Small Streams. Water Resour. Manag. 2016, 30, 43–61. [Google Scholar] [CrossRef]
- Patel, S.S.; Ramachandran, P. A Comparison of Machine Learning Techniques for Modeling River Flow Time Series: The Case of Upper Cauvery River Basin. Water Resour. Manag. 2015, 29, 589–602. [Google Scholar] [CrossRef]
- Mousavi, S.J.; Ponnambalam, K.; Karray, F. Inferring Operating Rules for Reservoir Operations using Fuzzy Regression and ANFIS. Fuzzy Sets Syst. 2007, 158, 1064–1082. [Google Scholar] [CrossRef]
- De Michele, C.; Salvadori, G. A Generalized Pareto Intensity-Duration Model of Storm Rainfall Exploiting 2-Copulas. J. Geophys. Res. Atmos. 2003, 108, 4067. [Google Scholar] [CrossRef]
- Zhang, L.; Singh, V.P. Bivariate Flood Frequency Analysis using the Copula Method. J. Hydrol. Eng. 2006, 11, 150–164. [Google Scholar] [CrossRef]
- Dutfoy, A.; Parey, S.; Roche, N. Multivariate Extreme Value Theory-A Tutorial with Applications to Hydrology and Meteorology. Depend. Model. 2014, 2, 30–48. [Google Scholar] [CrossRef] [Green Version]
- Serinaldi, F.; Bardossy, A.; Kilsby, C.G. Upper Tail Dependence in Rainfall Extremes: Would we Know it if we Saw it? Stoch. Environ. Res. Risk Assess. 2015, 29, 1211–1233. [Google Scholar] [CrossRef] [Green Version]
- Sarabia-Alzaga, J.; Gómez-Déniz, E. Construction of Multivariate Distributions: A Review of some Recent Results. Stat. Oper. Res. Trans. 2008, 32, 3–36. [Google Scholar]
- Balakrishnan, N.; Lai, C. Continuous Bivariate Distributions; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Singh, V.P. Entropy Theory and Its Application in Environmental and Water Engineering; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
- Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. Trans. ASME J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Reichle, R.H.; McLaughlin, D.B.; Entekhabi, D. Hydrologic Data Assimilation with the Ensemble Kalman Filter. Mon. Weather Rev. 2002, 130, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Evensen, G. Sequential Data Assimilation with a Nonlinear Quasi-Geostrophic Model using Monte-Carlo Methods to Forecast Error Statistics. J. Geophys. Res. Oceans 1994, 99, 10143–10162. [Google Scholar] [CrossRef]
- Moradkhani, H.; Sorooshian, S.; Gupta, H.V.; Houser, P.R. Dual State-Parameter Estimation of Hydrological Models using Ensemble Kalman Filter. Adv. Water Resour. 2005, 28, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Weerts, A.H.; El Serafy, G.Y.H. Particle Filtering and Ensemble Kalman Filtering for State Updating with Hydrological Conceptual Rainfall-Runoff Models. Water Resour. Res. 2006, 42, W09403. [Google Scholar] [CrossRef] [Green Version]
- Pathiraja, S.; Marshall, L.; Sharma, A.; Moradkhani, H. Detecting Non-Stationary Hydrologic Model Parameters in a Paired Catchment System using Data Assimilation. Adv. Water Resour. 2016, 94, 103–119. [Google Scholar] [CrossRef]
- Shen, Z.; Tang, Y. A Modified Ensemble Kalman Particle Filter for Non-Gaussian Systems with Nonlinear Measurement Functions. J. Adv. Model. Earth Syst. 2015, 7, 50–66. [Google Scholar] [CrossRef]
- Wang, S.; Huang, G.H.; Baetz, B.W.; Ancell, B.C. Towards Robust Quantification and Reduction of Uncertainty in Hydrologic Predictions: Integration of Particle Markov Chain Monte Carlo and Factorial Polynomial Chaos Expansion. J. Hydrol. 2017, 548, 484–497. [Google Scholar] [CrossRef]
- Smith, P.J.; Beven, K.J.; Tawn, J.A. Detection of Structural Inadequacy in Process-Based Hydrological Models: A Particle-Filtering Approach. Water Resour. Res. 2008, 44, W01410. [Google Scholar] [CrossRef]
- Dumedah, G.; Coulibaly, P. Evaluating Forecasting Performance for Data Assimilation Methods: The Ensemble Kalman Filter, the Particle Filter, and the Evolutionary-Based Assimilation. Adv. Water Resour. 2013, 60, 47–63. [Google Scholar] [CrossRef]
- Galindo, M. An Alternative for Simultaneous Representations. HJ-Biplot Qüestiió 1986, 10, 13–23. [Google Scholar]
- Gabriel, K.R. Biplot Graphic Display of Matrices with Application to Principal Component Analysis. Biometrika 1971, 58, 453–467. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Dokou, Z.; Karatzas, G.P. Statistical Analysis and ANN Modeling for Predicting Hydrological Extremes Under Climate Change Scenarios: The Example of a Small Mediterranean Agro-Watershed. J. Environ. Manag. 2015, 154, 86–101. [Google Scholar] [CrossRef]
- Praus, P. Water Quality Assessment using SVD-Based Principal Component Analysis of Hydrological Data. Water SA 2005, 31, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Syed, T.H.; Lakshmi, V.; Paleologos, E.; Lohmann, D.; Mitchell, K.; Famiglietti, J.S. Analysis of Process Controls in Land Surface Hydrological Cycle Over the Continental United States. J. Geophys. Res. Atmos. 2004, 109, D22105. [Google Scholar] [CrossRef] [Green Version]
- Remesan, R.; Bray, M.; Mathew, J. Application of PCA and Clustering Methods in Input Selection of Hybrid Runoff Models. J. Environ. Inform. 2018, 31, 137–152. [Google Scholar] [CrossRef] [Green Version]
- Sahan, T.; Ozturk, D. Investigation of Pb(II) Adsorption Onto Pumice Samples: Application of Optimization Method Based on Fractional Factorial Design and Response Surface Methodology. Clean Technol. Environ. Policy 2014, 16, 819–831. [Google Scholar] [CrossRef]
- Thiele, J.E.; Haaf, J.M.; Rouder, J.N. Is there Variation Across Individuals in Processing? Bayesian Analysis for Systems Factorial Technology. J. Math. Psychol. 2017, 81, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Dai, Y.; Sun, P.; Meng, S. Interaction-Based Feature Selection using Factorial Design. Neurocomputing 2018, 281, 47–54. [Google Scholar] [CrossRef]
- Liu, Y.R.; Li, Y.P.; Huang, G.H.; Zhang, J.L.; Fan, Y.R. A Bayesian-Based Multilevel Factorial Analysis Method for Analyzing Parameter Uncertainty of Hydrological Model. J. Hydrol. 2017, 553, 750–762. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Huang, G.; Chen, X.; Bao, A. Assessment of Parameter Uncertainty in Hydrological Model using a Markov-Chain-Monte-Carlo-Based Multilevel-Factorial-Analysis Method. J. Hydrol. 2016, 538, 471–486. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, G.; Zhu, H.; Li, Z.; Chen, J. A Factorial Dual-Objective Rural Environmental Management Model. J. Clean. Prod. 2016, 124, 204–216. [Google Scholar] [CrossRef]
- Moreau, P.; Viaud, V.; Parnaudeau, V.; Salmon-Monviola, J.; Durand, P. An Approach for Global Sensitivity Analysis of a Complex Environmental Model to Spatial Inputs and Parameters: A Case Study of an Agro-Hydrological Model. Environ. Model. Softw. 2013, 47, 74–87. [Google Scholar] [CrossRef]
- Frey, M.P.; Stamm, C.; Schneider, M.K.; Reichert, P. Using Discharge Data to Reduce Structural Deficits in a Hydrological Model with a Bayesian Inference Approach and the Implications for the Prediction of Critical Source Areas. Water Resour. Res. 2011, 47, W12529. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Wang, Y.; Chang, J.; Guo, A.; Li, Z. Investigating the Dynamic Influence of Hydrological Model Parameters on Runoff Simulation using Sequential Uncertainty Fitting-2-Based Multilevel-Factorial-Analysis Method. Water 2018, 10, 1177. [Google Scholar] [CrossRef] [Green Version]
METHODS | PREDICTABILITY | RELIABILITY | Mathematical Approach for Uncertainty | Mathematical Approach for Processing | Amount of Processed Information | Manageability | Transparency |
---|---|---|---|---|---|---|---|
Process-based hydrological models | * | * | Null/Scarce | Theoretical algorithms | ** | ** | ** |
Artificial Neural Networks (ANN) | *** | ** | Null | Dynamic and Adaptive Mathematical expressions | ** | * | * |
Wavelets Transformation (WT) | *** | ** | Scaling coefficients at different resolutions | Dynamic and Adaptive Mathematical expressions | *** | * | ** |
System Dynamics (SDs) | ** | ** | Null | Dynamic and Adaptive Mathematical expressions | *** | * | * |
Linear and nonlinear regression models | * | ** | Regression | Constant Mathematical expressions | ** | *** | *** |
Pearson’s Correlogram Coefficient (Correlogram) | * | * | Correlogram Coefficient | Constant Mathematical expressions | ** | *** | *** |
Hurst coefficient | ** | ** | Null | Constant Mathematical expressions | ** | *** | *** |
Multivariate Adaptive Regression Splines (MARS) | * | ** | Optimization | Dynamic and Adaptive Mathematical expressions | ** | ** | ** |
ARMA and ARIMA | ** | ** | Mathematical Residuals coefficients | Constant Mathematical expressions | ** | ** | ** |
Causal Reasoning (CR) | *** | *** | Probability | Dynamic and Adaptive Mathematical expressions | *** | ** | * |
Copulas | *** | ** | Bivariate function | Dynamic and Adaptive Mathematical expressions | *** | ** | * |
Kalman, Particle Filter and Ensemble Kalman Filter | ** | ** | Random Samples (Ensembles) | Dynamic and Adaptive Mathematical expressions | *** | ** | * |
HJ-Biplot | * | ** | Null/Scarce | Matrixes Visualization and Cluster analysis | *** | ** | ** |
Principal Component Analysis (PCA) | * | ** | Null/Scarce | Adaptive data analysis | *** | ** | ** |
Factorial Analysis (FAV) | ** | *** | Different Statistical Expressions | Dynamic and Adaptive Mathematical expressions | *** | ** | ** |
Method | Strength | Weakness | Opportunity | Threat |
---|---|---|---|---|
Process-based hydrological models | Physical Knowledge Capture | Low capacity on temporally runoff understanding | Hybridization with Stochastic methods | Inaccurate manifold and not-extrapolatable usage |
Artificial Neural Networks (ANN) | Computation power | Not-dealing with hydrological variability | Hybridization with Stochastic methods | Opacity |
Wavelets transformation (WT) | Computation power | Hard output interpretation | Hybridization with Stochastic methods | High usage complexity |
System Dynamics (SDS) | Complex systems interlinks handling | Hard output interpretation | Hybridization with Stochastic methods | Inaccurate usage for hydrological prediction |
Linear and nonlinear regression models | Global known | High and rigid inputs requirements | Generation of advanced numerical methods | Inaccurate manifold and not-extrapolatable usage |
Pearson’s Correlogram Coefficient (Correlogram) | Global known | High and rigid inputs requirements | Generation of advanced numerical methods | Inaccurate manifold and not-extrapolatable usage |
Hurst coefficient | Long-term runoff memory identification | Inaccurate prediction | Validation with alternative methods | Inaccurate usage |
Multivariate Adaptive Regression Splines (MARS) | High predictive performance | High usage complexity | Flexible high dimension modeling | High usage complexity |
ARMA and ARIMA | High synthetic generation performance | High and rigid inputs requirements | High operability | High usage complexity |
Causal Reasoning (CR) | Computation power | Opacity | Hybridization ease | Opacity |
Copulas | Dealing with hydrological uncertainty | Mathematical Complexity | High predictive performance | High usage complexity |
Kalman, Particle Filter and Ensemble Kalman Filter | Dealing with hydrological uncertainty | Mathematical Complexity | Flexible modeling | High usage complexity |
HJ-Biplot | Complex systems interlinks capture | Null predictive capacity | High descriptive capacity for Hydrology | Overrated usage |
Principal Component Analysis (PCA) | Ability for information simplification | Null predictive capacity | Hybridization with other methods | Overrated usage |
Factorial Analysis (FAV) | Computation power | High and rigid inputs requirements | Hybridization with other methods | Hybridization complexity |
Method/Service | Average Prediction | C.C. Simulations | Temporal Dependence Evaluation | Spatio-Temporal Dependence | Extreme Prediction | Protection Actions | Global Suitability Score (GSS) |
---|---|---|---|---|---|---|---|
Process-based hydrological models | ** | ** | * | ** | * | ||
Artificial Neural Networks (ANN) | ** | * | * | ** | ** | * | ** |
Wavelets transformation (WT) | ** | ** | ** | ** | *** | * | ** |
System Dynamics (SDS) | * | * | * | ** | * | ||
Linear and nonlinear regression models | * | * | * | * | * | * | * |
Pearson’s Correlogram Coefficient (Correlogram) | * | * | ** | * | * | * | * |
Hurst coefficient | ** | * | * | ||||
Multivariate Adaptive Regression Splines (MARS) | * | * | * | * | * | * | * |
ARMA and ARIMA | * | * | * | * | * | ||
Causal Reasoning (CR) | *** | *** | *** | *** | *** | * | *** |
Copulas | * | ** | * | * | *** | * | ** |
Kalman, Particle Filter and Ensemble Kalman Filter | * | ** | * | * | ** | * | ** |
HJ-Biplot | ** | ||||||
Principal Component Analysis (PCA) | ** | ||||||
Factorial Analysis (FAV) | * | * | ** | ** | * | * | ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina, J.-L.; Zazo, S.; Martín-Casado, A.-M.; Patino-Alonso, M.-C. Rivers’ Temporal Sustainability through the Evaluation of Predictive Runoff Methods. Sustainability 2020, 12, 1720. https://doi.org/10.3390/su12051720
Molina J-L, Zazo S, Martín-Casado A-M, Patino-Alonso M-C. Rivers’ Temporal Sustainability through the Evaluation of Predictive Runoff Methods. Sustainability. 2020; 12(5):1720. https://doi.org/10.3390/su12051720
Chicago/Turabian StyleMolina, José-Luis, Santiago Zazo, Ana-María Martín-Casado, and María-Carmen Patino-Alonso. 2020. "Rivers’ Temporal Sustainability through the Evaluation of Predictive Runoff Methods" Sustainability 12, no. 5: 1720. https://doi.org/10.3390/su12051720
APA StyleMolina, J. -L., Zazo, S., Martín-Casado, A. -M., & Patino-Alonso, M. -C. (2020). Rivers’ Temporal Sustainability through the Evaluation of Predictive Runoff Methods. Sustainability, 12(5), 1720. https://doi.org/10.3390/su12051720