A Multi-Criteria Structure for Sustainable Implementation of Urban Distribution Centers in Historical Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Problem of Selecting the Location of Urban Distribution Centers
2.2. Criteria for Selecting a Location for a UDC
2.3. Relevant Approaches to Design Location of Urban Distribution Centers
2.4. Procedures and Considered Stakeholders
- (1)
- The main criteria that were fundamental for sustainable implementation of UDCs in historical cities, identified based on the literature review, were all included in surveys (see Table A1 in Appendix A);
- (2)
- The surveys were conducted among the decision-makers, such as carriers, traffic wardens and retailers. The pilot tests were also conducted considering the guidelines that were proposed by Forza [33];
- (3)
- The results were then observed in a descriptive statistics analysis, analysis of variance, t-tests, and a factor analysis. After that, there results were used for the development of a multiple hierarchical decision structure composed of different criteria. At this point, we used an attribute to measure the performance in relation to the criteria, and the preferential independence among the criteria was checked [32]. A linear value function [35] was used for evaluating each attribute, using a five-point linguistic scale (“0”—no relevance; “25”—marginal relevance; “50”—equal relevance; “75”—great relevance; “100”—considerable relevance).
3. Developing the Structure of the Multiple Hierarchical Decision
- Step 1—Calculating the factors and respective indexes.
- Step 2—Comparing the indexes/criteria and assignment of weights.
4. Results
4.1. Prioritizing the Criteria Based on Stakeholders’ Opinion
4.2. Calculating the Indexes Based on the Factor Loadings
4.3. Assignment of Criteria Weights
4.4. Building the Structure Based on Stakeholders’ Opinion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Code | Criteria | Traffic Wardens | Retailers | Carriers | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mod | 1 Q | Med | 3 Q | Mod | 1 Q | Med | 3 Q | Mod | 1 Q | Med | 3 Q | ||
C1 | Parking spots | 1 | 1.00 | 2.00 | 3.50 | 1 | 1.00 | 1.00 | 2.00 | 1 | 1.00 | 1.00 | 1.00 |
C2 | Traffic congestion | 1 | 1.00 | 1.00 | 2.00 | 1 | 1.00 | 2.00 | 5.00 | 5 | 2.00 | 4.00 | 5.00 |
C3 | Professional qualifications | 1 | 1.00 | 2.00 | 3.00 | 1 | 1.00 | 1.00 | 3.00 | 1 | 1.00 | 2.00 | 5.00 |
C4 | Vehicle size | 1 | 1.00 | 1.00 | 1.00 | 1 | 1.00 | 1.00 | 1.00 | 1 | 1.00 | 1.00 | 1.00 |
C5 | Local gain | 1 | 1.00 | 1.00 | 2.00 | 1 | 1.00 | 1.00 | 2.00 | 1 | 1.00 | 1.00 | 2.00 |
C6 | Insecurity | 1 | 1.00 | 1.00 | 3.50 | 1 | 1.00 | 2.00 | 5.00 | 5 | 1.00 | 4.00 | 5.00 |
C7 | Architectural impacts | 1 | 1.00 | 1.00 | 2.00 | 1 | 1.00 | 2.00 | 2.00 | 2 | 1.75 | 2.00 | 5.00 |
C8 | Damage to historical heritage | 1 | 1.00 | 1.00 | 2.00 | 1 | 1.00 | 1.00 | 3.25 | 1 | 1.00 | 2.00 | 5.00 |
C9 | Air pollution level | 1 | 1.00 | 1.00 | 2.00 | 1 | 1.00 | 1.00 | 2.00 | 1 | 1.00 | 2.00 | 4.00 |
C10 | Visual pollution | 1 | 1.00 | 1.00 | 1.50 | 1 | 1.00 | 2.00 | 4.00 | 5 | 1.00 | 2.00 | 5.00 |
C11 | Noise nuisance level | 1 | 1.00 | 1.00 | 2.00 | 1 | 1.00 | 3.00 | 4.00 | 5 | 2.00 | 4.00 | 5.00 |
C12 | Using alternative propulsion vehicle | 1 | 1.00 | 1.00 | 2.00 | 1 | 1.00 | 2.00 | 3.00 | 1 | 1.00 | 2.00 | 4.25 |
C13 | Compliance with legal regulations | 1 | 1.00 | 1.00 | 2.00 | 1 | 1.00 | 1.00 | 4.00 | 5 | 2.00 | 4.00 | 5.00 |
C14 | Use of technology | 1 | 1.00 | 1.00 | 2.00 | 1 | 1.00 | 1.00 | 1.00 | 1 | 1.00 | 1.00 | 1.00 |
C15 | Service level | 1 | 1.00 | 1.00 | 2.00 | 1 | 1.00 | 1.00 | 2.00 | 1 | 1.00 | 1.00 | 1.00 |
C16 | Investments and costs | 1 | 1.00 | 2.00 | 2.50 | 1 | 1.00 | 1.00 | 2.00 | 1 | 1.00 | 1.00 | 2.00 |
References
- Estrada, M.; Roca-R, M. Stakeholder’s profitability of carrier-led consolidation strategies in urban goods distribution. Transp. Res. Part E Logist. Transp. Rev. 2017, 104, 165188. [Google Scholar] [CrossRef]
- Vidal, V.J.G.; Fransoo, J.C. How logistics performance of freight operators is affected by urban freight distribution issues. Transp. Policy 2015, 44, 37–47. [Google Scholar] [CrossRef]
- Awash, A.; Chauhan, S.S.; Goyal, S.K. A multi-criteria decision-making approach for location planning for urban distribution centers under uncertainty. Math. Comput. Model. 2011, 53, 98–109. [Google Scholar]
- de Carvalho, N.L.A.; Ribeiro, P.C.C.; García-Martos, C.; Fernández, C.G.; Vieira, J.G.V. Urban distribution centre in historical cities from the perspective of residents, retailers and carriers. Res. Transp. Econ. 2019, 77, 100744. [Google Scholar] [CrossRef]
- Carvalho, N.L.A.; Ribeiro, P.C.C.; Oliveira, L.K.; Silva, J.E.A.R.; Vieira, J.G.V. Criteria to implement UDCs in historical cities: A Brazilian case study. Eur. Transp. Trasp. Eur. 2019, 72, 1–29. [Google Scholar]
- Marcucci, E.; Gatta, V.; Scaccia, L. Urban freight, parking and pricing policies: An evaluation from a transport providers’ perspective. Transp. Res. Part A Policy Pract. 2015, 74, 239–249. [Google Scholar] [CrossRef]
- Marcucci, E.; Gatta, V.; Le Pira, M. Gamification design to foster stakeholder engagement and behavior change: An application to urban freight transport. Transp. Res. Part A Policy Pract. 2018, 118, 119–132. [Google Scholar] [CrossRef]
- Paddeu, D.; Aditjandra, P. Shaping Urban Freight Systems via a Participatory Approach to Inform Policy-Making. Sustainability 2020, 12, 441. [Google Scholar] [CrossRef] [Green Version]
- Rubio, S.; Jiménez-Parra, B.; Chamorro-Mera, A.; Miranda, F.J. Reverse Logistics and Urban Logistics: Making a Link. Sustainability 2019, 11, 5684. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.; Browne, M.; Cherrett, T. Investigating relationships between road freight transport, facility location, logistics management and urban form. J. Transp. Geogr. 2012, 24, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Vermote, L.; Macharis, C.; Putman, K. A road network for freight transport in Flanders: Multi-actor multi-criteria assessment of alternative ring ways. Sustainability 2013, 5, 4222–4246. [Google Scholar] [CrossRef] [Green Version]
- Macharis, C. Multi-criteria Analysis as a Tool to Include Stakeholders in Project Evaluation: The MAMCA Method. In Transport Project Evaluation; Extending the Social Cost–Benefit Approach; Haezendonck, E., Ed.; Edward Elgar: Cheltenham, UK, 2007; pp. 115–131. [Google Scholar]
- Macharis, C. The importance of stakeholder analysis in freight transport. Q. J. Transp. Law, Econ. Eng. 2005, 8, 114–126. [Google Scholar]
- Chakraborty, R.; Ray, A.; Dan, P. Multi criteria decision making methods for location selection of distribution centers. Int. J. Ind. Eng. Comput. 2013, 4, 491–504. [Google Scholar] [CrossRef]
- Wang, B.; Xiong, H.; Jiang, C. A multicriteria decision making approach based on fuzzy theory and credibility mechanism for logistics center location selection. Sci. World J. 2014. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.Y.; Chang, Y.H.; Shen, C.Y. A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes. Eur. J. Oper. Res. 2008, 189, 132–145. [Google Scholar] [CrossRef]
- Panero, M.A.; SHin, H.S.; Lopez, D.P. Urban Distribution Centers–A Means to Reducing Freight Vehicle Miles Traveled; (Report No. C-08-23); The NYU Rudin Center for Transportation Policy and Management: New York, NY, USA, 2011. [Google Scholar]
- Van Duin, J.H.R.; Quak, H.; Muñuzuric, J. New challenges for urban consolidation centres: A case study in The Hague. Procedia–Social Behav. Sci. 2010, 2, 6177–6188. [Google Scholar] [CrossRef] [Green Version]
- Macharis, C.; Milan, L. Transition through dialogue: A stakeholder based decision process for cities: The case of city distribution. Habitat Int. 2015, 45, 82–91. [Google Scholar] [CrossRef]
- Quak, H.J. Sustainability of Urban Freight Transport: Retail Distribution and Local Regulations in Cities; Erasmus University Rotterdam: Rotterdam, The Netherlands, 2008; pp. 125–170. [Google Scholar]
- Rao, C.; Goh, M.; Zhao, Y.; Zheng, J. Location selection of city logistics centers under sustainability. Transp. Res. Part D 2015, 36, 29–44. [Google Scholar] [CrossRef]
- Anderson, S.; Allen, J.; Browne, M. Urban logistics: How can it meet policy makers’ sustainability objectives? J. Transp. Geogr. 2005, 13, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Feliu, J.; Morana, J. Are city logistics solutions sustainable? The Cityporto case. Territ. Ambiente. 2010, 3, 55–64. [Google Scholar]
- Awasthi, A.; Chauhan, S.S. A hybrid approach integrating Affinity Diagram, AHP and fuzzy TOPSIS for sustainable city logistics planning. Appl. Math. Model. 2012, 36, 573–584. [Google Scholar] [CrossRef]
- Browne, M.; Sweet, M.; Woodburn, A.; Allen, J. Urban freight consolidation centres final report. Transp. Stud. Group. 2005, 10. [Google Scholar]
- Yang, L.; Ji, X.; Gao, Z.; Li, K. Logistics distribution centers location problem and algorithm under fuzzy environment. J. Comput. Appl. Math. 2007, 208, 303–315. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wang, X. Decision- making for developing urban freight consolidation centers: Analysis with experimental economics. J. Transp. Eng. 2014, 140, 1–7. [Google Scholar] [CrossRef]
- Van Duin, J.H.R.; Van Dam, T.; Wiegmans, B.; Tavasszy, L.A. Understanding Financial Viability of Urban Consolidation Centres: Regent Street (London), Bristol/Bath & Nijmegen. Transp. Res. Procedia 2016, 16, 61–80. [Google Scholar]
- Veličković, M.; Stojanović, Đ.; Nikoličić, S.; Maslarić, M. Different urban consolidation centre scenarios: Impact on external costs of last-mile deliveries. Transport 2018, 33, 948–958. [Google Scholar]
- Boysen, N.; de Koster, R.; Weidinger, F. Warehousing in the e-commerce era: A survey. Eur. J. Oper. Res. 2019, 277, 396–411. [Google Scholar] [CrossRef]
- Macharis, C. The optimal location of an intermodal bargeterminal. In Transport Developments and Innovations in an Evolving World; Beuthe, M., Himanen, V., Reggiani, A., Zamparini, L., Eds.; Springer: Berlin, Germany, 2004. [Google Scholar]
- Keeney, R.L. Value-focused thinking: Identifying decision opportunities and creating alternatives. Eur. J. Oper. Res. 1996, 92, 537–549. [Google Scholar] [CrossRef]
- Forza, C. Survey research in operations management: A process based perspective. Int. J. Oper. Prod. Manag. 2002, 22, 152–194. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, B.T. Revitalization of horto botanico and vale dos contos in ouro preto. In Proceedings of the 10th International Conference on Structural Analysis of Analysis of Historical Constructions, Leuven, Belgium, 13–15 September 2016. [Google Scholar]
- Dyer, J.S.; Sarin, R.K. Measurable multiattribute value functions. Oper. Res. 1979, 27, 810–822. [Google Scholar] [CrossRef]
- Cochran, W. Sampling Techniques, 2nd ed.; John Wiley & Sons: Boston, MA, USA, 1985. [Google Scholar]
- Cortina, J.M. What is coefficient alpha? An examination of theory and applications. J. Appl. Psychol. 1993, 78, 98–104. [Google Scholar] [CrossRef]
- Hair, F.J.; Black, W.C.; Babin, B.; Anderson, R.E. Multivariate Data Analysis, 6th ed.; Prentice Hall: Upper River, NJ, USA, 2005. [Google Scholar]
- Vieira, J.G.V.; Fransoo, J.C.; Carvalho, C.D. Freight distribution in megacities: Perspectives of shippers, logistics service providers and carriers. J. Transp. Geogr. 2015, 46, 46–54. [Google Scholar] [CrossRef]
- Edwards, W.; Barron, F.H. SMARTS and SMARTER: Improved Simple methods for multiattribute utility measurement. Organ. Behav. Hum. Decis. Process 1994, 60, 306–325. [Google Scholar] [CrossRef]
- Soto-de la Vega, D.; Vidal-Vieira, J.G.; Vitor-Toso, E.A. Metodología para localización de centros de distribución a través de análisis multicriterio y optimización. Dyna 2014, 81, 28–35. [Google Scholar] [CrossRef]
Factors Extracted | Original Variables | Factor loadings | Communalities | Cronbach’s Alpha Values (0–1) | ||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||
Factor_1 Economic(ECON) | C8 C7 C10 C12 C11 | 0.823 0.791 0.653 0.591 0.586 | 0.123 0.265 0.337 0.050 0.367 | −0.098 −0.016 0.096 0.220 −0.059 | 0.015 0.096 −0.014 0.171 0.107 | −0.023 −0.088 0.121 0.366 −0.095 | 0.703 0.713 0.564 0.564 0.502 | 0.798 |
Factor_2 Environmental(ENVI) | C6 C13 C2 C3 | 0.219 0.138 0.360 0.245 | 0.698 0.633 0.590 0.574 | 0.077 −0.174 0.031 0.208 | −0.069 0.222 −0.096 0.288 | 0.119 −0.083 0.042 0.120 | 0.561 0.506 0.490 0.530 | 0.659 |
Factor_3 Social(SOCI) | C15 C5 | −0.052 0.084 | −0.027 0.060 | 0.807 0.780 | 0.059 0.069 | 0.002 0.054 | 0.659 0.627 | 0.537 |
Factor_4 Operational(OPERA) | C14 C1 C4 | 0.095 −0.221 0.376 | −0.057 0.289 0.044 | −0.077 0.301 0.134 | 0.722 0.629 0.582 | 0.183 0.017 −0.085 | 0.573 0.618 0.508 | 0.427 |
Factor_5 Cultural(CULTUR) | C16 C9 | −0.056 0.086 | −0.060 0.436 | 0.002 0.062 | 0.206 −0.158 | 0.800 0.606 | 0.690 0.593 | 0.313 |
% of variance explained | 18.12 | 13.68 | 9.56 | 9.55 | 7.84 | |||
% of cumulative variance | 18.12 | 31.80 | 41.36 | 50.91 | 58.76 |
Index | I_SOCI | I_OPERA | I_ENVI |
---|---|---|---|
I_OPERA | NS | ||
(0.060) | |||
I_ENVI | 14.814 * | 19.223 * | |
(1.053) | (1.114) | ||
I_ECON | 11.682 * | 15.153 * | −3.681 * |
(0.914) | (0.974) | (−0.139) |
Code | Criteria | Traffic Wardens | Retailers | Carriers | |||
---|---|---|---|---|---|---|---|
Alternatives | X | Y | X | Y | X | Y | |
C7 | Architectural impacts | 100 | 0 | 50 | 50 | 100 | 0 |
C8 | Damage to historical heritage | 75 | 25 | 50 | 50 | 100 | 0 |
C10 | Visual pollution | 75 | 50 | 50 | 50 | 100 | 0 |
C11 | Noise nuisance level | 75 | 50 | 0 | 50 | 100 | 0 |
C12 | Using alternative propulsion vehicle | 75 | 75 | 50 | 50 | 100 | 100 |
C2 | Traffic congestion | 75 | 75 | 0 | 50 | 100 | 75 |
C3 | Professional qualifications | 50 | 50 | 0 | 50 | 100 | 100 |
C6 | Insecurity | 50 | 75 | 50 | 50 | 100 | 0 |
C13 | Compliance with legal regulations | 100 | 100 | 50 | 50 | 100 | 100 |
C1 | Parking spots | 50 | 0 | 0 | 50 | 75 | 75 |
C4 | Vehicle size | 75 | 75 | 0 | 75 | 100 | 100 |
C14 | Use of technology | 100 | 100 | 50 | 50 | 100 | 75 |
C5 | Local gain | 100 | 50 | 0 | 50 | 100 | 75 |
C15 | Service level | 75 | 75 | 0 | 0 | 100 | 100 |
Total scores of the alternatives | 76.20 | 57.56 | 22.14 | 46.94 | 97.99 | 58.90 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Carvalho, N.L.; Vieira, J.G.V.; da Fonseca, P.N.; Dulebenets, M.A. A Multi-Criteria Structure for Sustainable Implementation of Urban Distribution Centers in Historical Cities. Sustainability 2020, 12, 5538. https://doi.org/10.3390/su12145538
de Carvalho NL, Vieira JGV, da Fonseca PN, Dulebenets MA. A Multi-Criteria Structure for Sustainable Implementation of Urban Distribution Centers in Historical Cities. Sustainability. 2020; 12(14):5538. https://doi.org/10.3390/su12145538
Chicago/Turabian Stylede Carvalho, Nayara Louise, José Geraldo Vidal Vieira, Paula Nakamura da Fonseca, and Maxim A. Dulebenets. 2020. "A Multi-Criteria Structure for Sustainable Implementation of Urban Distribution Centers in Historical Cities" Sustainability 12, no. 14: 5538. https://doi.org/10.3390/su12145538
APA Stylede Carvalho, N. L., Vieira, J. G. V., da Fonseca, P. N., & Dulebenets, M. A. (2020). A Multi-Criteria Structure for Sustainable Implementation of Urban Distribution Centers in Historical Cities. Sustainability, 12(14), 5538. https://doi.org/10.3390/su12145538